

Experimental Issues at CLIC

Marco Battaglia UC Berkeley - LBNL and IPN Lyon

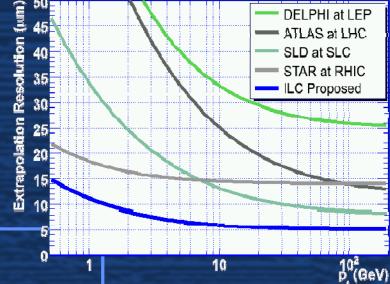
Observables from 0.2 TeV to 3 TeV (SM Evts)							
Jet Multiplicity							
	\sqrt{s} (TeV) 0.09	0.20	0.5	0.8 3.0) 5.0	
	$< N_{Jets}$ 2	> 2.8	4.2	4.8	5.3 6.4	6.7	
Parton Energy							
	\sqrt{s} (]	TeV)	0.2	0.5	1.0	3.0	
	<e<sub>Parton></e<sub>	• (GeV)	32	64	110	240	
B Hadron Decay Distance							
	\sqrt{s} (TeV)	0.09	0.2 0).35	0.5	3.0	N.
	Process					$H^- \mid b\bar{b}$	
	$d_{ m space}$ (cm)	0.3	0.3	0.7 (0.85	2.5 9.0	-

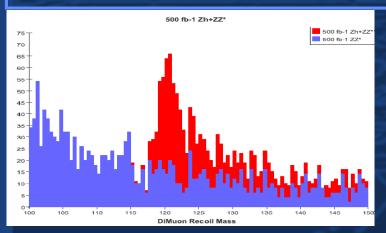
Event Reconstruction: New Challenges at CLIC

Worldwide LC studies have gained a lot of insight on experimentation at a linear collider at $\sim 2.5 \times LEP$ energy, new role for the CLIC study:

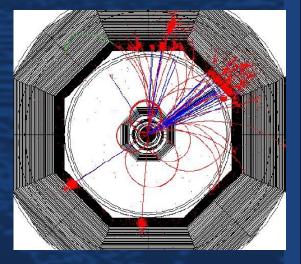
• Define parameter scaling from 0.2-0.5 TeV to multi-TeV and optimisation within technological/engineering constraints;

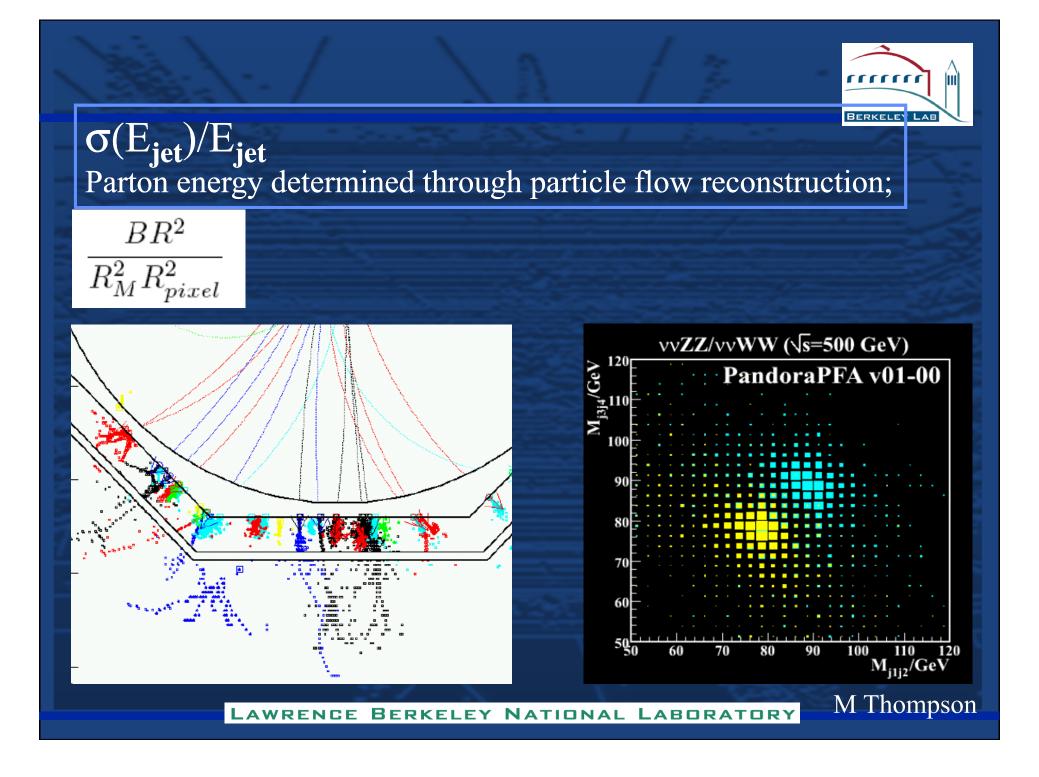
• Identify issues requiring new/alternative approach;

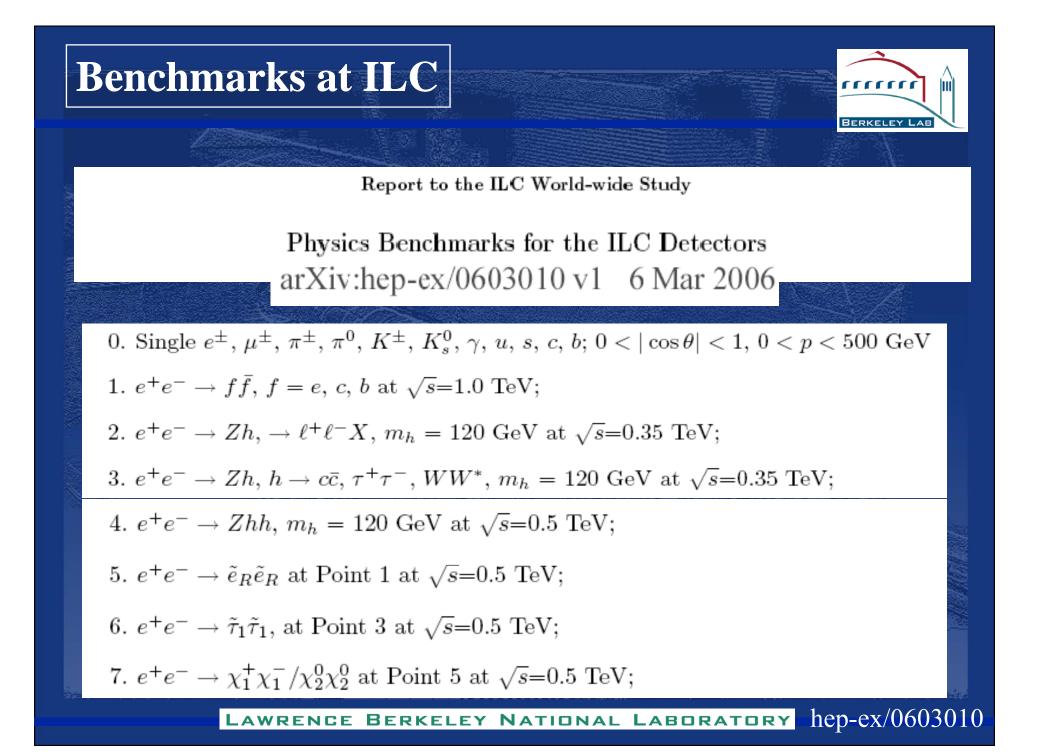

• Evaluate CLIC potential / limitations at 0.5 – 1.0 TeV.


Event Reconstruction: The LEP&ILC Paradigm

 $\sigma(IP)$ Vertex of origin determined by accurate extrapolation inside beam pipe;

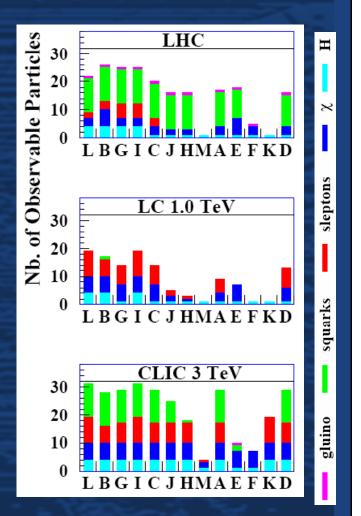





$\delta p/p^2$ ^o 1 Momentum resolution of paramount importance;

N Graf

	Process and	Energy	Observables	Target	Detector
	Final states	(TeV)		Accuracy	Challenge
Higgs	$ee \rightarrow Z^0 h^0 \rightarrow \ell^+ \ell^- X$	0.35	$M_{recoil}, \sigma_{Zh}, BR_{bb}$	$\delta \sigma_{Zh} = 2.5\%, \delta BR_{bb} = 1\%$	т
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow b\bar{b}/c\bar{c}/\tau\tau$	0.35	Jet flavour , jet (E, \vec{p})	δM_h =40 MeV, $\delta(\sigma_{Zh} \times BR)$ =1%/7%/5%	v
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow WW^*$	0.35	M_Z, M_W, σ_{qqWW}	$\delta(\sigma_{Zh} \times BR_{WW}) = 5\%$	С
	$ee \rightarrow Z^0 h^0 / h^0 \nu \overline{\nu}, h^0 \rightarrow \gamma \gamma$	1.0	$M_{\gamma\gamma}$	$\delta(\sigma_{Zh} \times BR_{\gamma\gamma})=5\%$	С
	$ee \rightarrow Z^0 h^0, h^0 \nu \nu, h \rightarrow \mu^+ \mu^-$	1.0	$M_{\mu\mu}$	5σ Evidence for $m_h = 120$ GeV	т
	$ee \rightarrow Z^0 h^0, h^0 \rightarrow invisible$	0.35	σ_{qqE}	5σ Evidence for BR _{invisible} =2.5%	С
	$ee \rightarrow h^0 \nu \overline{\nu}$	0.5	$\sigma_{bb\nu\nu}$, M_{bb}	$\delta(\sigma_{\nu\nu h} \times BR_{bb}) = 1\%$	С
	$ee \rightarrow t\bar{t}h^0$	1.0	σ_{tth}	$\delta g_{tth} = 5\%$	С
	$ee \rightarrow Z^0 h^0 h^0, h^0 h^0 \nu \nu$	0.5/1.0	$\sigma_{Zhh}, \sigma_{\nu\nu hh}, M_{hh}$	$\delta g_{hhh} = 20/10\%$	С
SSB	$ee \rightarrow W^+W^-$	0.5		$\Delta \kappa_{\gamma}, \lambda_{\gamma} = 2 \cdot 10^{-4}$	v
	$ee \rightarrow W^+W^-\nu\overline{\nu}/Z^0Z^0\nu\overline{\nu}$	1.0	σ	$\Lambda_{*4}, \Lambda_{*5} = 3 \text{ TeV}$	С
SUSY	$ee \rightarrow \tilde{e}_R^+ \tilde{e}_R^-$ (Point 1)	0.5	E_e	$\delta m_{\tilde{\chi}_1^0} = 50 \text{ MeV}$	Т
	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 1)	0.5	$E_{\pi}, E_{2\pi}, E_{3\pi}$	$\delta(m_{\tilde{\tau}_1} - m_{\tilde{\chi}_1^0}) = 200 \text{ MeV}$	Т
	$ee \rightarrow \tilde{t}_1 \tilde{t}_1$ (Point 1)	1.0		$\delta m_{\tilde{t}_1} = 2 \text{ GeV}$	
-CDM	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-, \tilde{\chi}_1^+ \tilde{\chi}_1^-$ (Point 3)	0.5		$\delta m_{\tilde{\tau}_1}=1$ GeV, $\delta m_{\tilde{\chi}_1^0}=500$ MeV,	F
	$ee \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi_1^+} \tilde{\chi_1^-}$ (Point 2)	0.5	M_{jj} in jjE , $M_{\ell\ell}$ in $jj\ell\ell E$	$\delta \sigma_{\chi_2 \chi_3} = 4\%, \ \delta (m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0}) = 500 \text{ MeV}$	С
	$ee \rightarrow \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-} / \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0}$ (Point 5)			$\delta \sigma_{\tilde{\chi}\tilde{\chi}} = 10\%, \ \delta(m_{\tilde{\chi}\tilde{\chi}}^0 - m\tilde{\chi}^0_1) = 2 \text{ GeV}$	С
	$ee \rightarrow H^0A^0 \rightarrow b\bar{b}b\bar{b}$ (Point 4)	1.0	Mass constrained M_{bb}	$\delta m_A = 1 \text{ GeV}$	С
-alternative	$ee \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$ (Point 6)	0.5	Heavy stable particle	$\delta m_{\tilde{\tau}_1}$	Т
SUSY	$\chi_1^0 \rightarrow \gamma + \not \in (\text{Point } 7)$	0.5	Non-pointing γ	$\delta c \tau = 10\%$	С
breaking	$\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi_{soft}^{\pm}$ (Point 8)	0.5	Soft π^{\pm} above $\gamma\gamma$ bkgd	5σ Evidence for $\Delta \tilde{m}=0.2-2$ GeV	F
Precision SM	$ee \rightarrow t\bar{t} \rightarrow 6 \ jets$	1.0		5σ Sensitivity for $(g-2)_t/2 \le 10^{-3}$	V
	$ee \rightarrow f\bar{f} (f = e, \mu, \tau; b, c)$	1.0	$\sigma_{f\bar{f}}, A_{FB}, A_{LR}$	5σ Sensitivity to $M(Z_{LR}) = 7$ TeV	V
New Physics	$ee \rightarrow \gamma G$ (ADD)		$\sigma(\gamma + E)$	5σ Sensitivity	С
	$ee \rightarrow KK \rightarrow f\bar{f}$ (RS)	1.0			Т
Energy/Lumi	$ee \rightarrow ee_{fwd}$	0.3/1.0		δm_{top} =50 MeV	Т
Meas.	$ee \rightarrow Z^{0}\gamma$	0.5/1.0			Т
•			-		· · ·


Physics Program at CLIC

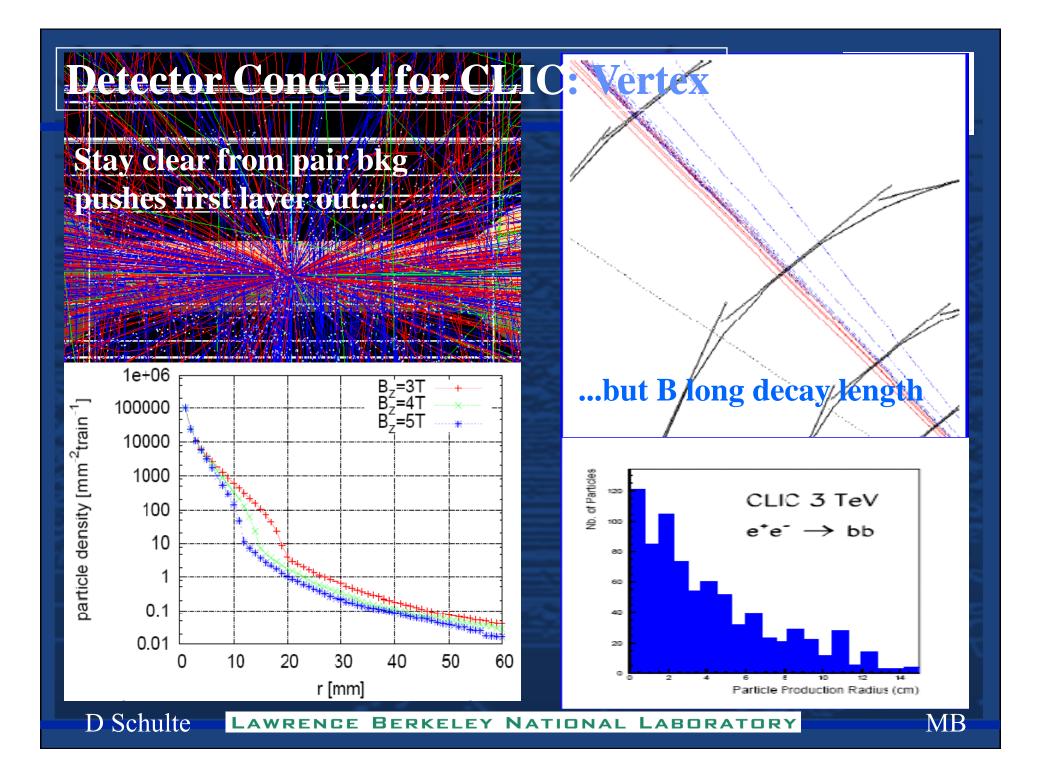
Complete definition of Higgs Profile (lepton coupling, H self-coupling, heavy H sector of extended models, ...);

Probe precisely physics beyond SM, directly up to LHC reach, indirectly well beyond hadron collider reach;

Probe details of DM-motivated SUSY complementing LHC and lower energy LC;

need to identify set of benchmarks for a multi-TeV e+e- linear collider.

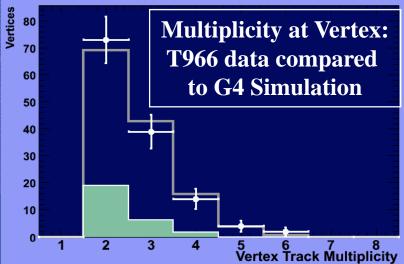
A Detector Concept for CLIC



First CLIC Physics Study (2002-2004) proposed a detector with performances rescaled from those proposed for TESLA TDR (2001);

	CERN-2004-005 10 June 2004 Physics Department hep-ph/0412251	Detector	CLIC studies
arXiv:hep-ph/0412251 v1 17 Dec 2004	ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	Vertexing	$\delta(IP_{r\phi}) = 15 \ \mu \mathrm{m} \oplus \frac{35 \ \mu \mathrm{m} \ \mathrm{GeV}/c}{p \sin^{3/2} \theta}$ $\delta(IP_z) = 15 \ \mu \mathrm{m} \oplus \frac{35 \ \mu \mathrm{mGeV}/c}{p \sin^{5/2} \theta}$
		Solenoidal field	B = 4.0 T
	PHYSICS AT THE CLIC MULTI-TeV LINEAR COLLIDER	Tracking	$rac{\delta p_t}{{p_t}^2} = 5.0 imes 10^{-5} \left(rac{{ m GeV}}{c} ight)^{-1}$
		E.m. calorimeter	$\frac{\delta E}{E \text{ (GeV)}} = 0.10 \frac{1}{\sqrt{E}} \oplus 0.01$
	Report of the CLIC Physics Working Group	Hadron calorimeter	$\frac{\delta E}{E \text{ (GeV)}} = 0.50 \frac{1}{\sqrt{E}} \oplus 0.04$
		μ detector	Instrumented Fe yoke $rac{\delta p}{p}\simeq$ 30% at 100 GeV/ c
arX	Editors: M. Battaglia, A. De Roeck, J. Ellis, D. Schulte	Energy flow	$rac{\delta E}{E \ ({ m GeV})} \simeq 0.3 \ rac{1}{\sqrt{E}}$
Ph	ysics validation and detector	Coverage	$ \cos \theta < 0.98$

implementation of such performances aim of current study.


LAWRENCE BERKELEY NATIONAL LABORATORY CERN-2004-005

Tracking & Vertexing: Beam Test Validation

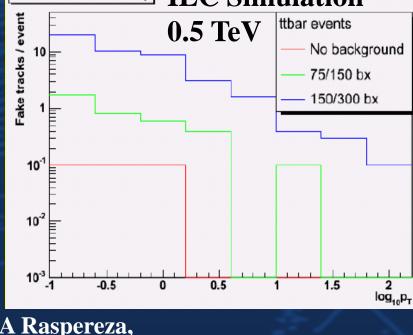
Experience with beam telescopes based on pixel sensors (EUDET, IReS, MPI, LBNL,...) T966: Study trk extrapolation and vertex reconstruction using a four-layered thin monolithic CMOS pixel telescope on high energy beam with realistic occupancy

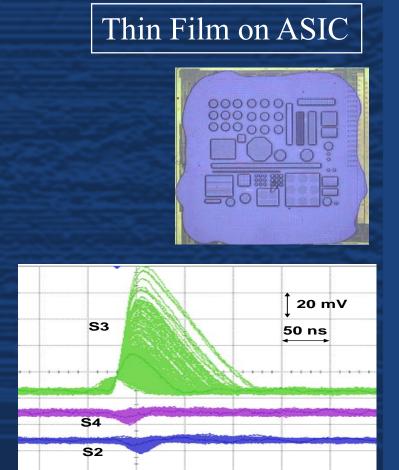
FNAL MBTF T966 Data 120 GeV p on Cu target LBNL Thin CMOS Pixel Telescope

Extrapolate 3.3 cm upstream from first Si pixel layer: $\sigma_{z vtx} = 230 \ \mu m$

MB et al,

LAWRENCE BERKELEY NATIONAL LABORATORY NIM A593 (2008)

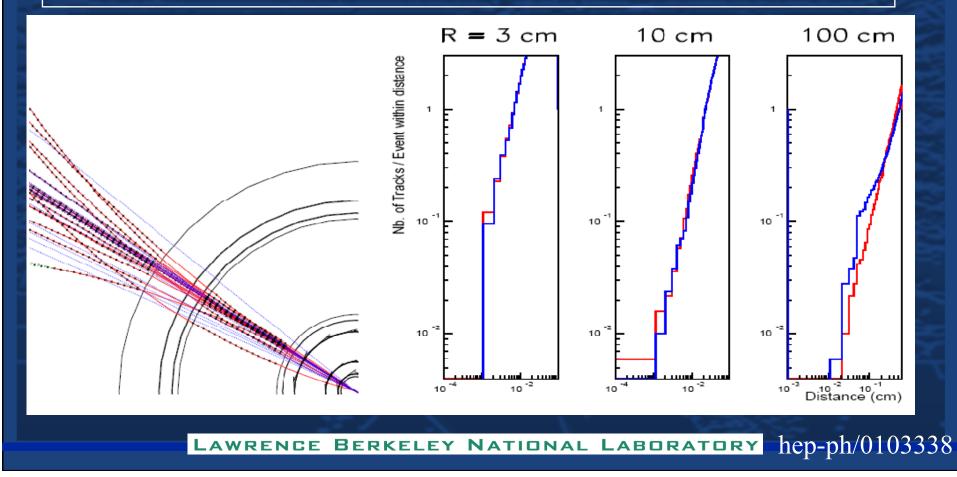

Vertexing: Bunch Tagging

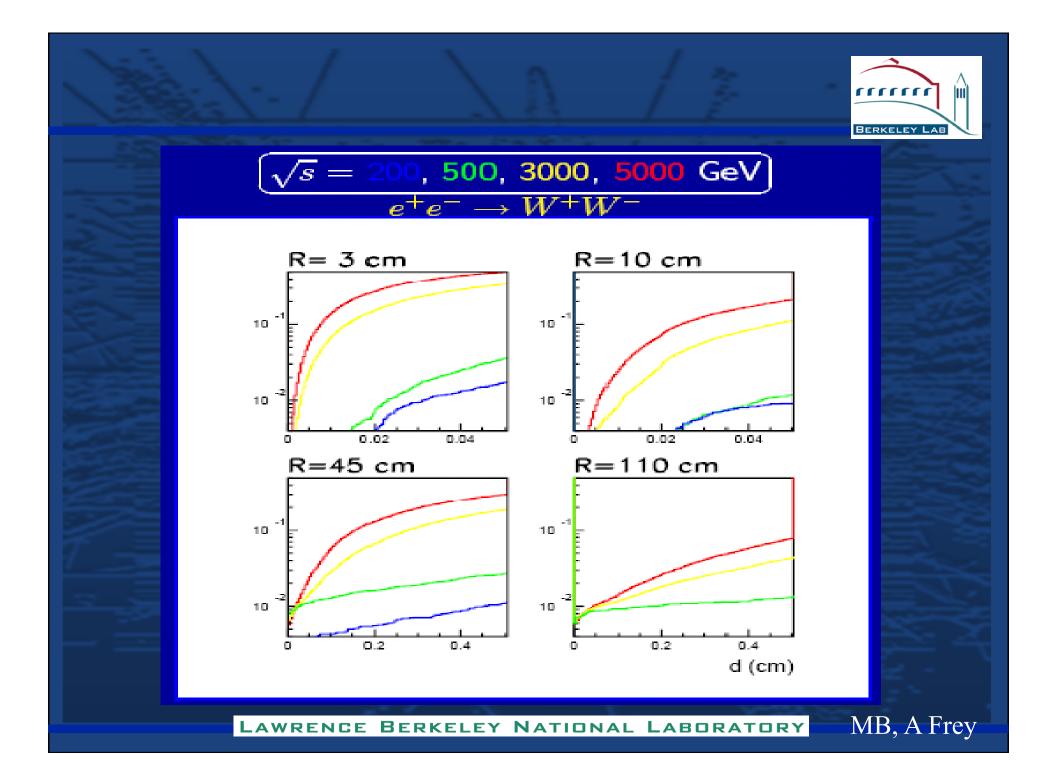


P Jarron

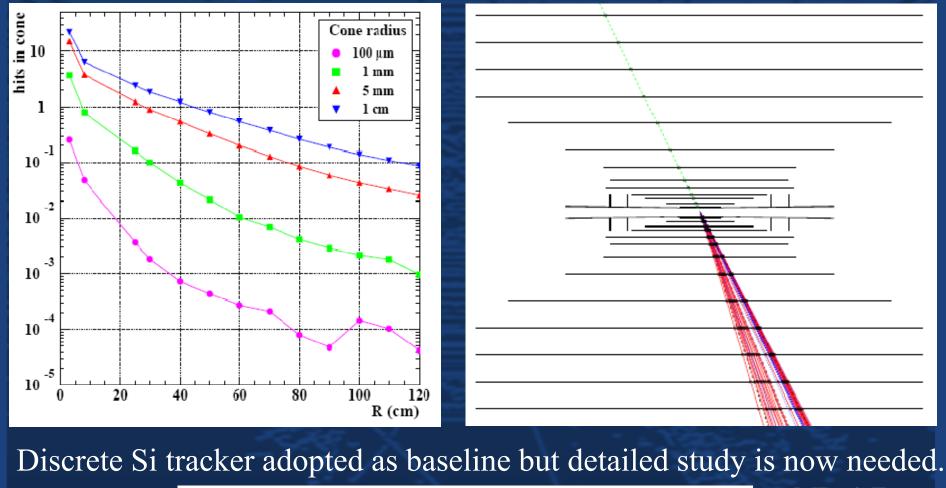
Efficient patrec requires blg occupancy << 1 hits mm⁻² May reduce bkg hit density by moving away in radius or identifying BX;

- loss in vertex tracking efficiency;
- increase in fake tracks;
- build-up of non-Gaussian tails in impact parameter distribution.
 Fake track rate vs p_r ILC Simulation


A Raspereza, LCWS07

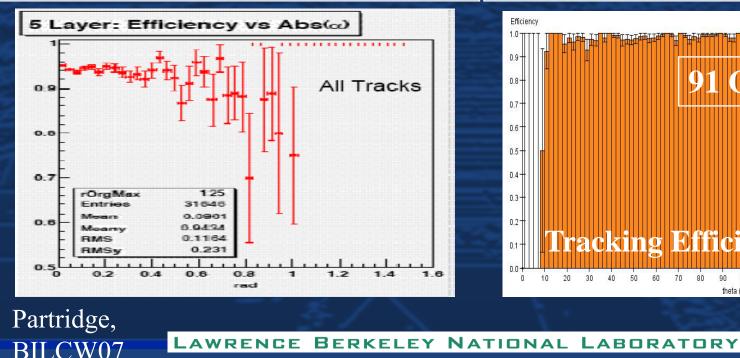

Detector Concept for CLIC: Tracker

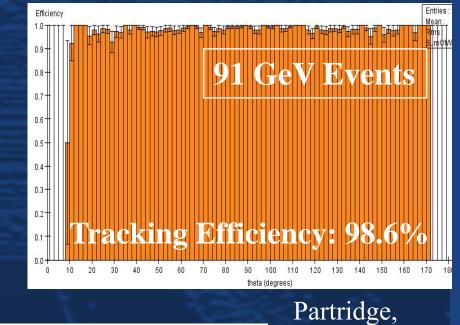
At CLIC significant track density in collimated hadronic jets + parallel muon bkg, $\gamma\gamma \rightarrow$ hadrons and low momentum spiralling tracks:


Minimum Distance between Tracks in Hadronic Events at 3 TeV

CLIC 2004 Report suggested multi-layered high-resolution Si detectors Main Tracker, inspired by CMS and adopted by the SiD concept at ILC;

LAWRENCE BERKELEY NATIONAL LABORATORY MB, A Frey

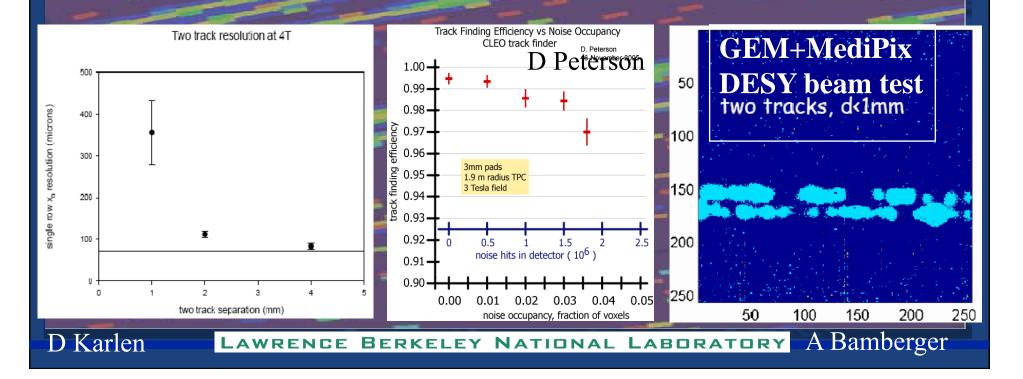



Need to assess tracking capability of SiD-like detector at CLIC:

Some encouraging results on tracking performance of 5-layered tracker (assisted by Vertex and ECAL) from "realistic" simulation, but for low energy jets (Z pole and tt at 0.5 TeV) and w/o machine induced bkg

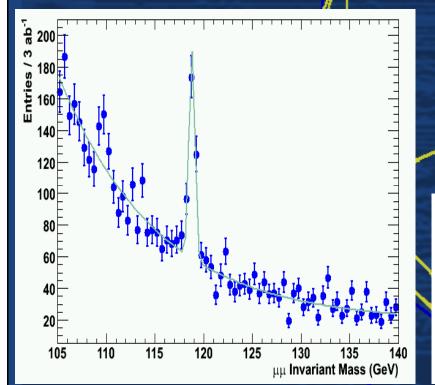
Tracking Efficiency vs Angle from Jet

Tracking Efficiency vs Polar Angle



SiD08

Essential to evaluate performance of 3D continuous tracker (TPC) offering redundancy in patrec and dE/dx info;


TPC prototype tests and simulation shows that
two track separation ~1mm (or better ?) may be feasible;
track finding efficiency stable up to 3-4% occupancy:

Momentum Resolution

Use SiD model at 3 TeV to study $e^+e^- \rightarrow Hvv$; $H \rightarrow \mu^+\mu^-$

Process is possibly one of most demanding for $\delta p/p^2$ at $E_{cm} > 1$ TeV ILC-like $\delta p/p^2$ resolution appears adequate at CLIC energies.

$M_H \ (\text{GeV})$	Nb. Signal Evts.	Nb. Bkg. Evts.	S/\sqrt{B}	$\delta BR/BR$
120	229.6	161.1	18.1	0.086
130	153.1	88.1	16.3	0.101
140	103.2	64.3	12.9	0.125
150	68.1	58.1	9.5	0.160
155	68.1	58.0	5.2	0.253
160	12.1	33.0	2.1	

MB, J. Phys. G35

.....

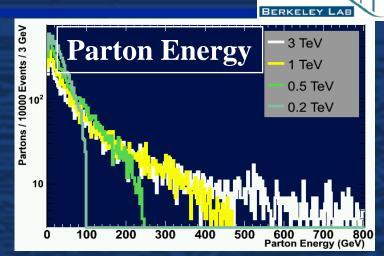
Detector Concept for CLIC: Calorimetry rrrr BERKELEY LAP **Scale depth of HCAL** 1.6 m Fe $\lambda_{int} \leq 10$ to get 99% containment for E > 100 GeV200 GeV π **Neutral Hadron Energy at 3 TeV** > 104 0 200 12 3 TeV Particles / 10000 SM Evts / 3 0 00 5 00 8 11 1 TeV 100.5 TeV 150 Depth in Iron (λ_f) 0.2 TeV

6

3

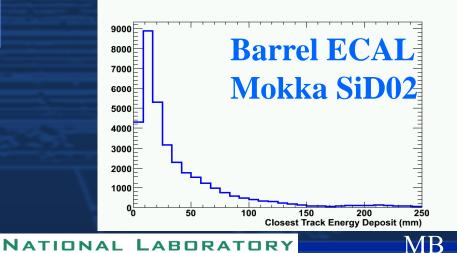
1000

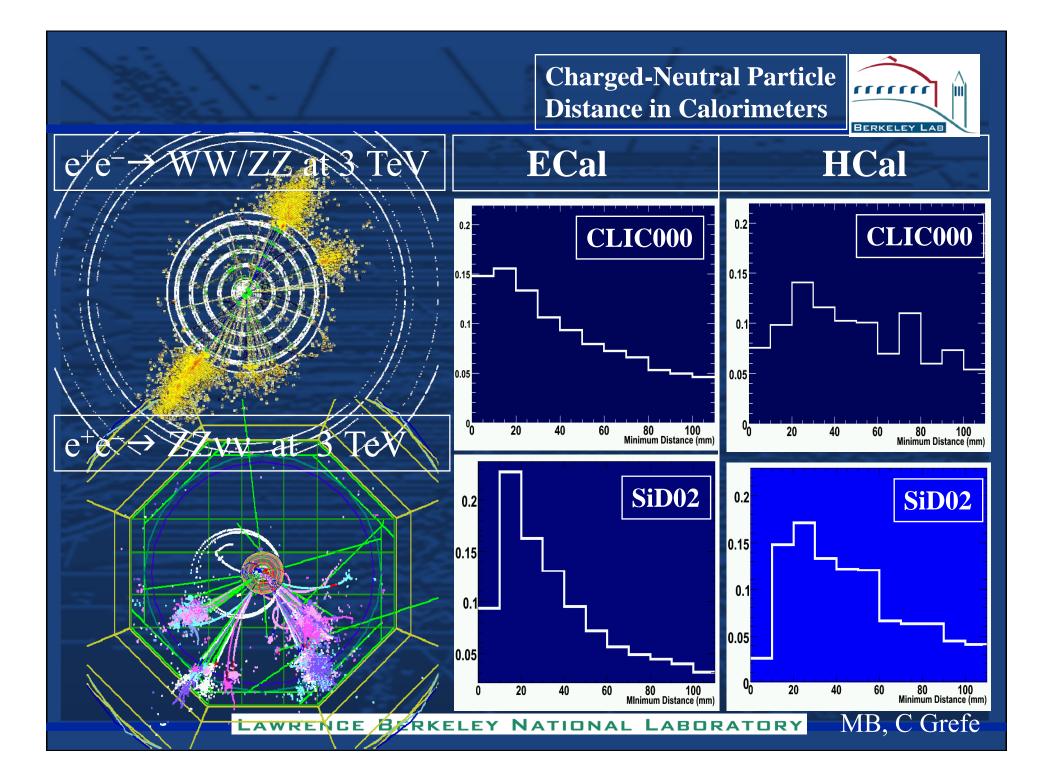
D Schlatter

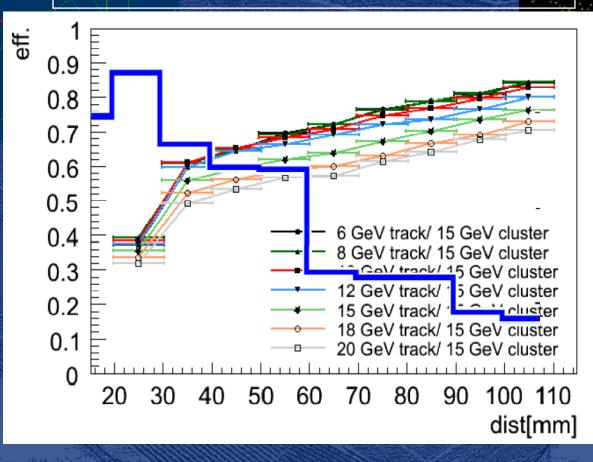

Depth in Iron (cm) 100 Bock param. △/▲ CDHS data ○/● CCFR data 10 50 50 5 10 100 500 200 250 300 Neutral Hadron Energy (GeV) 50 0 100 150 Single Hadron Energy (GeV) MB BERKELEY NATIONAL LABORATORY LAWRENCE

Particle Flow

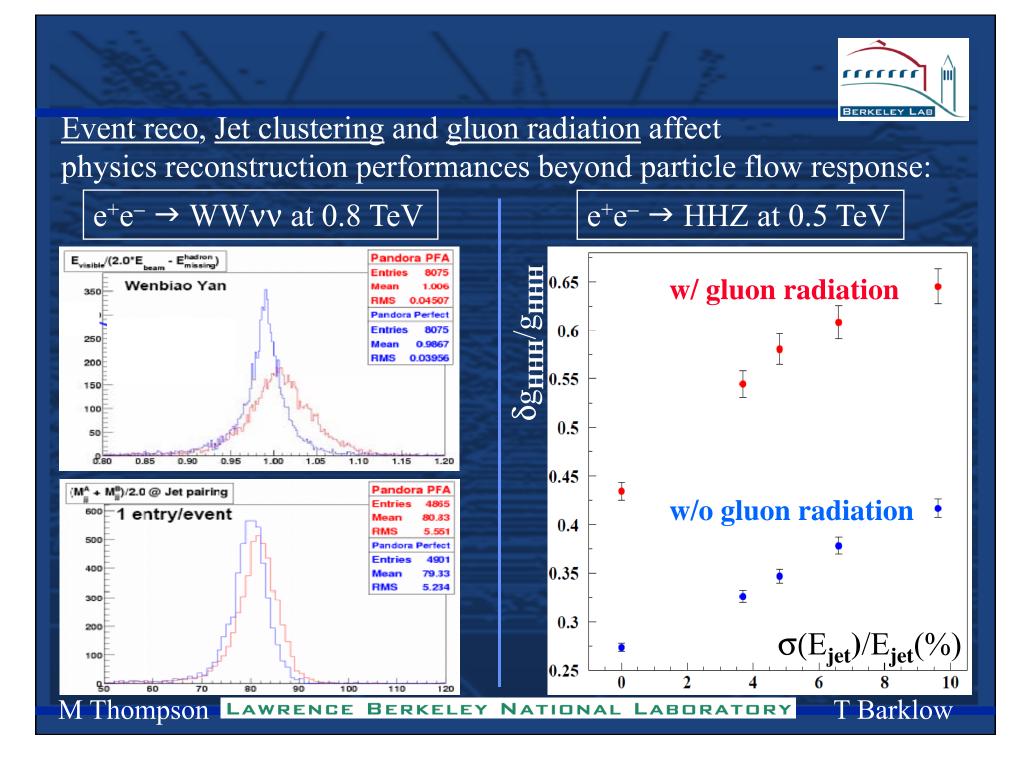
e⁺e


Is Particle Flow applicable to multi-TeV collisions ? PFA gives unprecedented performance for $E_{jet} \sim 100$ GeV, at CLIC N_{jet} also grows $\rightarrow E_{jet}$ does not scale proportional to E_{cm}


tbtb at 3/TeV


Large boost and high jet multiplicity gives particle overlaps in calorimeters. Simple benchmark: study distance (charged particle E > 5 GeV to closest cluster from neutral with E > 10 GeV in ECAL and HCAL (full G4 simulation)

FRKELEY


Track - Shower separation: CALICE data – CLIC Simulation

CALICE Data D Ward CLIC G4 ZZvv MB

....

BERKELEY LAD

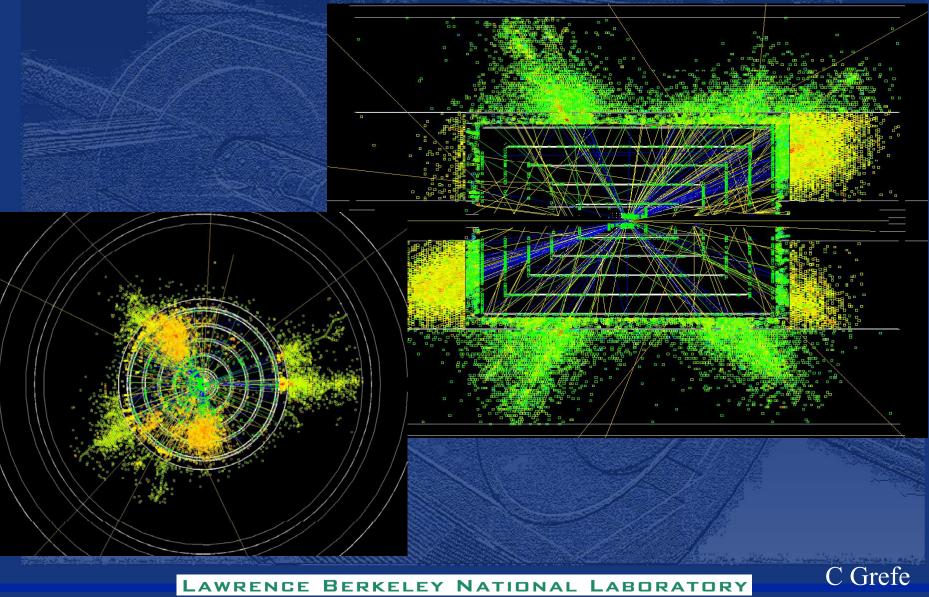
Scaling the SiD Concept: CLIC000 Model

BERKELEY LA

M Stanitzki

C Grefe

Start from SiD01 model:

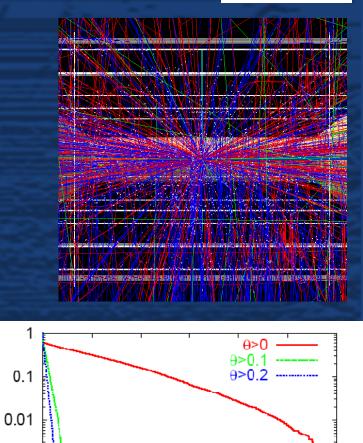

• HCAL from 4.6 to 9 λ_{int}

• R_{vtx} from 1.4 to 4 cm

LAWRENCE BERKELEY NATIONAL LABORATORY

WW/ZZ Events at 3 TeV in SID-CLIC000

(Some) Questions for the Study


BERKELEY LAB

B Field strength

B=5 T adequate for dp/p, main constrain to come from confinement of soft particles from bkgs and engineering; (A. Herve)

Tracker Technology & Optimisation

Background and collimated hadronic jets require to assess/review SiD strategy for track reconstruction and detailed evaluation of competing tracking technologies for CLIC, taking into account ILC R&D and simulation studies;

2000

1500

E [GeV]

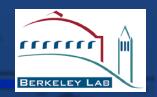
2500

3000

LAWRENCE BERKELEY NATIONAL LABORATORY

event

Probability per


0.001

0.0001

0

500

1000

Applicability of Particle Flow

Success of PFA at \sim 100 GeV jets needs to be reassessed at CLIC for well-defined physics benchmarks; alternative approaches to calorimetry may be worth pursuing;

Forward Regions

Fusion, t-channel processes and large jet multiplicity push much of the interesting part of the cross section in the forward region, where machine induced backgrounds are larger: need to assess requirements for vertexing, tracking, lepton tagging and calorimetry vs polar angle.

Bunch Tagging

Timing layers with ~ 1 BX time resolution are proposed: essential to support dedicated R&D and assess how to integrate timing information in vertex tracking and calorimetry.

The work in front of us

Experiments at CLIC not a simple scaling of LEP + ILC, machine parameters & multi-TeV energy are a new regime for experiments, which requires an open-minded approach;

Progress in defining physics potential, machine parameters and detector optimisation for the CLIC program to come from effective collaboration and strong synergies with world-wide linear collider efforts on R&D, physics and software;

CLIC study working towards CDR to outline physics potential of multi-TeV collisions and feasibility of accelerator and detector techniques.