The Wiggler for the SR Damping ring

R. Maccaferri

CERN: AT/MCS

The CLIC SR Damping ring

RM CLIC Workshop 15/10/2008

SC Undulators & Wigglers at CERN

✓ History

• NbTi Undulator for the LHC beam monitor

Period: 280 mm Gap: 60 mm

Field in the gap: 5 T Field on coils: 6.2 T

Operating current: 450 A >>> 350 A /mm²

LHC Undulator upgrade for lead ions

- LHC upgrade with lead ions, requires modification
 - Flexible operation: undulator period 280 mm/140 mm with 60 mm gap

 $B_{GAP} = 5 \text{ T for } 280 \text{ mm period which mean } B_{COIL}: 8 \text{ T}(590 \text{ A/mm}^2)$ $B_{GAP} = >3 \text{ T for } 140 \text{ mm period which mean } B_{COIL} = 9 \text{ T} (550 \text{ A/mm}^2)$

RM CLIC Workshop 15/10/2008

Comparison NbTi vs Nb₃Sn

Superconductor choice

- NbTi is not suitable for the Lead Ions undulator
- Nb₃Sn seem to be the right choice but...
 - Needs a long reaction treatment up to 700 C
 - Becomes brittle after treatment
 - The insulation between turns and layers must resist high temperatures.
 - Shows instabilities at low field (flux jumps)
- Nevertheless, it is the only superconductor available to build this undulator and eventually the CLIC wiggler!

NB3Sn Strand

Properties

 Produced by Oxford Instruments Superconducting Technology (OST) using restacked rod process(RRP)

http://www.oxinst.com/wps/wcm/resources/file/ebcab80df0182aa/RRP NbSn.pdf

- Bare diameter = 0.8 mm + S2-glass insulation
- Price: ~8chf/m

Stabilizer	Copper
Non copper volume	53% +/- 3%
RRR of Cu	>40
Twist pitch , dia. < 1mm	12 <u>+</u> 4 mm
Twist pitch , dia. <u>></u> 1 mm	40 <u>+</u> 10 mm
Bare size tolerance	<u>+</u> 5 μm
Insulation	S-Glass braid
Insulation build	130 μm (nominal)
lns. size tolerance	<u>+</u> 15 μm

Heat treatment cycle

- Increase T to 205 °C (25 °C/h), hold for 72 h
- Increase T to 400 °C (50 °C /h), hold for 48 h
- Increase T to 695 °C (50 °C /h), hold for 17 h
 - Improved RRR and magneto-stability, B.Bordini

Measurements:

- RRR > 300 (short sample and coil), B. Bordini

"Test Report of the Ceramic-Insulated Nb³Sn Small Split Solenoid"; B. Bordini, R. Maccaferri, L. Rossi, D. Tommasini EDMS: 907758

How to handle

3 Methods:

- React, Wind then impregnate
 - This method apply only if a large bending radius(>200 mm) can be done. The reacted wire is very brittle, rigid and breaks if bent.
- Wind, react and then impregnate
 - Need fiber glass de-sizing by additional thermal cycle in flowing air followed by a special residual cleaning.
 - Reaction cycle in vacuum or Ar gas
 - Vacuum impregnation with epoxies
- Wet-wind and react
 - Ceramics wet-winding
 - Reaction cycle in vacuum or Ar gas

We intend to choose the last method!

Suitable Insulations process

- ☑ Ceramics adhesive 989 F, produced by Cotronics corp. N.Y.(USA)
 - 989 F, very fine granulometry
 - Alumina based
 - Used for wire impregnation
 - Cures at room temperature
 - Working temperature >1600 °C
 - Dielectric Strength > 8 kV/mm

Ceramics validation tests

- Curing tests
 - Changing r=A_{cure}/V_{sample}
 - Total cure
 - Retraction
 - Fissures
- Band test
 - Adherence to fiber glass
- Peeling test
 - Adherence properties
- Polypropylene mould

 Ceramic compound

 Polypropylene mould

 Ceramic compound

- Basic winding test
 - Inter layer/turn adherence
 - Rigidity

- Advanced winding test
 - Interlayer adherence/ voids
 - Pre-cure + air blowers
 - Hardener

Coil Winding

✓ Dedicated machine + 2 persons

- Coil size : 24 x 19 mm (WxH)
- Winding tension 50 N
- S2-glass pre-impregnation with ceramic adhesive
- Winding of few turns adjusting wire position
- Ceramics adhesive coverage
- Brushing helps homogeneity and removal of extra material
- Too much adhesive = low current density
- Not enough = bad insulation and mechanical stability
- Pre-curing by layers (10 mins) + confinement + hot air circulation
- Compensate wire elasticity

RM CLIC Workshop 15/10/2008

Coil Winding

- + 24 hour curing in winding machine (wire tensioned)
- Wire terminals soldered to Cu supports
- Drying in oven at 65 ºC

Measurements

I_{max}= 599 A; B= 10 T

☑ T= 4.3 K

RM CLIC Workshop 15/10/2008

Undulators working points

Wigglers optimum efficiency

Contour plot of horizontal emittance with IBS as function of wiggler parameters

Wiggler Models discussion

Type: Vertical racetracks coils (WR)

Wiggler Models discussion(cont.)

WH magnetic Model 2D

10

Field [T]

12

Enhanced WH wiggler

Holmium properties

HolmiumAtomic Number: 67

Atomic Weight: 164.93032

Melting Point: 1747 K (1474°C)

Boiling Point: 2973 K (2700°C)

Density: 8.80 g/cm³

Phase at Room Temperature: Solid

Element Classification: Metal

Bsat (Below 20 K see footnote): 3.2 T

Cost, pure: 740 \$/100g

Magnetic Properties of Holmium and Thulium Metals*

B. L. RHODES, S. LEGVOLD, AND F. H. SPEDDING
Institute for Atomic Research and Department of Physics, Iowa State College, Ames, Iowa
(Received August 12, 1957)

Wigglers working points

Туре	Bmax	Period	Gap
Nb ₃ Sn	2.8 T	40 mm	16 mm
NbTi	2.0 T	40 mm	16 mm
Nb ₃ Sn	2.8 T	30 mm	10 mm
NbTi	2.2 T	30 mm	10 mm

Discussion: advantages/drawbacks

NbTi		Nb ₃ Sn	
+	-	+	_
Robust and ready to use			Brittle, need thermal treatment
	Limited Field <6 T	No practical field limit >15T	
	1W/m heat depostion (note 1)	10 W /m heat deposition (note 1)	
Stable			Unstable under certain conditions
Standard EU and US Production			Only US commercial production

NOTE 1: Comparative study of heat transfer from Nb-Ti and Nb3Sn coils to He II Marco La China and Davide Tommasini Phys. Rev. ST Accel. Beams 11, 082401 (2008)

Milestones

- End June 2009: Verticl race-track prototype (WR)design completed
- End October 2009 WR prototype production completed
- December 2009 Double Helix-like prototype (WH) design completed
- February 2009 WR test acceptance completed
- End April 2010 WH prototype production completed
- End June 2010 WH test acceptance completed
- End 2010 Documentation & final reports completed

Conclusions

- This project is a challenge as we try to push the SC performances to its limits.
- We are still trying to improve the assembly & winding techniques in particular for the WH wiggler type
- The use of Holmium should be implemented at least in the prototype phase despite its cost.

Thank You