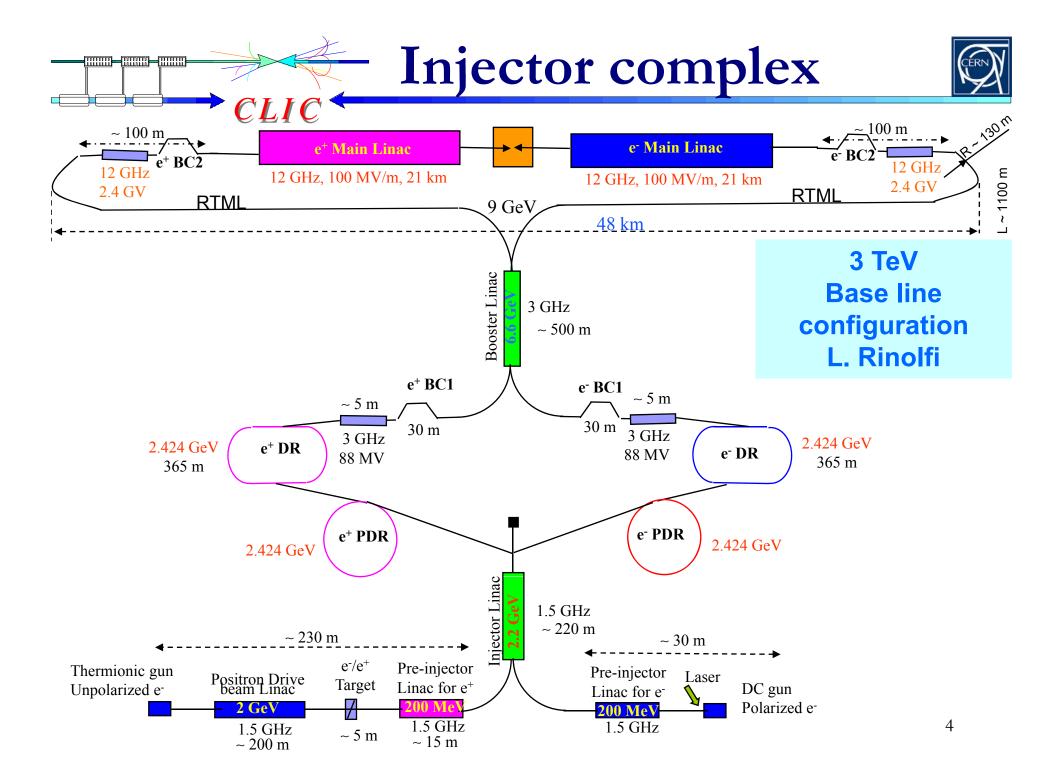


Yannis PAPAPHILIPPOU

October 15th, 2008



- Wiggler design and power absorption
- Chromaticity correction and non-linear dynamics
- Low emittance tuning in the presence of coupling (tolerances)
- e-cloud and other collective effects (IBS)
- Parameter scan for damping rings
- Diagnostics
- CLIC DR activities

Summary

Damping ring design goals				
	CLIC Horizontal Emittance (μrad-m) 0.1 1 10 1	PARAMETER	NLC	CLI C
10.000		bunch population (10 ⁹)	7.5	4.1
	◆ SLC	bunch spacing [ns]	1.4	0.5
Ê 1.000	1.000	number of bunches/train	192	312
i (μra		number of trains	3	1
tance 0.100	NSLS II	Repetition rate [Hz]	120	50
/ertical Emittance (μrad-m 001.0 μ.ad-m 00100 μ.ad-m		Extracted hor. normalized emittance [nm]	2370	<550
ertica 010.0	CLIC 500 GeV	Extracted ver. normalized emittance [nm]	<30	<5
\$ 0.010	achieved	Extracted long. normalized emittance [keV.m]	10.9	<5
10-1408-144	CLIC DR ATF design	Injected hor. normalized emittance [µm]	150	63
0.001 ⊥		Injected ver. normalized emittance [µm]	150	1.5
– 1	Iltra low emittance + high beam polar	Injected long normalized emittance [kt/m]	a13:18	ol 1240

- Ultra-low emittance + high beam polarisation cannot be produced by conventional ¹²⁴⁰ particle sources:
 - $\hfill\square$ Ring to damp the beam size to desired values through synchrotron radiation
- Intra-beam scattering due to high bunch current blows-up the beam
 - Equilibrium "IBS dominated" emittance should be reached fast to match collider high repetition rate
- Other collective effects (e.g. e⁻-cloud, fast ion instability) may increase beam losses
- Starting parameter dictated by design criteria of the collider (e.g. luminosity), injected beam characteristics or compatibility with the downstream system parameters

DR parameters evolution

2005:	original
ring	

 2006a: superconducting wiggler considered

 2006b: vertical dispersion included

2007a: 12GHz structure

2007b: reducedbunchpopulation

2007c: CLIC_G structure

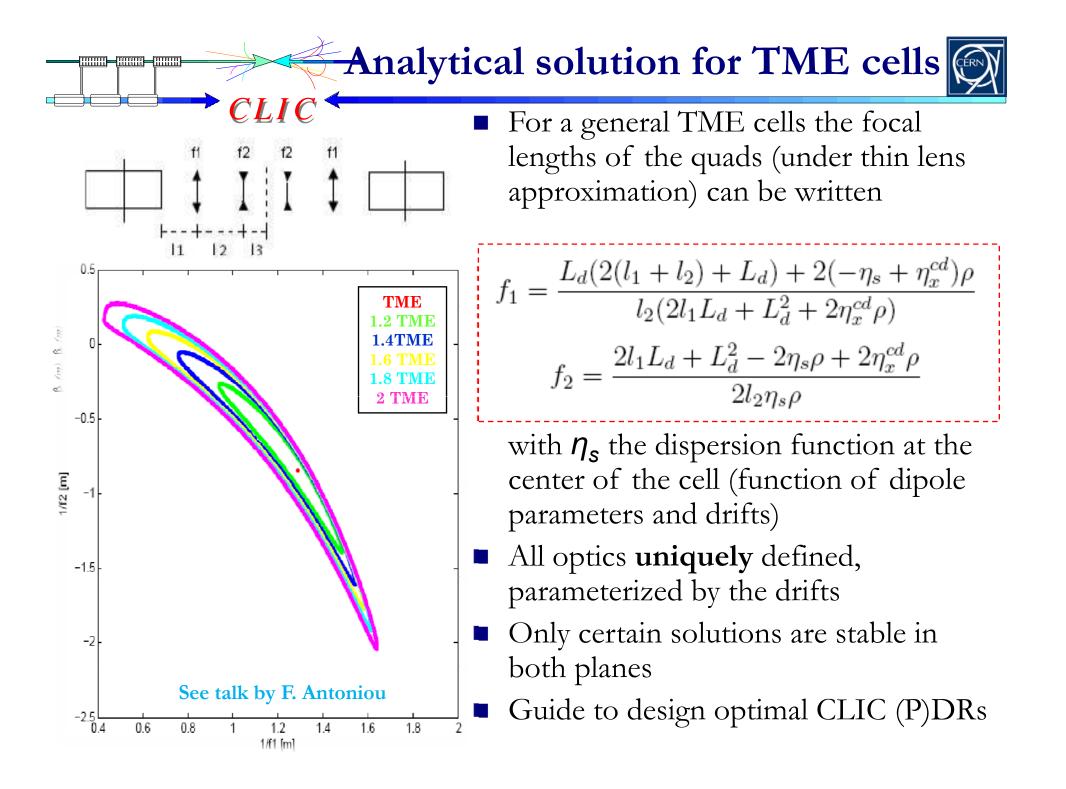
PARAMETER	2005	2006a	2006b	2007a	2007b	2007c
energy [GeV]			2.424			
circumference [m]	360	Waters		365.2	245 612	94 Wale
ounch population [E+ <mark>09</mark>]	2.50	6+5%		5.20+5%	4.00+10%	3.70+10%
bunch spacing [ns]	0.	.533		0.0	567	0.500
number of bunches/train	1	110		3	11	312
number of trains	Stand Stand	4		(Startes	1	1
store time/train [ms]	1	3.3		2	20	20
rms bunch length [mm]	1.55	1.51	1.59	1.49	1.53	1.53
rms momentum spread [%]	0.126	0.136	0.130	0.138	0.135	0.134
hor. normalized emittance [nm]	540	380	308	455	395	381
ver. normalized emittance [nm]	3.4	2.4	3.9	4.4	4.2	4.1
on. normalized emittance [eV.m]	4725	5000	4982	4998	4993	4996
(horizontal, vertical) tunes	(69.82, 34.86)			(69.82, 33.8))	
coupling [%]	0.6			0	.13	
ver. dispersion invariant [µm]	0	(Addate)		0.	248	
wiggler field [T]	1.7		SUS 18	2.5	31010-00	
wiggler period [cm]	10	的同時回答		5		
energy loss/turn [MeV]	2.074			3.903	125	S-dealed
hor./ver./lon./ damping times [ms]	2.8/2.8/1.4	1.5/1.5/0.75				
RF Voltage [MV]	2.39	4.25	4.185	4.345	4.280	4.115
number of RF cycles		2 1 150 50		1		
repetition rate [Hz]						
RF frequency [GHz]	1.	.875		1.4	499	2.00

-CLIC Pre-damping rings

Most critical the e⁺ PDR

- Injected e⁺ emittance ~ 2 orders of magnitude larger than for e⁻, i.e. aperture limited if injected directly into DR
- PDR for e⁻ beam necessary as well
 - □ A "zero current" linac e⁻ beam (no IBS) would need ~ 17ms to reach equilibrium in DR, (very close to repetition time of 20ms)

PDR main challenges

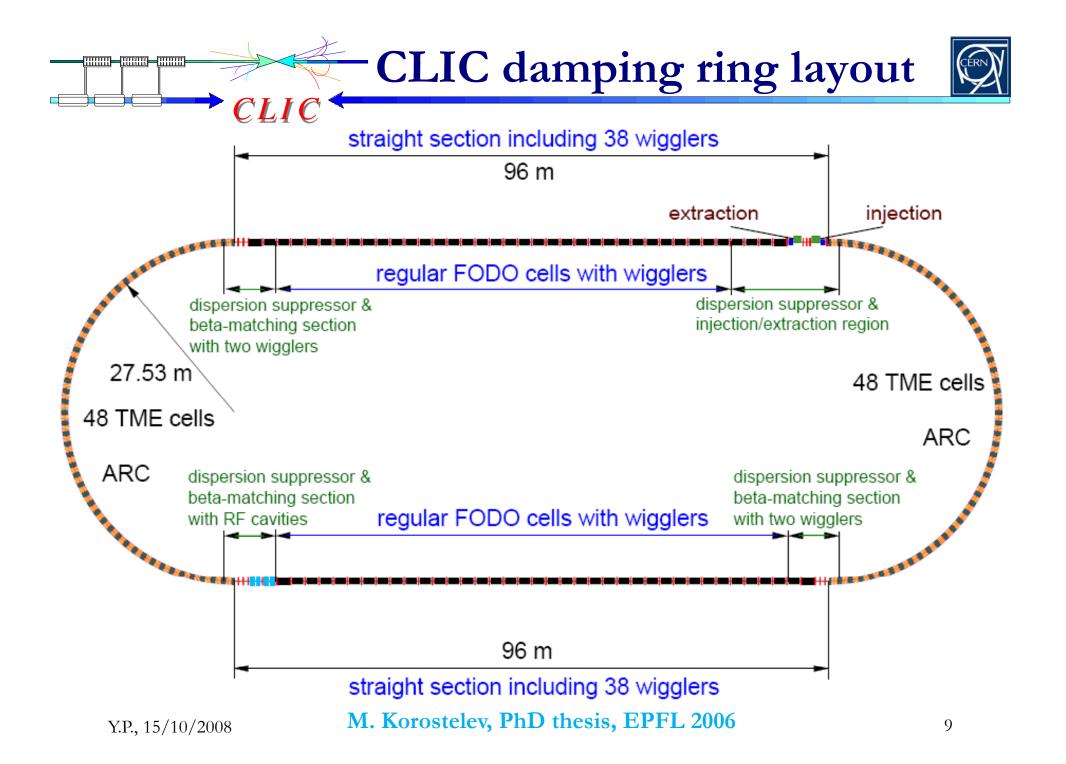

- Large input momentum spread necessitates large longitudinal acceptance for good injection efficiency
- Polarised positron stacking time long compared to repetition rate (need fast damping and/or staggered trains)

PDR Extracted Parameters	CLIC	NL C
Energy [GeV]	2.424	1.98
Bunch population [10 ⁹]	4.1-4.4	7.5
Bunch length [mm]	10	5.1
Energy Spread [%]	0.5	0.09
Hor. Norm. emittance [nm]	63000	46000
Ver. Norm. emittance [nm]	1500	4600

Injected Parameters	e⁻	e ⁺
Bunch population [10 ⁹]	4.4	6.4
Bunch length [mm]	1	5
Energy Spread [%]	0.1	2.7
Hor., Ver Norm. emittance [nm]	$100 \ge 10^3$	9.3 x 10 ⁶

See talks by L. Rinolfi, A. Vivoli and F. Zimmermann

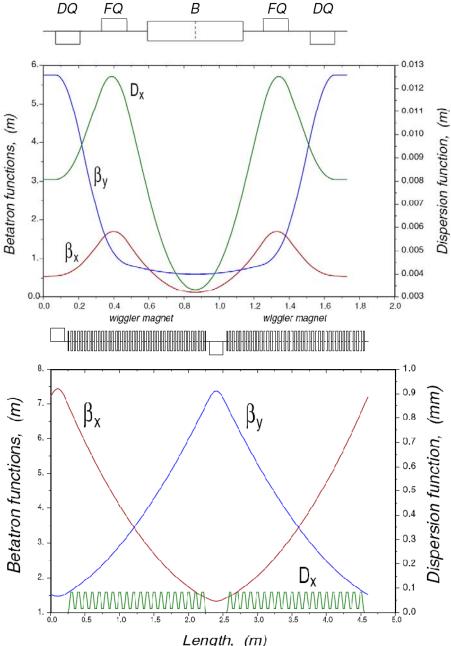
CLIC Workshop '08



-CLIC damping rings lattice

• Two rings of racetrack shape at energy of 2.424GeV • Arcs filled with **1.8m long** TME cells and straight sections contain FODO cells with damping wigglers, giving total length of 365.2m • Phase advance per TME cell was kept to 210° in the horizontal and 90° in the vertical plane, providing a detuning factor of 1.8 • The chromaticity is controlled by two sextupole families.

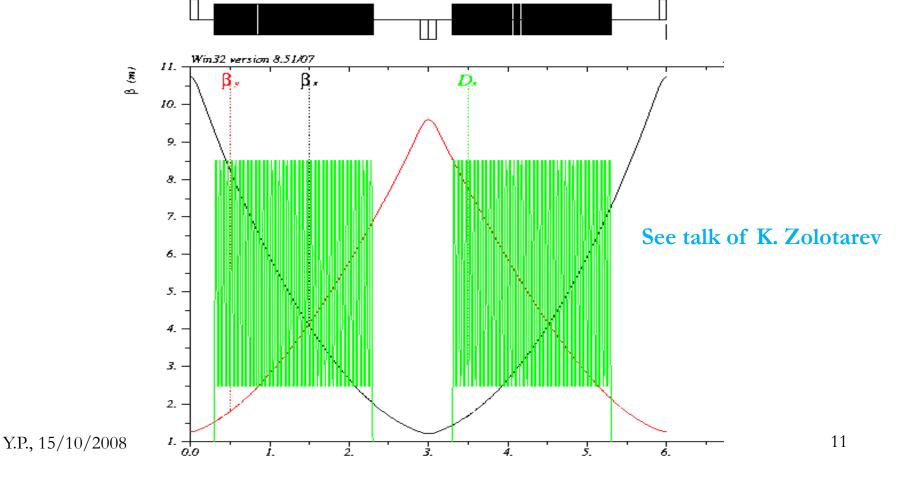
Parameter [unit]	symbol	old value	new value
		(2005)	(2007)
beam energy [GeV]	E_b	2.424	2.424
circumference [m]	C	360	365.2
bunch population [10 ⁹]	N	2.56	3.70 ×1.1
bunch spacing [ns]	$T_{\rm sep}$	0.533	0.5
bunches per train	$N_{\rm b}$	110	312
number of trains	N_{train}	4	1
store time / train [ms]	$t_{ m store}$	13.3	20
rms bunch length [mm]	σ_z	1.547	1.53
rms momentum spread [%]	σ_{δ}	0.126	0.143
final hor. emittance [nm]	$\gamma \epsilon_x$	550	381
hor. emittance w/o IBS [nm]	$\gamma \epsilon_{x0}$	134	84
final vert. emittance [nm]	$\gamma \epsilon_y$	3.3	4.1
coupling [%]	κ	0.6	0.13
vertical dispersion invariant	\mathcal{H}_y	0	0.248
no. of arc bends	n_{bend}	96	100
arc-dipole field [T]	B_{bend}	0.932	0.932
length of arc dipole [m]	$l_{ m bend}$	0.545	0.545
arc beam pipe radius [cm]	$b_{ m arc}$	2	2
number of wigglers	$n_{ m W}$	76	76
wiggler field [T]	$B_{\rm w}$	1.7	2.5
length of wiggler [m]	$l_{ m w}$	2.0	2.0
wiggler period [cm]	λ_w	10	5
wiggler half gap [cm]	b_w	0.6	0.5
mom. compaction $[10^{-4}]$	α_c	0.796	0.804
synchrotron tune	Q_s	0.005	0.004
horizontal betatron tune	Q_x	69.82	69.84
vertical betatron tune	Q_y	34.86	33.80
RF frequency [GHz]	$f_{ m RF}$	1.875	2
energy loss / turn [MeV]	U_0	2.074	3.857
RF voltage [MV]	$V_{\rm RF}$	2.39	4.115
h/v/l damping time [ms]	$ au_x/ au_y,/ au_s$	2.8/2.8/1.4	1.5/1.5/0.76
revolution time $[\mu s]$	$T_{\rm rev}$	1.2	1.2
repetition rate [Hz]	$f_{ m rep}$	150	50



 TME arc cell chosen for compactness and efficient emittance minimisation over Multiple Bend Structures used in light sources

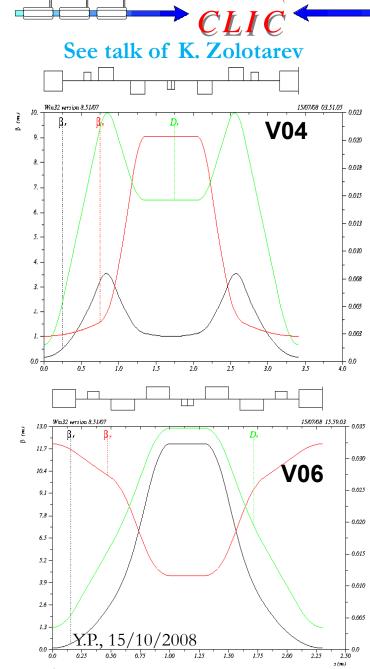
CLIC

- Large phase advance necessary to achieve optimum equilibrium emittance
- \Box Very low dispersion

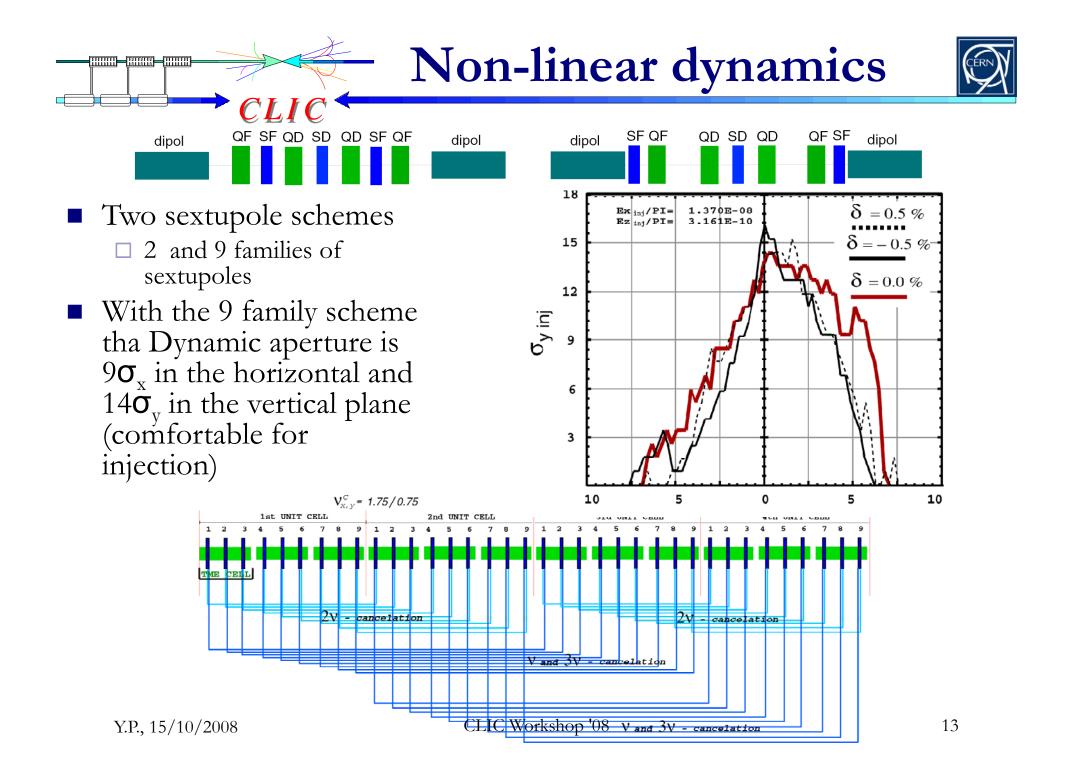

- Strong sextupoles needed to correct chromaticity
- □ Impact in dynamic aperture
- □ Very limited space
- Extremely high quadrupole and sextupole strengths
- FODO wiggler cell with phase advances close to 90° giving
 - $\Box \text{ Average } \boldsymbol{\beta}\text{'s of} \sim 4m \text{ and reasonable chromaticity}}$
 - Quad strength adjusted to cancel wiggler induced tune-shift
 - □ Limited space for absorbers

New wiggler cell

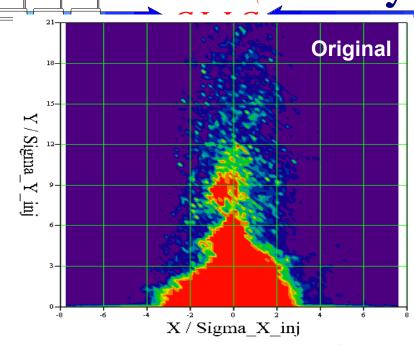
- Added space between wiggler and downstream quadrupoles for accommodating absorbers
- 30% increase of the wiggler section length
- Slight increase of beta maxima (and chromaticity)

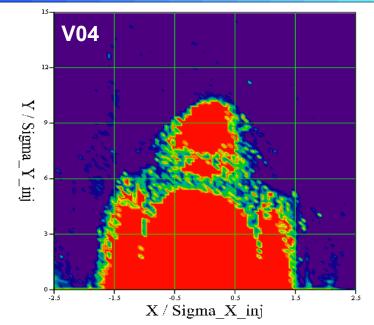


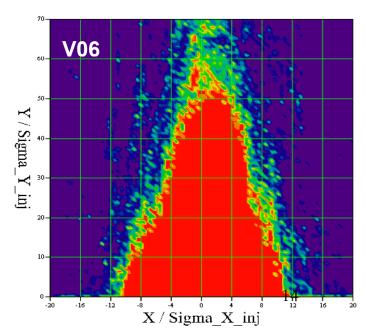
D (m)

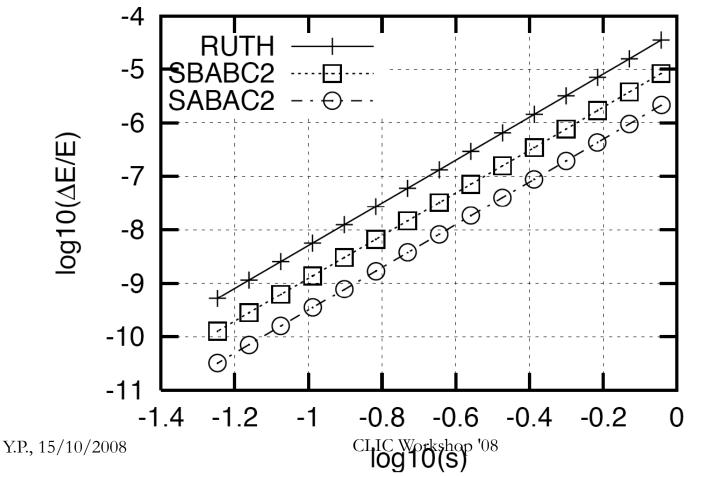

(14)

ă



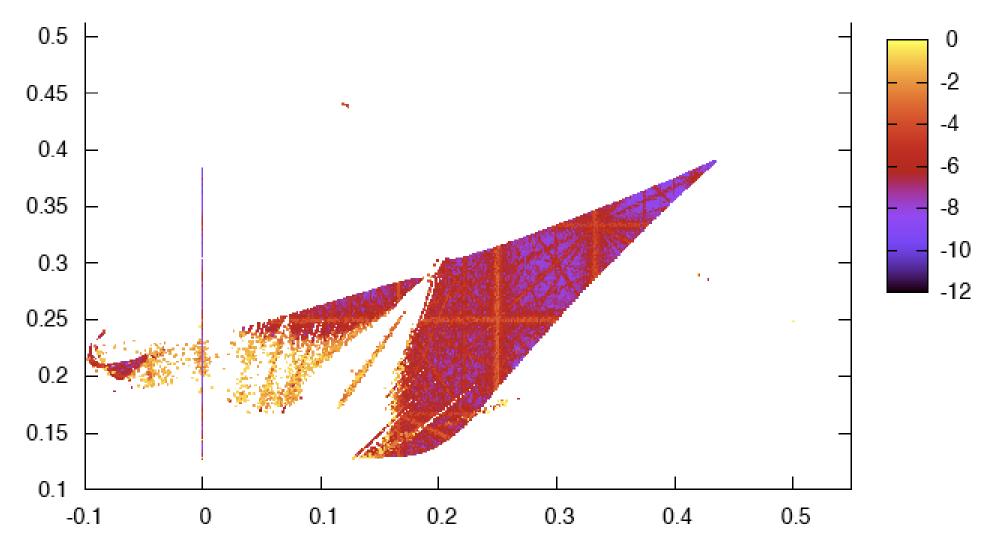

Structure version	Original	V04	V06		
Energy [GeV]	2.424				
Circumference [m]	365.21	534	493.05		
Coupling		0.0006			
Losses per turn [MeV/turn]	3.8600	3.9828	3.9828		
RF voltage [MV]	4.38	4.35	4.601		
Natural chromaticity x / y	-103 / -136	-186/ -118	-148.8 / -79.0		
Compaction factor	8.0213E-05	4.56E-05	6.4427E-05		
Damping time x / s [ms]	1.53 / 0.76	2.17 / 1.09	1.99 / 1.01		
Dynamic aperture a/ơ _{inj} x / y	±3.5 / 6	±1.5 / 5	±12 / 50		
Number of arc cells	100				
Number of wigglers		76			
Cell length [m]	1.729	2.729 2.300			
Dipole length [m]	0.544944	().4		
Bend field [T]	0.93	1	.27		
Bend gradient [1/m ²]	0	0	-1.10		
Max. Quad. gradient [T/m]	220	107.7	60.3		
Max. Sext. strength [T/m ²]*10 ³	80	24.1	6.59		
Phase advance x / z	0.581 / 0.248	0.524 / 0.183	0.442 / 0.045		
Bunch population, N*10^9	4.1				
IBS gain factor	5.1831	3.62	2.89		
Normalized Emittance [nm*rad]	449	439.26	428.4		
Bunch length [mm] CLIC Workshop '08	1.402	1.450	1.380 12		
Longitudinal emmitance [eVm]	5339	5694	5188		

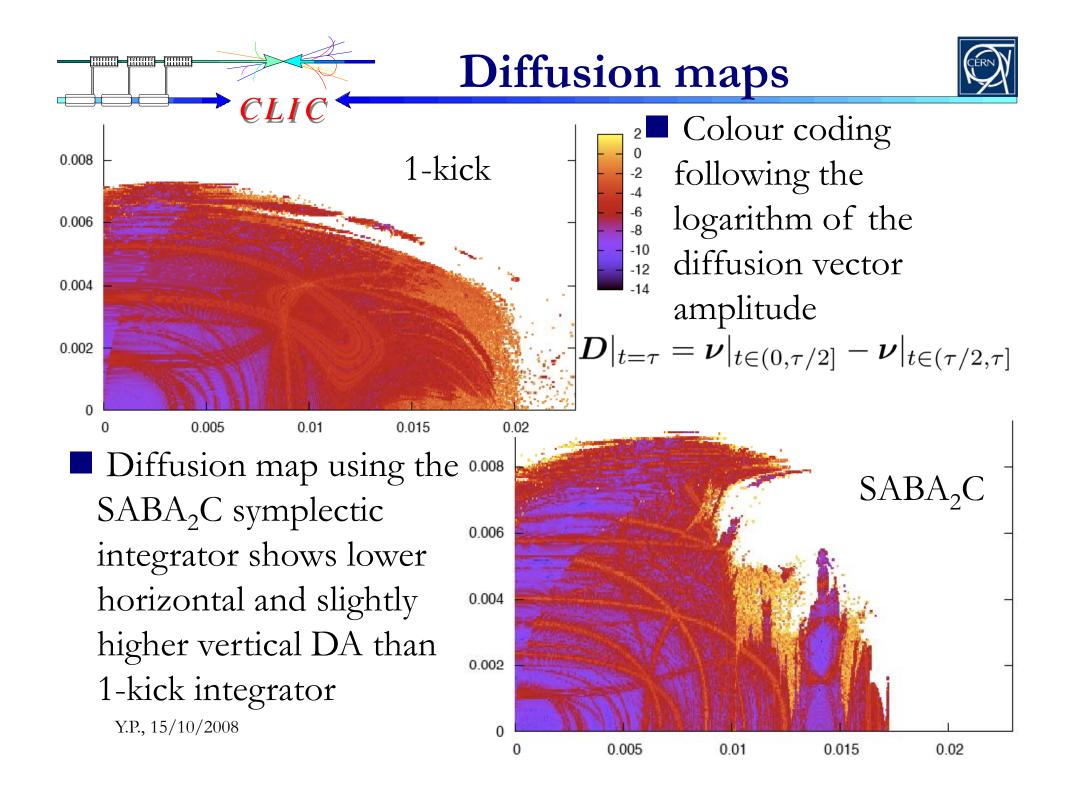

Dynamic aperture

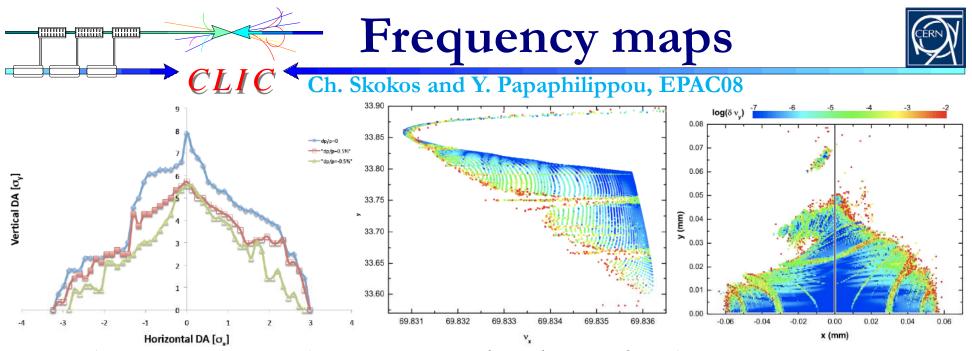

- Original and V04 lattices have very small DA
- The V06 lattice has a more comfortable DA
- Error tables for all magnets including superconducting wigglers to be considered and optimised
- Resonance correction and DA optimisation with sextupoles and/or octupoles using modern techniques (normal forms, frequency maps, ...)
 S. Sinyatkin, et al. 2008

CLIC
 The accuracy of the SABA₂C was proved an order of magnitude more precise than the Forest-Ruth 4th order integrator

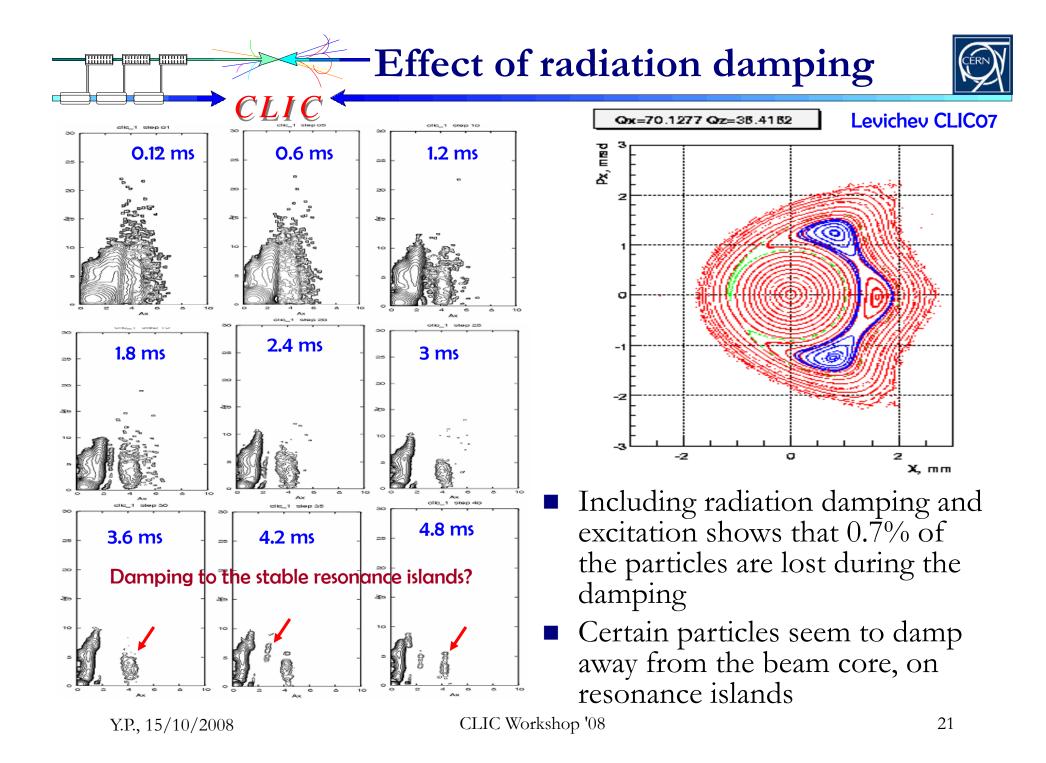
SABA₂ integrator performance

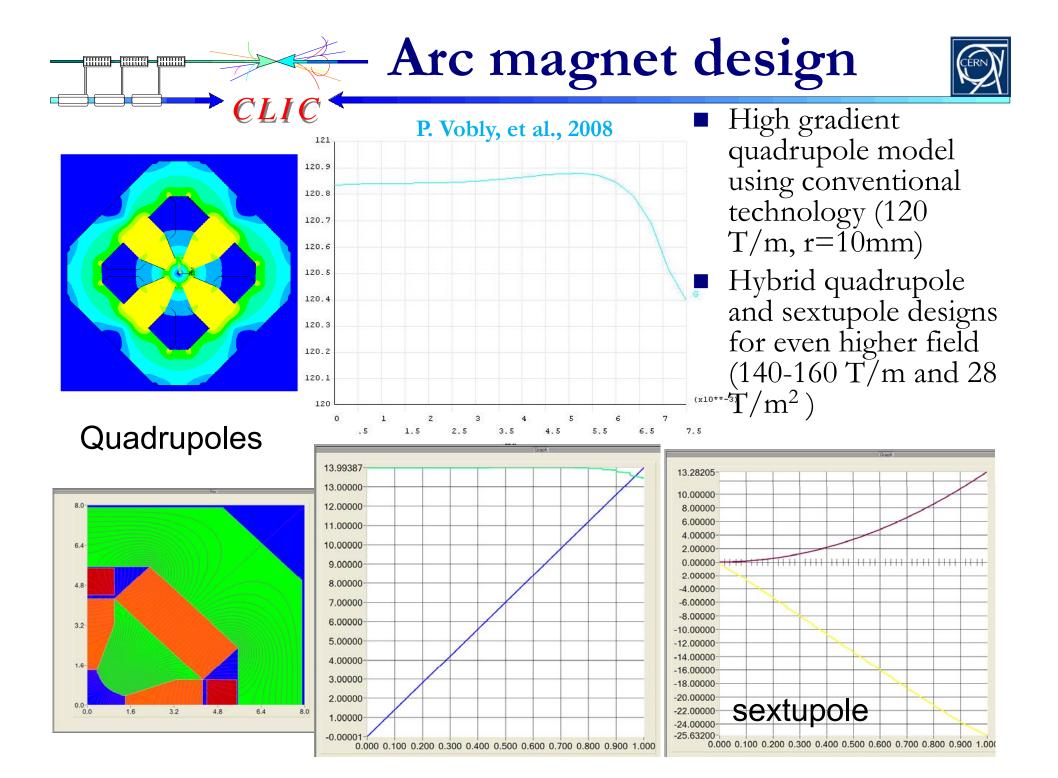


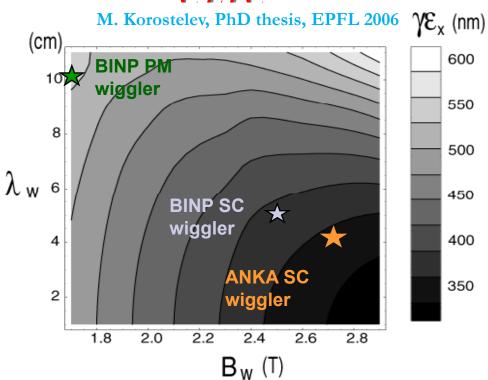

C. Skokos, et al. 2008


- Consider the old ESRF "ideal" lattice, i.e. perfectly symmetric (periodicity of 16) with the only non-linearity coming from the sextupoles
- Integrate the equations of motions with three different methods
 - "Drift-Kick" method by splitting the 0.4m sextupoles in a drift + kick + drift
 - □ Splitting the sextupoles in $10^{*}(drift + kick) + drift$
 - \Box Using the SABA₂C symplectic integrator
- Produce frequency maps by using Laskar's NAFF algorithm and compare

Frequency map I CLIC Comparison between frequency maps produced by "driftkick" 1 kick versus 10 kicks 0.5 0.45 (0,5 0.4 、 で、 0.35 0.3 0.25 0.2 0.15 0.1 -0.1 0.1 0.2 0.3 0.4 0.5 0

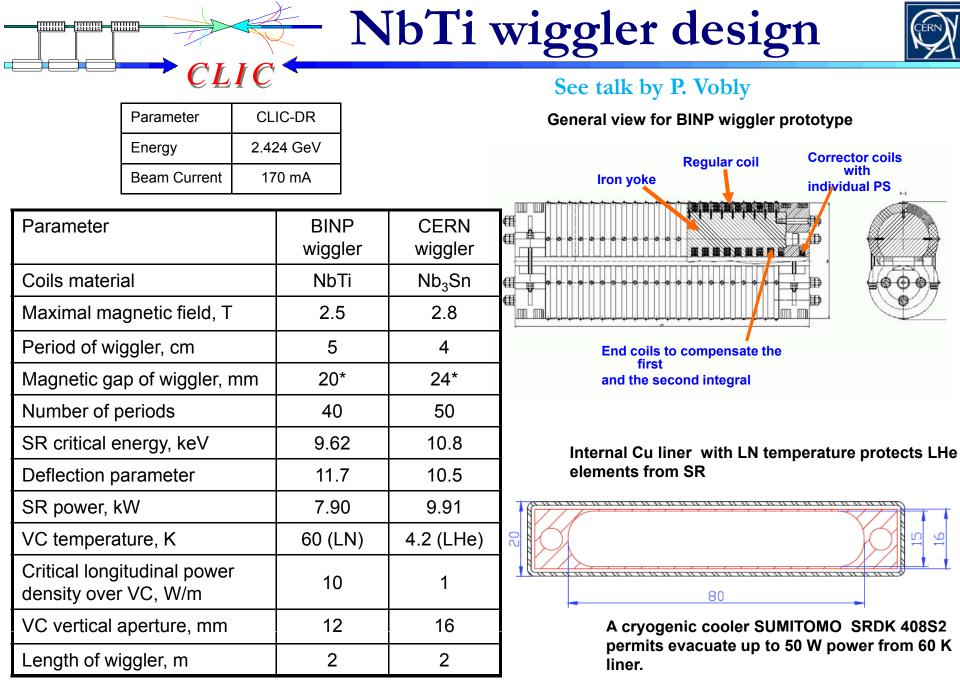

Frequency map II
 Frequency map using the SABA₂C symplectic integrator reproduces the "10-kick" case



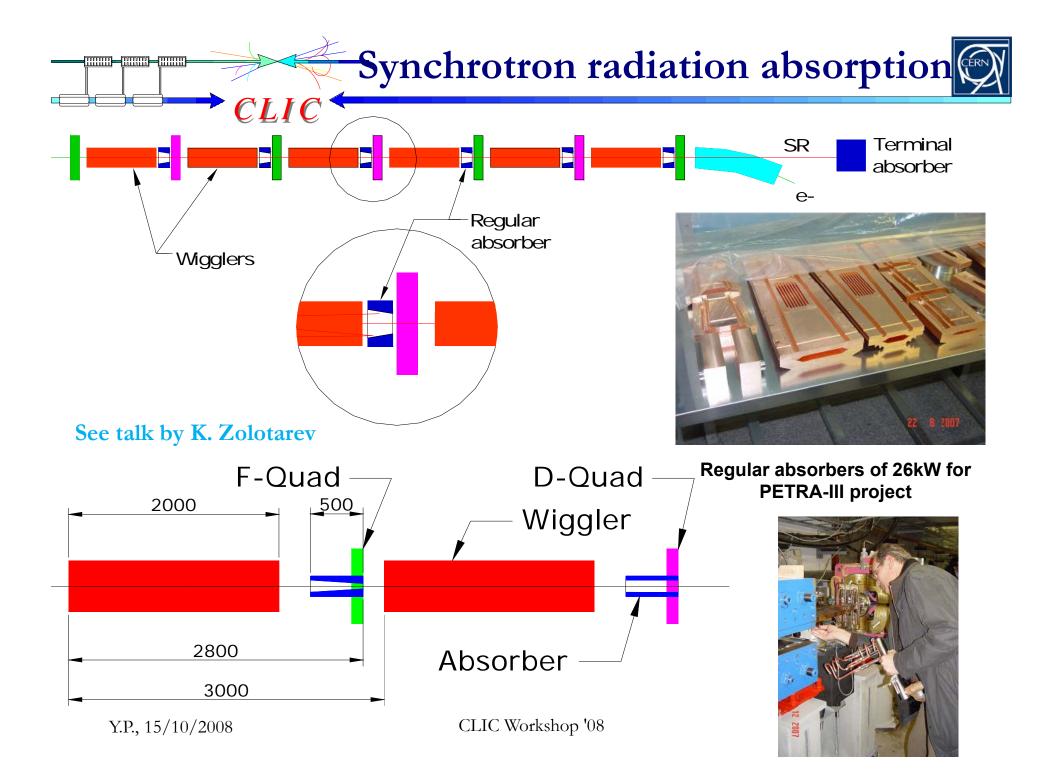


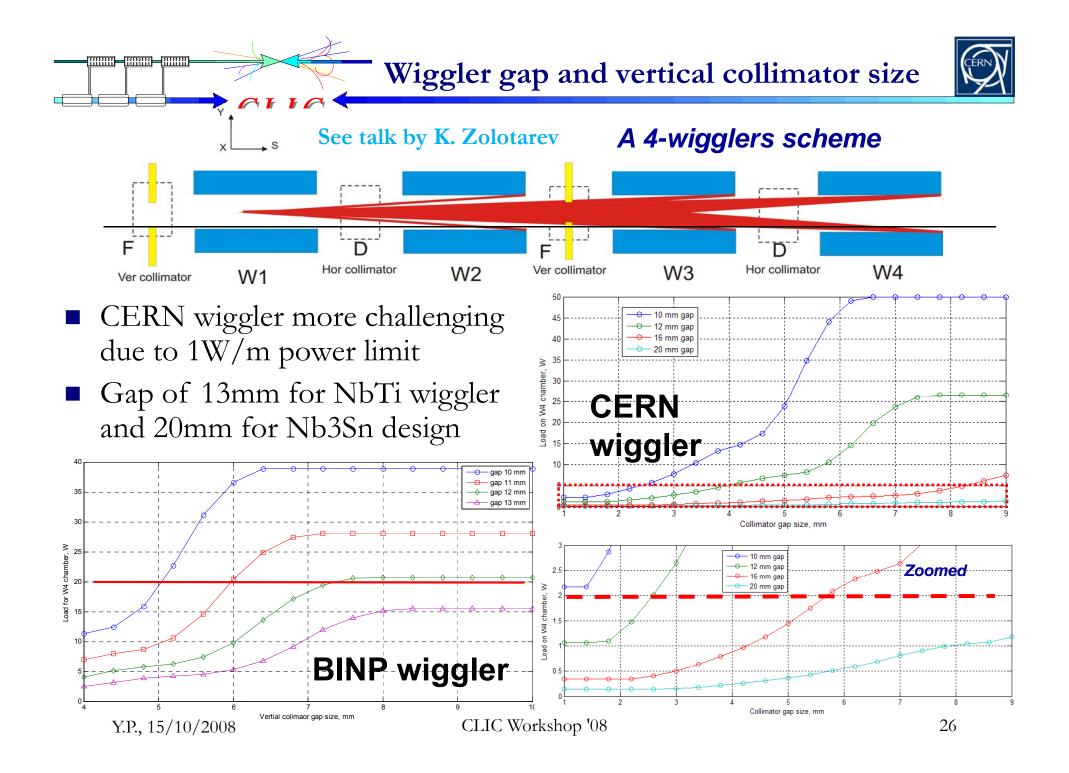
- Only sextupole non-linearity considered (two families)
- Small DA confirmed by both tracking with symplectic integrator SABA₂C and MADX-PTC
- First on-momentum frequency map reveals wide vertical tune spread and crossing of a multitude of resonances (especially 4th order for present working point)
- On-going effort to include in tracking all relevant effects (dipole and quadrupole fringe fields, wigglers, magnet errors, space-charge, radiation damping)

Wigglers' effect with IBS


- With super-conducting wigglers of 2.5T and 5cm period, the achieved normalized horizontal emittance drops below 400nm
 - Super-conducting magnets have to be designed, built and tested

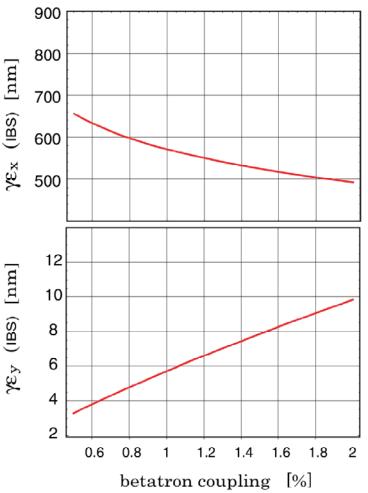
Stronger wiggler fields and shorter wavelengths necessary to reach target emittance due to strong IBS effect


Parameters	BIN P	ANKA/CER N
B _{peak} [T]	2.5	2.8
λ_{W} [mm]	50	40
Beam aperture full gap [mm]	20*	24*
Conductor type	NbTi	NbSn ₃
Operating temperature [K]	4.2	4.2


- □ 2.5T, 5cm period, NbTi coil, built by BINP
- □ 2.8T, 4cm period, Nb₃Sncoil, built by CERN/ANKA
- Aperture fixed by radiation absorption scheme
- Short version to be installed and tested at ANKA

See talks by R. Maccaferri, R. Rossmanith, P. Vobly and K. Zolotarev

Y.P., 15/10/2008


Coupling correction

- Dispersion free steering for orbit and dispersion correction
- Skew quadrupole correctors for correcting dispersion in the arc and emittance minimisation
- Iteration of dynamic aperture evaluation and optimisation after correction
- In CLIC DR, vertical dispersion is dominant (0.1% of coupling and 0.25µm of dispersion invariant)
- Effect of wiggler field errors to be included
- Review of linear correction systems for new lattice design
- Experimental low-emittance tuning foreseen @ SLS

Imperfection	σ [unit]
Quadrupole misalignment	90 µ m
Sextupole misalignment	40 µ m
Quadrupole misalignment	100 µ rad
Dipole rotation	100 µ rad

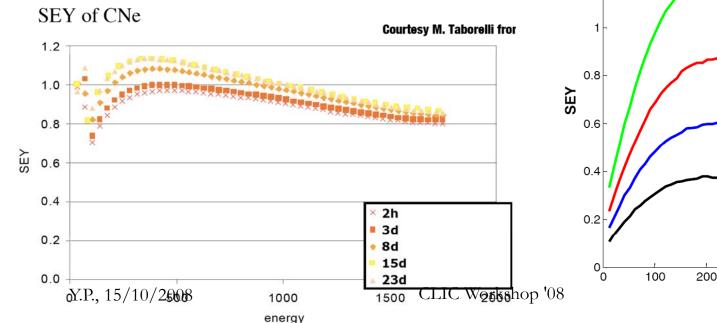
M. Kolosterev PhD thesis

e⁻-cloud effect

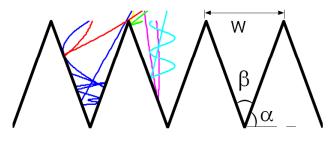
- Simulations with ECLOUD revealed importance of the effect in both CLIC and TESLA DRs
- D. Schulte, R. Wanzerberg, F. Zimmerman, ECLOUD'04
- Simulations using the FAKTOR2 code confirmed the importance of the effect

G. Rumolo et al., EPAC08

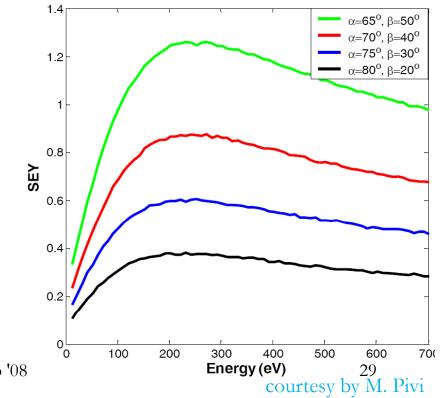
- Ante-chambers in dipoles and wigglers need to absorb 99.9% of photon flux
- Secondary emission yield has to be less than 1.3
- e-cloud density of 3-5x10¹² m⁻³ in the wigglers (independently of density in dipoles) for beam to be stable
- Simulations to be carried out for newest parameter set including 3D photon distribution in wiggler section


See talk by G. Rumolo

	Chambers	PEY	SEY	Q [10 ¹² e⁻/m³]
		0.000576	1.3	0.04
	Dial	0.000576	1.8	2
	Dipole	0.0576	1.3	7
			1.8	40
		0.00109	1.3	0.6
	Wiggler	0.109	1.3	45
			1.5	70
			1.8	80



-e--cloud countermeasures


- Coating of vacuum chambers by a ^{Se} material (e.g. NEG, CNe) for lowering secondary emission yield (tested in SPS)
- Clearing electrodes
- Solenoids in field-free regions
- Grooved surface of vacuum chamber
 - □ Simulations showing reduction of SEY
 - Verified experimentally in PEPII
 - Slight resistive wall impedance increase

See talks by G. Rumolo and M. Taborelli

L. Wang et al., PAC2007

Other collective effects

See talk by G. Rumolo
 Longitudinal and transverse broad band impedance requirements not too stringent

- Based on analytical estimates, a few Ohms in longitudinal and MOhms in transverse are acceptable for stability
- Detailed vacuum chamber design and impedance budget are needed
- Coherent Synchrotron radiation has a minor effect in bunch lengthening
- Vertical incoherent space-charge tune-shift

$$\Delta Q_y = \frac{N_b r_e C}{(2\pi)^{3/2} \gamma^3 \sigma_z} \sqrt{\frac{1}{\epsilon_y}} \cdot \left\langle \frac{\sqrt{\beta_y}}{\sqrt{\beta_x \epsilon_x + D_x^2 \sigma_\delta^2} + \sqrt{\beta_y \epsilon_y}} \right\rangle \simeq 0.188$$

higher than the acceptable value of 0.1

- □ To be taken into account in non-linear dynamics and working point choice
- Pessimistic estimates from HEADTAIL simulations show a 10% emittance increase
- Fast ion instabilities necessitates vacuum pressure of < 0.1nTorr
- Touschek lifetime large enough compared to store time
- Resistive wall multi-bunch effects are associated to rise times of around 1ms and can be damped with a multi-bunch feedback
- Couple bunch instabilities have to be avoided with HOM free cavities

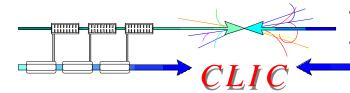
The Cockcroft Institute, Daresbury, UK. 28th - 29th August 2007

- In the case of IBS dominated beams, all lattice parameters can be optimised for reaching the target emittance including IBS effect through semi-analytical approach (modified Piwinski or Bjorken-Mtingwa formalism)
 - The effect of IBS is evaluated "a posteriori", i.e. after setting up the basic features of the lattice
 - An iterative process can be used in order to scan the full parameter space and reach the optimum, using numerical tools
 - Lack of a unique tool for executing all the optimisation steps and reiterate if needed.
 - Derive analytically the optics parameters for reaching minimum IBS dominated emittance in selected lattices (FODO, TME,...)
- Numerical or analytical approach for effect of strong IBS producing non-Gaussian tails including radiation damping is missing
 - Codes for non-Gaussian beams exist (e.g. MOCAC) but not all effects included
 - Use of stochastic diffusion equation approach may be an alternative

-Injection, extraction, timing, RF

- Interleaved bunch train scheme abandoned due to its complexity.
- Reduction of the repetition rate from 150 to 50Hz leaves enough time for the emittances to reach their equilibrium.
- Bunch spacing increased almost to the same level as for the interleaved scheme.
- 312 bunches with 0.5ns spacing, fill only 13% of the rings.
- RF frequency of 2GHz with voltage of 4.1MV for enough energy recovery while keeping longitudinal emittance below 5000eV.m
- Extraction kicker rise time relaxed
- Detailed design of elements is pending
 Y.P., 15/10/2008
 RF cavity and injection/extraction
 See talk by A. Grudiev
 CLIC Workshop '08
 32

Damping Rings diagnostics



- Beam position from around 300PUs, turn by turn (every 1.22µs) all around the ring with a
 - □ 10µm resolution, for linear and non-linear optics measurements.
 - □ 2µm resolution for orbit measurements (needed for vertical dispersion/coupling monitoring and correction and closed orbit feedback).
- A few wide band pick-ups able to do bunch-by-bunch (bunch spacing of 0.5ns for 312 bunches) and turn by turn position monitoring with a high resolution (1µm) for injector trajectory control, and bunch by bunch transverse feed-back.
- Some pick-ups or profile monitors for the extraction transfer line for extraction orbit control and feed-forward.
- Tune monitors and fast tune feed-back precision of 10⁻⁴). The vertical tune may move roughly by 0.2 due to space-charge. The precision of these monitors may be critical for resolving instabilities (i.e. synchrotron side-bands, ions)

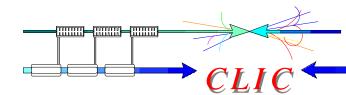
Damping Rings diagnostics

- Turn by turn transverse profile monitors (X-ray?) with a wide dynamic range:
 - the horizontal geometrical emittance goes roughly from 13nm.rad at injection to 80pm.rad at extraction and the vertical from 300pm.rad to 0.8pm.rad.
 - □ Capable of measuring **tails** for an IBS dominated beam.
 - □ This would probably be the most challenging item.
- Longitudinal profile monitors
 - □ Energy spread of **0.5%** to **0.1%** and bunch length from **10** to **0.1mm**.
 - \Box Note that the dispersion around the ring is extremely small (<12mm).
- Fast beam loss monitoring and bunch-by-bunch current measurements
- E-cloud + ion diagnostics (vacuum)
- LBNL colleagues showed interest to work on certain items during CLIC workshop 2007

Damping ring activities

Y. Papaphilippou and H.H. Braun

Activity	Contacts	Commitment	Comment
DR parameters	Y. Papaphilippou (CERN)	Formal	
Lattice design	Y. Papaphilippou (CERN), S.V. Sinyatkin (BINP)	Formal	
Nog ligger durgeries	Ch. Skokos (MPI-Dresden)	Informal	
Non-linear dynamics	E. Levichev et al. (BINP)	Formal	
Correction systems	R. Tomas, G. Vanbavickhove (CERN)	Planned	PhD thesis
	M. Martini, A. Vivoli (CERN)	Formal	
Intrabeam Scattering	F. Antoniou (CERN, NTUA)	Planned	PhD Thesis
Polarization	F. Zimmermann (CERN)	Informal	
	A. Muller (ANKA)	Planned	ANKA
Machine experiments	A. Streun (PSI), L. Rivkin (PSI – EPFL)	Informal	PSI
maerinie experiments	F. Zimmermann (CERN)	Formal	ATF contact
Magnet design	E. Levichev, P. Vobly (BINP)	Formal	
Y.P. 15/10/2008	CLIC Workshop '08		35


Damping ring activities

Activity	Contacts	Commitment	Comment
Super-conducting	R. Rossmanith (ANKA), R. Maccaferi (CERN)	Planned	Nb3Sn
wiggler	E. Levichev, P. Vobly (BINP)	Formal	NbTi
Radiation absorption	K. Zolotarev (BINP)	Formal	
Pre-damping rings	F. Antoniou (CERN, NTUA)	Formal	
Tu star set sti sa	J. Byrd, S. de Santis (LBNL)	Planned	
Instrumentation	T. Lefevre (CERN)	Formal	
	E. Jensen, A. Grudiev (CERN)	Planned	
RF design	V. Serriere (ESRF)	Informal	
Harmonic cavities	S. De Santis (LBNL)	Informal	
Injection/Extraction	T. Fowler, M. Barnes (CERN)	Formal	
Alignment	J.P. Quesnel (CERN)	Planned	
Stabilization	C. Hauviller (CERN)	Planned	
Feed-back	To be confirmed		

Y.P., 15/10/2008

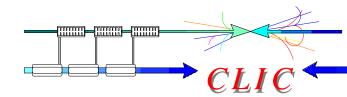
CLI

- Damping ring activities

Collective effects: G. Rumolo

Activity	Contacts	Commitment	Comment
e-cloud / ions	G. Rumolo (CERN), W. Bruns	Formal	
	M. Pivi (SLAC)	Planned	
Chamber coating	P. Chiggiato (CERN), R. Kersevan(ESRF)	Planned	Cut by EUCARD
Space-charge	D. Quatraro (CERN), E. Levichev (BINP)	Formal	
Impedances	A. Wolski, M. Korostelev (Cockcroft Institute)	Planned	
Instabilities	G. Rumolo , D. Quatraro (CERN)	Formal	
Vacuum design	To be confirmed		

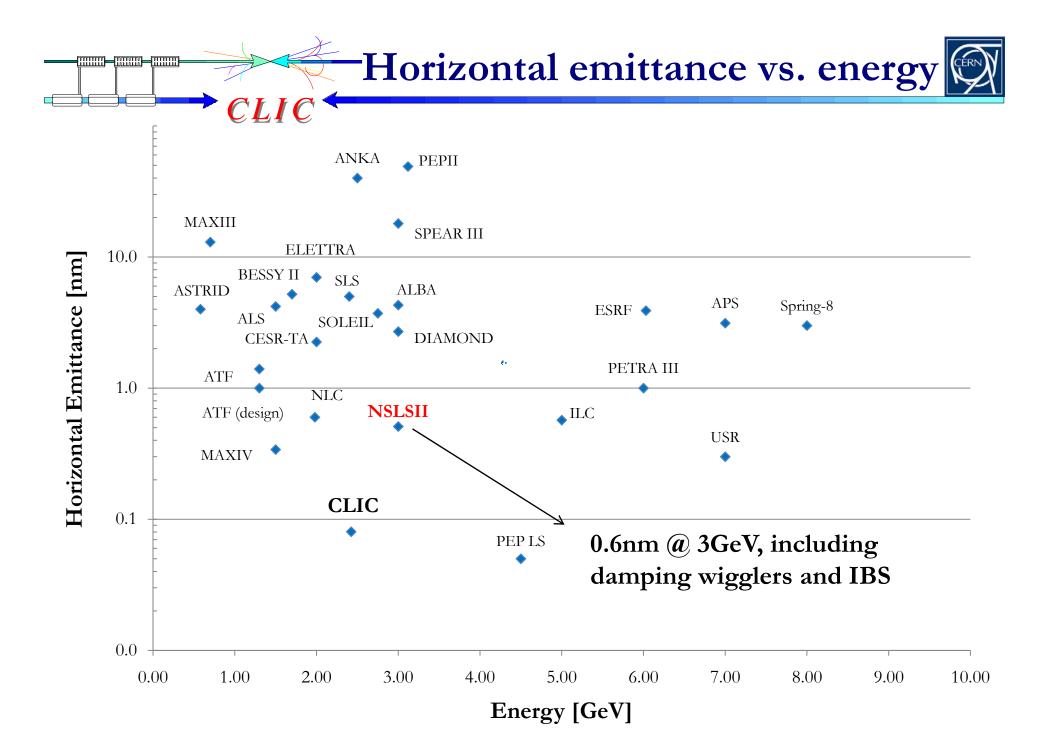
36 contact persons from CERN(19), BINP(4), Cockroft(2), ESRF(2), SLAC(1), LBNL (2), ANKA(2), PSI(2), MPI(1), Private(1)

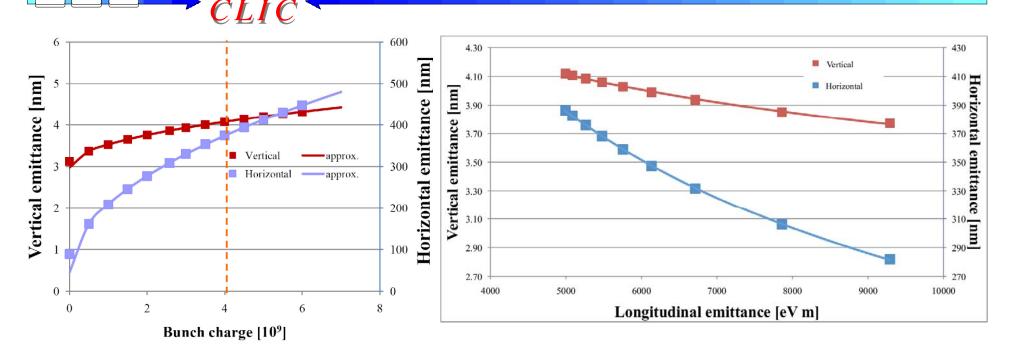


- Detailed design of the CLIC damping rings, delivering target emittance with the help of super-conducting wigglers
 - □ Prototype to be built and tested at ANKA synchrotron
 - □ Radiation absorption protection
 - □ Collective effects evaluation including electron cloud and fast ion instability
- Lattice revision for becoming less challenging with respect to space and magnet parameters
 - □ Sextupole optimisation and non-linear dynamics including wiggler field errors
 - Linear and non-linear correction schemes
 - □ Low emittance tuning and alignment tolerances
- Parameter scan for conservative beam emittances for 500GeV collider

Work in progress

- Pre-damping rings optics design
- □ IBS theory, numerical tools and experimental demonstration of low emittance
- □ Vacuum chamber design and impedance budget
- □ Injection and extraction elements
- □ Design of HOM free high frequency RF cavities
- □ Diagnostics and feedback
- \Box Route from 500GeV to 3TeV




Scaling of DR parameters Conservative parameters for CLIC@500GeV

- Swiss Light Source achieved 2.8pm, the lowest geometrical vertical emittance, at 2.4 GeV, corresponding to ~10nm of normalised emittance
- Below 2pm, necessitates challenging alignment tolerances and low emittance tuning (coupling + vertical dispersion correction)
- Seems a "safe" target vertical emittance for CLIC damping rings

Bunch charge and longitudinal emittance

- Horizontal emittance scales as $\gamma \epsilon_x \propto \sqrt{N_b/\sigma_z}$
- Vertical and longitudinal emittance have weaker dependence to bunch charge (of the same order) confirming that vertical emittance dominated by vertical dispersion.
- When relaxing longitudinal emittance constraint of 5keV.m (decreasing RF voltage), horizontal emittance presents inverse square root dependence (reduced by 25%)
- Vertical emittance dependence is much weaker

-Horizontal emittance vs. energy

The horizontal emittance is
$$\epsilon_{x;0} = \frac{C_q \gamma^2}{12(\mathcal{J}_x + \mathcal{F}_w)} \left(\frac{\theta^3}{\sqrt{15}}\epsilon_r + \frac{\mathcal{F}_w |B_w^3|\lambda_w^3 \langle \beta_x \rangle}{16(B\rho)^3}\right)$$

relative damping factor $\mathcal{F}_w = \frac{L_w B_w^2}{4\pi(B\rho)B}$

- Assume the damping partition number $\mathcal{J}_x = 1$ (i.e. no gradient in dipoles) and constant bending angle $\theta = \frac{L}{\rho} = constant$ and dipole field. As $\rho \propto \gamma$, the dipole length and the circumference should be scaled as well with energy $C \propto \gamma$ and $L \propto \gamma$ Scaling the total wiggler length with energy $L_w \propto \gamma$ makes the relative damping factor energy independent
- The average beta function in a wiggler FODO cell is $\langle \beta_x \rangle = 2 \frac{3f^2 L_w^2}{3\sqrt{f^2 L_w^2}}$ and scales as the wiggler length or the energy, considering constant tocal length
- Keeping the wiggler characteristics (field, period) constant, the first term is scaled with the square of the energy whereas the second is energy independent
- Finally, the horizontal normalized emittance is $\epsilon_{xn:0} \propto \gamma^3$
- Note also that the horizontal damping time is inversely proportional to the energy CLIC Workshop '08 Y.P., 15/10/2008

-Longitudinal emittance vs.energy

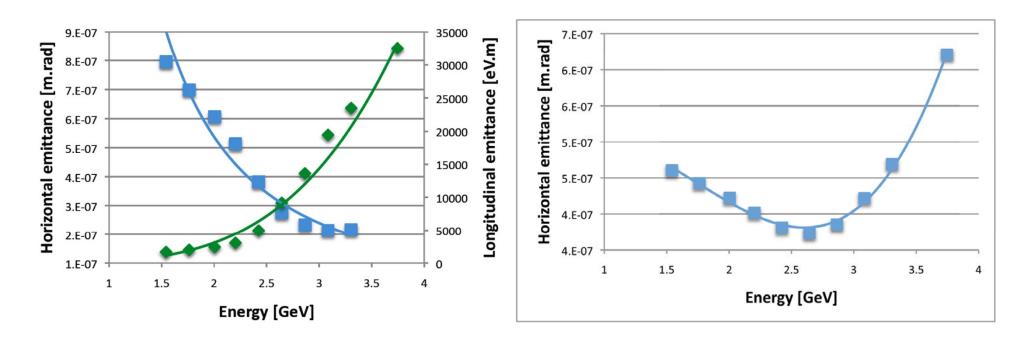
1 10

- The longitudinal normalised emittance can be defined as $\epsilon_s = \gamma \sigma_s \sigma_\delta m_0 c^2$
- The slippage factor is approximately equal to the momentum compaction factor which can be written as

$$\eta \approx \alpha_p = \frac{3\pi}{2} \left(\frac{4\sqrt{15}}{9}\right)^{2/3} \frac{(B\rho)(1+\mathcal{F}_w)^{2/3}}{C|B|\gamma^2} \left(\frac{\gamma\epsilon_{x;0}}{C_q} - \frac{\mathcal{F}_w|B_w^3|\lambda_w^2\langle\beta_x\rangle\gamma^3}{192(B\rho)^3(\mathcal{J}_w + \mathcal{F}_w)}\right)^{2/3} \frac{\sqrt{5} + \sqrt{\epsilon_r^2 - 1}}{\epsilon_r^{2/3}}$$

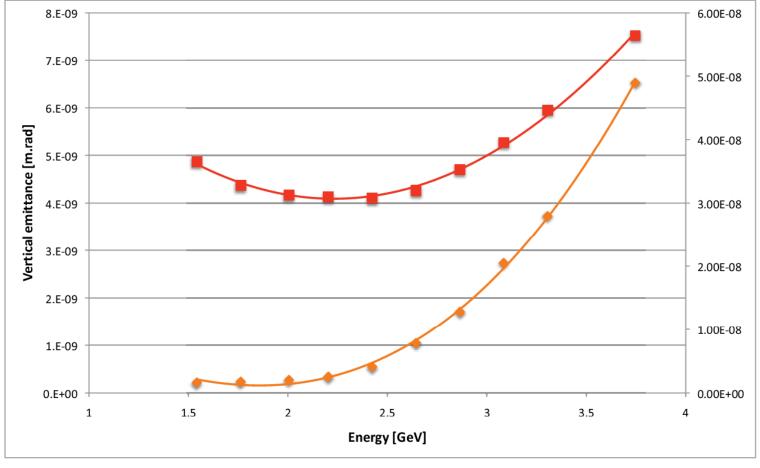
$$\text{Under the previous assumptions the momentum compaction factor is energy}$$

independent


Finally/the210ngitudinal normalised Emittereties '08

IBS dominated emittances vs.energy

- **Numerical scaling** obtained, by integrating coupled difference equations of standard IBS theory.
- Longitudinal and horizontal emittance scale approximately as $\epsilon_s \propto \gamma^4$ and $\epsilon_x \propto \gamma^{-2}$
- For constant longitudinal emittance


CLIC

- **high energies** (small effect of IBS): horizontal emittance follows power law similar to the one of zero current emittance
- **low energies** (IBS dominates): is inversely proportional to the energy

IBS dominated emittances vs.energy

- Vertical emittance follows a quadratic polynomial law
- For constant longitudinal emittance, it scales linearly with energy for high energies. For low energies saturates to constant value.

Y.P., 15/10/2008

CLIC

CLIC Workshop '08

Scaling of NSLS II parameters

- The "zero-current" equilibrium emittance scaled to CLIC DRs energy is **1.6µm**
- Under previous assumptions, give longitudinal normalized emittance of 6256eV.m @ 2.424 GeV
- Taking into account scaling of horizontal emittance with bunch population and longitudinal emittance the hor. norm. emittance for CLIC DR parameters (4.1x10⁹p/bunch and 5000eV.m) is **1.3µm**
- The final horizontal emittance after scaling the IBS growth with the energy and the vertical emittance, is **2.4µm**
- In this respect the final value may lie around
 2μm providing a safe compromise

PARAMETER	Values	
energy [GeV]	3	
circumference [m]	791.5	
bunch population [10 ⁹]	7.9	
bunch spacing [ns]	1.9	
number of bunches	1056	
rms bunch length [mm]	2.9	
rms momentum spread [%]	0.1	
hor. normalized emittance [µm]	2.99	
ver. normalized emittance [nm]	47	
lon. normalized emittance [eV.m]	10395	
coupling [%]	0.64	
wiggler field [T]	1.8	
wiggler period [cm]	10	
RF frequency [GHz]	0.5	