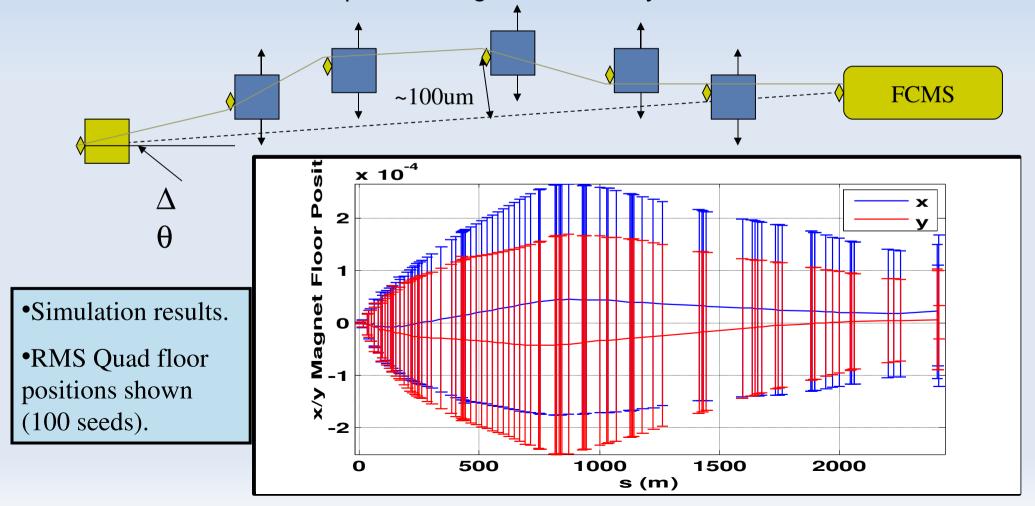
ATF2 & ILC BDS Alignment and Tuning Strategies

Glen White - SLAC National Accelerator Laboratory CLIC08 Workshop, Oct 2008

- Overview.
- Summary of ILC strategy and simulation results.
- ATF2 EXT and FFS tuning
 - Expected performance based on realistic simulation studies.
 - Implementing tuning strategies on the accelerator.

Overview


- Goal of ILC BDS alignement and tuning studies
 - Start with expected intial conditions after installation and survey, tune beams to design IP sizes and luminosity and maintain.
- ATF2 FFS built to test ILC-like optics and test tuning procedures.
- ILC IP ~ 550nm * 5nm (250 GeV per beam)
 - ATF IP ~ 3um * 35nm (1.3 GeV)
- ILC tune on luminosity (pair signal fast)
 - ATF, use Shintake monitor at IP (~ 1 min. Per measurement) – tuning time important factor.

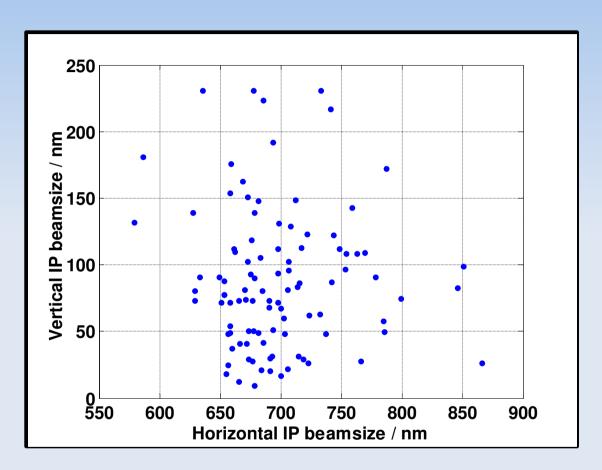
ILC Simulation Steps

- Apply expected errors (static + dynamic).
- Perform initial steering to get beam to IP.
- Quadrupole BPM alignment (quad shunting).
- Perform Quadrupole BBA.
- Align Sextupole BPMs.
- Move final doublet girder to minimize BPM readings.
- Align tail-folding Octupole BPMs.
- Activate and align sextupole and octupole magnets.
- Rotate whole BDS about first quadrupole to pass beam through nominal IP position.
- Apply sextupole multiknobs to tune-out IP aberrations and maximise luminosity.
- 5-Hz feedback system used throughout to maintain orbit whilst tuning.

Beam-Based Alignment of Quads

- Use mover minimisation and DFS constraints to limit the mover motion.
- Weights used in minimisation algorithm constrain how far movers move, this trades-off final mover positions against accuracy of BPM orbit.

BBA Algorithm


DFS + mover minimisation solution, use Matlab Iscov to solve in a least-squares sense, A*c=b with weight vector, ie. minimise: (b- A*c)'*diag($1/w^2$)*(b - A*c), where:

$$b = \begin{pmatrix} B_{x}^{0} \\ B_{y}^{0} \\ B_{x}^{-} \\ B_{y}^{+} \\ B_{y}^{+} \\ C \end{pmatrix} \qquad B = \begin{pmatrix} b_{2} \\ b_{3} \\ \vdots \\ b_{n} \end{pmatrix} \qquad A = \begin{pmatrix} T^{0} \\ T^{-} \\ T^{+} \\ diag(1) \end{pmatrix} \qquad \begin{pmatrix} M_{i,j}^{XX} = R_{i}^{q}(2,1).R_{i,j}(1,2) + \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(1,1) + R_{i}^{q}(3,1).R_{i,j}(1,3) + R_{i}^{q}(4,1).R_{i,j}(1,4) \\ M_{i,j}^{XY} = R_{i}^{q}(2,3).R_{i,j}(1,2) + R_{i}^{q}(1,3).R_{i,j}(1,1) + \left(R_{i}^{q}(3,3) - 1\right)R_{i,j}(1,3) + R_{i}^{q}(4,3).R_{i,j}(1,4) \\ M_{i,j}^{YY} = R_{i}^{q}(1,3).R_{i,j}(3,1) + R_{i}^{q}(2,3).R_{i,j}(3,2) + \left(R_{i}^{q}(3,3) - 1\right)R_{i,j}(3,3) + R_{i}^{q}(4,3).R_{i,j}(3,4) \\ M_{i,j}^{YY} = R_{i}^{q}(1,3).R_{i,j}(3,1) + R_{i}^{q}(2,3).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R_{i}^{q}(2,1).R_{i,j}(3,2) + R_{i}^{q}(3,1).R_{i,j}(3,3) + R_{i}^{q}(4,1).R_{i,j}(3,4) \\ M_{i,j}^{YX} = \left(R_{i}^{q}(1,1) - 1\right)R_{i,j}(3,1) + R$$

15-Oct-08

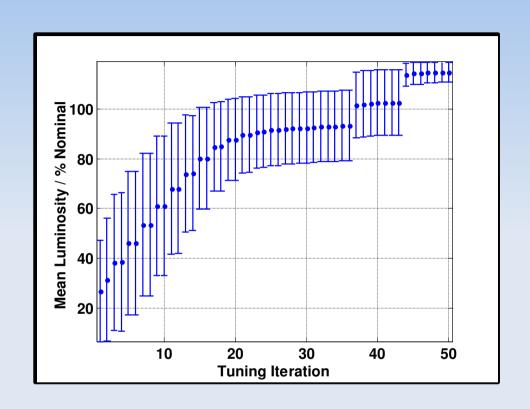
Glen White

Beam Conditions Post-BBA

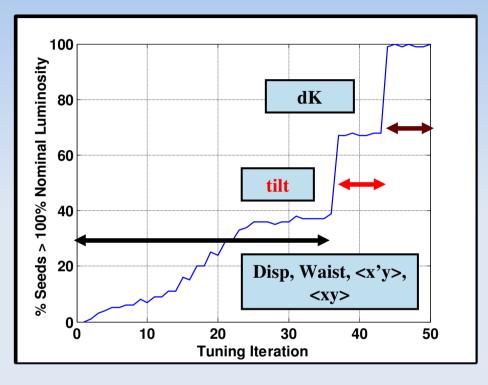
- IP beamsizes (100 seeds) after BPM alignment and BBA.
- Significant aberrations present at IP- coupling, dispersion, waist + higher order terms.
- Use sextupole multi-knobs to tune these out and arrive at nominal ILC luminosity parameters.

Sextupole Multi-Knobs

 Deliberately offsetting the beam orbit using the first 3 FFS sextupoles in an orthogonal way provides tuning knobs for dispersion and waistshift at the IP:

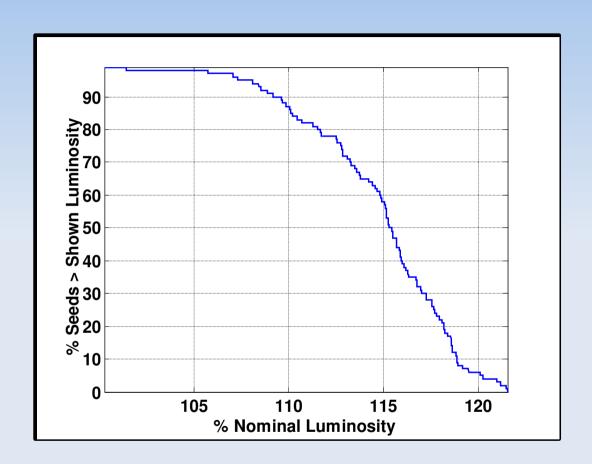

$$\Delta s_{x,y} \sim \Delta x. K_2^s L \beta_{x,y}^s \beta_{x,y}^* \cos(2.\mu)$$

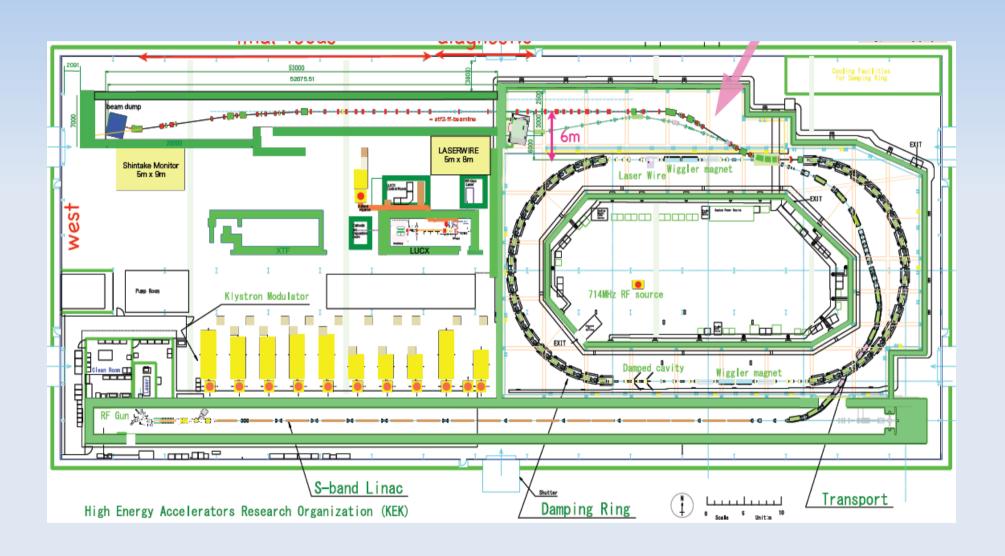
$$\Delta \eta_{x,y}^* \sim \Delta(x,y). K_2^s L \eta_{x,y}^s \sqrt{\beta_{x,y}^s \beta_{x,y}^*} \sin(\mu)$$


- Orthogonal knobs are computed by inverting the sextupole move -> IP aberration matrix formed by scanning the sextupoles in turn and measuring the IP terms.
- □ The dominant IP coupling term <x'y> is tuned-out using SQ3FF.
- □ The 4 skew quads in the BDS coupling correction system are iteratively scanned to remove any <xy>.

Sextupole Multi-Knobs

- The linear knobs are applied iteratively until no further improvement.
- Higher-order IP terms are dealt with globally by tuning on the roll and strength changes of the first 3 FFS Sextupoles.
- These are applied iteratively interleaved with the linear knobs again.


Application of Multi-Knobs


- About 35% of seeds produce >100% luminosity with just linear knobs.
- 100% seeds produce >100% luminosity when also include non-linear knobs.

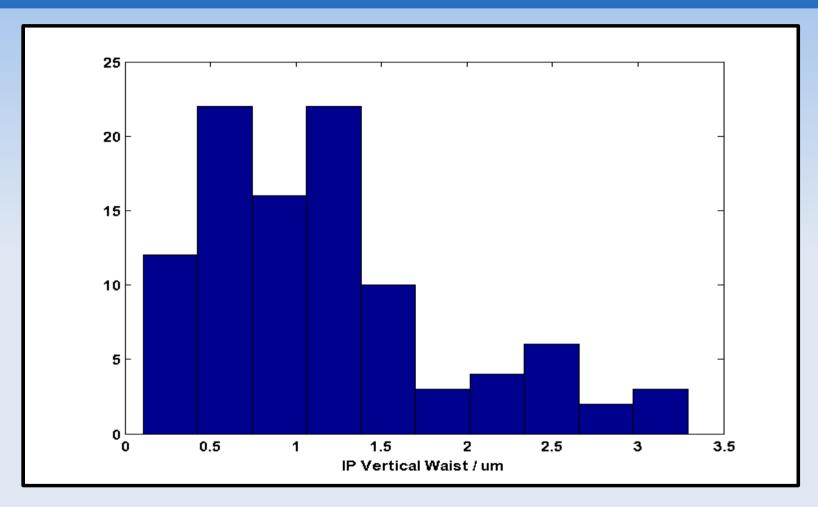
Luminosity Results

 Median lumi overhead ~15% (with 6nm emittance growth budget for BDS).

Test of FFS Optics @ ATF2

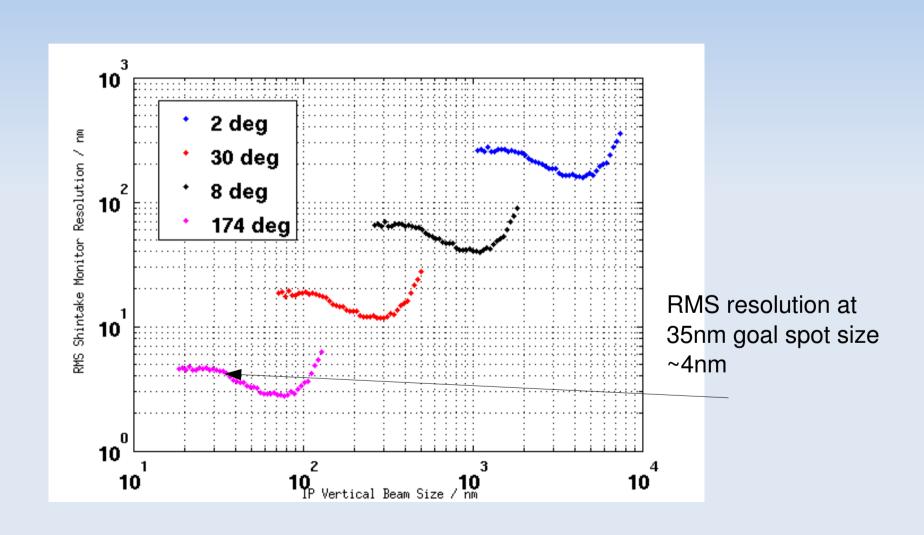
Tuning Goals and Methods

- Achieve ~35nm vertical spot size as measured by Shintake BSM
 - ~3.2 um horizontal spot
 - Have ignored horizontal in simulations so far, except that Sextupole knobs were orthogonalised to minimise extra x growth when reducing y.
- Construct multi-knobs to reduce from initial size ~<3um after initial alignment.
 - Sextupole x/y moves, final doublet dk, skew-quads (waist, dispersion, coupling)
 - Sextupole tilts / dk (higher-order IP terms)
- IP measurement speed v.slow w.r.t. ILC (~1 min), need to ensure efficient and orthogonal knobs.

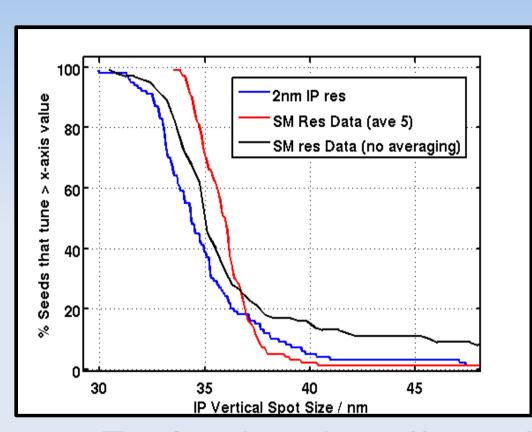

Simulation Studies

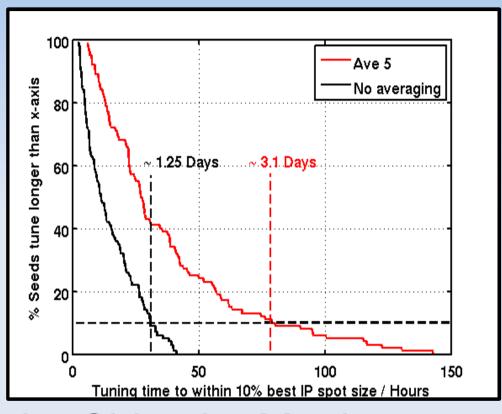
- Define realistic starting conditions (100 seeds)
 - Standard installation errors + EXT BBA, disp corr, coupling corr, FFS BBA
- Study performance of IP tuning on 100 seeds including dynamic errors.
- Check h/w limits not exceeded at any point.
- Study effect of dynamic errors on tuned machine.

Simulation Procedure

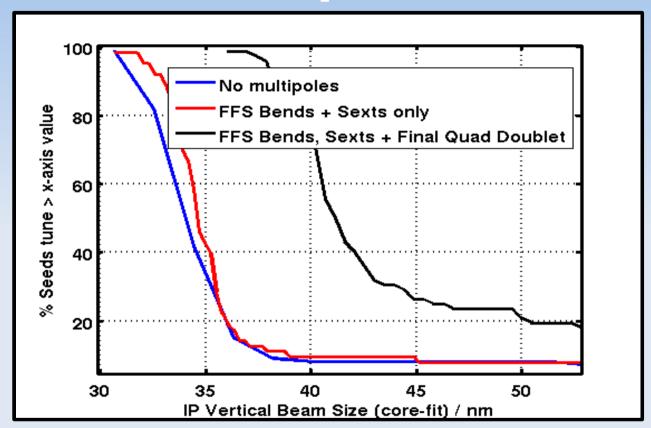

- Use EXT correctors + BPMs (EXT FB) to get orbit through EXT.
- Use FFS FB to get beam through FFS.
- EXT dispersion + coupling correction.
- FFS Quad BPM alignment using quad shunting with movers.
- FFS Quad mover-based BBA.
- FFS Sext BPM alignment using Sext movers and IP BPM.
- Sextupole mover tuning knobs to get final spot size
 - Vertical IP dispersion and Waist
 - <x'y> coupling
 - Higher order terms collectively through Sext rolls + dK.
- Can also use EXT skew-quads to tune other coupling terms.
- No attempt to model EXT BBA yet (assume 10um RMS bpm-magnet center offset)
- No attempt to model any lattice matching (Ring EXT)

IP Vertical Beamsize After BBA



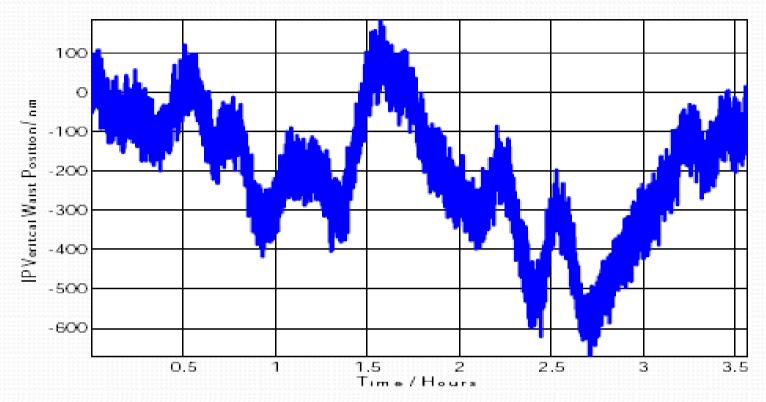

IP waist size before sextupole FFS tuning knobs applied (100 seeds).

Shintake Monitor IP Beamize Measurement Resolution


Tuning Performance

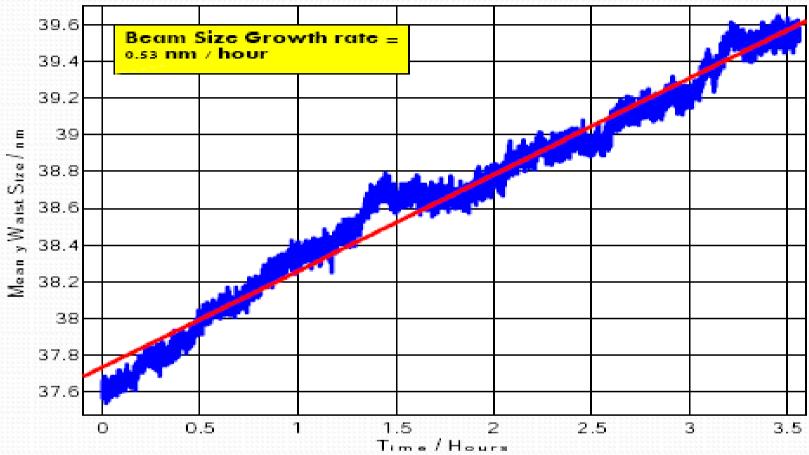
- Evaluating the effect of the Shintake Monitor resolution (100 seeds used in simulation).
- 90% of seeds tune close to design beam size in 1.25 days (continual automated running).

Effect of Measured Magnet Multipoles



- FFS Bend, Sextupole and final quad doublet multipoles measured and put in model.
- QF1 + QD0 sextupole, and QF1 8 and 12-pole cause significant IP beam size growth.
- Can hopefully fix by re-matching FFS optics.

Sextupole Mover System


- 5 Mover systems under FFS Sextupoles most important of all movers
- Need to move sextupoles during multi-knobs as quickly and accurately as possible.
- Need accurate move size vs. time vs. accuracy data to properly model (will be provided)
- Need faster motor drivers for these magnets (salvage old nanobpm motor drivers)
- Use Sext BPMs as readback, not LVDTs (more accurate and faster).
 - Only faster if not have to do too much averaging.

IP Motion

- 20,000 pulses @ 1.56 Hz (1 seed)
- IP vertical position drifts around on scales of a few 100 nm an hour.
- Slow enough that this can be 'de-trended' using Shintake Monitor as IP position monitor.
- Fast jitter effects at IP removed from Shintake monitor readout using very high resolution IP BPM

Beam Size Growth

- With feedbacks on, y beam size at IP as a function of time
- Mean of 100 seeds shown
- Growth rate ~ 0.5 nm per hour

Long – Timescale Performance

At each point, none, linear (waist, dispersion and coupling) and full tuning knobs (include sextupole strength and tilt scans) applied. For blue, red and black respectively.

- Vertical IP beam size over 2 week period
- Mean and +/- 1 sigma RMS from 100 seeds shown at each point

Implementation of Tuning @ ATF2

- All algorithms for results shown here written and tested using Lucretia beam tracking code (under Matlab).
- Important to maximise automation to do tuning as fast as possible at ATF2.
- Developed ATF2 "Flight Simulator" concept which allows code to be developed, tested in simulation and applied at ATF2 in the same environment.
- Based on extention to Lucretia, but also allows direct access from other tools (e.g. PLACET).
- Tested successfully at last ATF run in May using both Lucretia and PLACET tools.