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Choose a coordinate system adapted to the interior U of a beam
pipe with a circular disc cross-section of fixed radius a at every
point and an axis given by a planar space-curve with, in general,
non-constant curvature κ and |κa| � 1.
At each point on this curve one may erect a triad of orthogonal
vectors in space, one member of which is tangent to the curve.
The remaining vectors define a transverse plane.
All points in the interior U of the beam pipe lie on some
transverse plane associated with such a triad with origin at some
point on the axial space-curve.
Let the region U ⊂ R3 inside the beam pipe be described in terms
of coordinates (r , θ, z) adapted to the central space-curve with
curvature κ(z) such that

0 ≤ r ≤ a, 0 < θ ≤ 2π, −∞ ≤ z ≤ ∞.



Cavity Geometry
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The dotted red space curve can be taken as a line of centroids of cross-sections spanned by
the unit vectors d1 and d2 belonging to a Frenet triad along this curve.
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A convenient field of orthonormal coframes on U is given in these
coordinates by

{e1 = d r , e2 = rd θ, e3 = (1− εκ0(z)x1) d z},

with x1 = r cos θ.
Thus the Euclidean metric tensor g on U is given by

g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3.

In these coordinates the pipe boundary is the surface r = a, the
coordinate z measures arc-length along the space-curve and on
the space-curve r = 0.



The objective is to solve Maxwell’s equations for the fields e
(1)

and

h
(1)

on U in terms of prescribed sources and initial data as a

perturbative expansion in the axial curvature of the beam pipe.
The strategy will be to project the field system into suitable
modes that ensure that perfectly conducting boundary conditions
are satisfied at the pipe boundary.
In the adapted coordinate system this is achieved with the aid of
complex Dirichelet and Neumann eigen-modes of the
two-dimensional Laplacian associated with each transverse plane
in the beam pipe.



Dirichelet Modes

A complex Dirichelet mode set {ΦN} is a collection of complex
eigen 0-forms of the Laplacian operator on the disc D that
vanishes on the boundary ∂D:

∆ΦN + β2
NΦN = 0

with ΦN |∂D = 0.
This boundary condition and the nature of the domain determine
the associated (positive non-zero real) eigenvalues β2

N . The label
N here consists of an ordered pair of real numbers.



Dirichelet Modes

An explicit form for ΦN is for n ∈ Z

ΦN(r , θ) = Jn

(
xq(n)

r
a

)
einθ, (1)

where Jn(x) is the n-th Bessel function
the numbers {xq(n)} are defined by Jn(xq(n)) = 0
N := {n,q(n)}.
The eigenvalues are given by {βN = xq(n)/a}.



Neumann Modes

A Neumann mode set {ΨN} is a collection of eigen 0-forms of the
Laplacian operator on D such that ∂ΨN

∂n vanishes on ∂D:

∆ΨN + α2
NΨN = 0

This alternative boundary condition and the nature of the domain
determine the associated (positive non-zero real) eigenvalues α2

N
where again the label N consists of an ordered pair of real
numbers.



Neumann Modes

An explicit form for ΨM is for m ∈ Z

ΨM(r , θ) = Jm

(
x ′p(m)

r
a

)
eimθ

where the numbers {x ′p(m)} are defined by J ′m(x ′p(m)) = 0 and
M := {m,p(m)}.
The eigenvalues are given by {αM = x ′p(m)/a}



Mode Decompositions

Since U is simply connected one can represent the
electromagnetic forms

e
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(ε, t , z, r , θ) =
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V E
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Perturbative Expansions

Since for small |κa| the beam pipe approximates a straight
cylinder we adopt the perturbative field-mode expansions

V E
N (ε, t , z) = V E(0)

N (t , z) + εV E(1)
N (t , z) +O(ε2). (4)

IE
N (ε, t , z) = IE(0)

N (t , z) + εIE(1)
N (t , z) +O(ε2). (5)

γE
N (ε, t , z) = γ

E(0)
N (t , z) + εγ

E(1)
N (t , z) +O(ε2), (6)

with analogous expansions for the magnetic modes V H
M , I

H
M , γ

H
M



Perturbative Expansions

Also express the sources as a power series in ε:

Jθ(ε, t , z, r , θ) = J(0)
θ (t , z, r , θ) + εJ(1)

θ (t , z, r , θ) +O(ε2),

Jr (ε, t , z, r , θ) = J(0)
r (t , z, r , θ) + εJ(1)

r (t , z, r , θ) +O(ε2),

J0(ε, t , z, r , θ) = J(0)
0 (t , z, r , θ) + εJ(1)

0 (t , z, r , θ) +O(ε2),

ρ(ε, t , z, r , θ) = ρ(0)(t , z, r , θ) + ερ(1)(t , z, r , θ) +O(ε2).



Telegraph Type Equations

To first order in ε the problem can now be reduced to solving
initial-value problems for the decoupled fields γH(0)

N , γ
H(1)
N , γ

E(0)
N

and γE(1)
N .

For some real constant σ > 0 each satisfies a second-order
hyperbolic partial differential equation in the independent
variables (t , z), of the form:

f̈ − c2f ′′ + c2σ2f = g, (7)

for some prescribed source function g.



Telegraph Type Solutions

The causal solution of this partial differential equation for t > 0, is
determined by with prescribed values of f (0, z) and ḟ (0, z)

If the data and sources are sufficiently smooth the general solution may
be expressed in the form

f (t , z) = Hσ[f init ](t , z) + Iσ[g](t , z) (8)

where

Hσ[f init ](t , z) :=
1
2

{
f (0, z − ct) + f (0, z + ct)

}
+

1
2c

∫ z+ct

z−ct
dζ ḟ (0, ζ)J0(σ

√
c2t2 − (z − ζ)2)

−ctσ
2

∫ z+ct

z−ct
dζ f (0, ζ)

J1(σ
√

c2t2 − (z − ζ)2 )√
c2t2 − (z − ζ)2

(9)

and

Iσ[g](t , z) :=
1
2c

∫ t

0
dt ′
∫ z+c(t−t′)

z−c(t−t′)
dζ g(t ′, ζ)J0(σ

√
c2(t − t ′)2 − (z − ζ)2)

(10)



Data

The functions f (0, z), ḟ (0, z) constitute the initial t = 0 Cauchy
data in this solution and determine the Hσ contribution above.
Typically, in an accelerating device, lowest order contributions
include externally applied piecewise established magnetostatic
and RF fields that are together used to guide and accelerate
charges along the beam tube. In the following we assume that all
Hσ contributions to the field solutions arise in lowest order.



Electromagnetic Power from Smooth Sources

In the general situation all zero and first order fields can be
calculated in terms of finite range integrals involving Bessel
functions.
It is of some interest to calculate how the instantaneous
electromagnetic power flux depends on the first order curvature
correction to that in a straight cylinder with smooth sources.
This is obtained by integrating the Poynting vector field over the
cross-section D at an arbitrary point with coordinate z.
In terms of the Poynting 2-form

S
(2)

(ε, t , z, r , θ) := e
(1)

(ε, t , z, r , θ) ∧ h
(1)

(ε, t , z, r , θ), (11)

such instantaneous power w(ε, t , z) is obtained by integrating S
(2)

over D:
w(ε, t , z) :=

∫
D

S
(2)

(ε, t , z, r , θ)



Moving Point Charge Source

Suppose the motion of a point charge is maintained on a curved
path parallel to the design-orbit with curvature κ(z) and constant
speed v . Then

ρ(ε, t , z, x1, x2) = Q(ε, t)δ(x1 − x1,0)δ(x2 − x2,0)δ(z − vt),

with

Q(ε, t) :=
Qtot

1− εκ0(vt)x1,0
= Qtot + εκ0(vt)x1,0Qtot +O(ε2),

in terms of the Cartesian three-dimensional Dirac distribution
with moving point support at
(x1,0, x2,0, vt) = (r0 cos θ0, r0 sin θ0, vt), determining the location of
the point charge in U at time t .



Moving Point Charge Source

Then

ρ = ρ(0) + ερ(1) +O(ε2),

ρ(0)(z − vt , x1, x2) = Qtotδ(x1 − x1,0)δ(x2 − x2,0)δ(z − vt),

ρ(1)(t , z, x1, x2) = κ0(vt)x1,0Qtotδ(x1 − x1,0)δ(x2 − x2,0)δ(z − vt).

or in adapted coordinates

(ρ#̂1)(ε, t , z, r , θ) = Q(ε, t)
δ(r − r0)

r
δ(θ − θ0)δ(z − vt)rd r ∧ d θ.

The associated electric current components are Jr = Jθ = 0 and

J(0)
0 = vρ(0) = vQtotδ(x1 − x1,0)δ(x2 − x2,0)δ(z − vt), (12)

J(1)
0 = vρ(1) = vκ0(vt)x1,0Qtot

×δ(x1 − x1,0)δ(x2 − x2,0)δ(z − vt) (13)



Ultra-relativistic Longitudinal Wake Potentials

The wakefield formalism is designed to exploit the simplifications that
arise by considering the (ultra-relativistic) limit obtained from charged
sources moving at the speed of light.

The resulting electromagnetic fields give rise to various wake-potentials
from which wake-impedances may be computed for ultra-relativistic
charged bunches with prescribed charged distributions.

The formalism is based on calculating the emf induced on a spectator
(test) ultra-relativistic point particle moving behind a leading
ultra-relativistic charged particle with the same velocity but in general on
a different orbit.

Since our computations provide the electromagnetic fields for a point
particle moving with arbitrary speed on an orbit (in general) off the pipe
axis (with transverse coordinates (r0, θ0)) one may readily calculate the
general longitudinal wake potential to the same order as the fields, by
having the spectator charge, with transverse coordinates (r , θ), at a
fixed longitudinal separation s̃ > 0 behind a right moving source
particle.



Ultra-relativistic Longitudinal Wake Potentials

The definition of the ultra-relativistic longitudinal wake potential is
taken as

W(r0,θ0)
‖ (ε, r , θ, s̃) := − 1

Qtot

∫ ∞
−s̃/2

dz E(r0,θ0)
z

(
ε,

z + s̃
c

, z, r , θ
)
,

(14)
where E(r0,θ0)

z (ε, t , z, r , θ) is the z-component of the electric field
generated by the point source with speed v = c and charge Qtot .
The ultra-relativistic longitudinal impedance is

Z (r0,θ0)
‖ (ε, r , θ, ω) :=

1
c

∫ ∞
0

ds̃ eiωs̃/cW(r0,θ0)
‖ (ε, r , θ, s̃),

and the projected longitudinal mode impedances are

〈Z (r0,θ0)
‖ 〉M(ε, ω) :=

∫
D

Z (r0,θ0)
‖ (ε, r , θ, ω) ΦM(r , θ) r d r ∧ d θ.



Longitudinal Wake Potential for a Pipe with Piecewise
Constant Curvature

In cases where segments of the beam pipe are connected by
planar segments of arcs with constant radius of curvature one
may perform these integrals analytically and hence generate
analytic expressions for the corresponding wake impedances.
Consider the case of an infinitely long planar pipe with axial
curvature given by

κ0(z) = (Θ(z − zL)−Θ(z − zR)) κ̌0,

where zL, zR, (0 < zL < zR), κ̌0(6= 0) are constants and Θ(z) is
the Heaviside function





Longitudinal Wake Potential for a Pipe with Piecewise
Constant Curvature

With the following dimensionless variables for some length L

κ̂0 := Lκ̌0, ŝ :=
s̃

L
, β̂M := LβM , ẑR :=

zR

L
, ẑL :=

zL

L
,

introduce the dimensionless quantities

ζM,1(ŝ) :=
κ̂0

β̂M
J1(
√

2β̂M ŝ),

ζM,2(ŝ) := κ̂0

[
(ẑR − ẑL)−

√
2

β̂M
√

ŝ

×
{√

ẑR +
ŝ

2
J1

βM

√√√√2ŝ

(
ẑR +

ŝ

2

)

+
2
(

ẑR + ŝ
2

)3/2

ŝ
J3

β̂M

√√√√2ŝ

(
ẑR +

ŝ

2

)
−

√
ẑL +

ŝ

2
J1

β̂M

√√√√2ŝ

(
ẑL +

ŝ

2

)

−
2
(

ẑL + ŝ
2

)3/2

ŝ
J3

β̂M

√√√√2ŝ

(
ẑL +

ŝ

2

)}],



Longitudinal Wake Potential for a Pipe with Piecewise
Constant Curvature

Then

W(r0,θ0)
‖M,edges(ε, s̃ ) =

ε√
2
ζM,1(ŝ) (̆l(r0,θ0)

M − p̆(r0,θ0)
M − s̆(r0,θ0)

M ),

W(r0,θ0)
‖M,κ̌0

(ε, s̃ ) =
ε

4
ζM,2 (ŝ) (̆l(r0,θ0)

M − p̆(r0,θ0)
M ).

Natural choices for L include L = a or L = zR − zL.
In the following Figure ζM,1 and ζM,2 are plotted for the choice

κ̂0 = 1, β̂M = 1, ẑR = 2, ẑL = 1.

In the regime ŝ � 1, ζM,2 tends to κ̂0(ẑR − ẑL).
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Figure 1: Dimensionless profiles for contributions to W(r0,θ0)
‖ M (s̃ ) to O(ε2).
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Conclusions

An analytic perturbative approach to the computation of
electromagnetic fields generated by a variety of charged sources
moving with prescribed motions in a perfectly conducting beam
pipe of radius a with planar curvature κ(z) has been presented.
Results were given in terms of expressions involving powers of
|aκ(z)| � 1 and |a2κ′(z)|.
They included a discussion of ultra-relativistic longitudinal wake
potentials from which pipe impedances induced by κ(z) 6= 0 can
be calculated.
The approach been explicitly illustrated for pipes with piecewise
constant curvature modeling pipes with straight segments linked
by circular arcs of (arbitrary) finite length.
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