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Why CDR ???

I Advantages of CDR:

I non-invasive measurements
I instantaneous
I very high photon yield
I large emission angles
I possibility to measure the longitudinal bunch profile

I Importance for CLIC:

I Longitudinal beam profile monitoring is important to
prevent luminosity losses due to the hour-glass/pinch
effect if the beam is too long/short

I For an optimal performance of the CLIC drive beam the
longitudinal beam profile must be controlled after it has
been:

I stretched for injection into the combiner ring
I extracted and compressed
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CDR Phenomenon
I Diffraction radiation (DR) appears when a charged particle

moves in the vicinity of a medium

I Impact parameter, h, is the shortest distance between the target
and the particle trajectory

I The criterium for DR to be emitted is

h ≤ γλ (1)

where γ = E
mec2 is the Lorentz factor and λ is the observation

wavelength

I In our setup in CTF3 h ≈ 15 mm� γλ = 1175 mm for
γ = 235 and λ = 5 mm
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Coherent Radiation

I Coherent radiation

S(ω) = N2
eF (ω)Se(ω) (2)

I S(ω), the signal, known from the experiment

I Ne, the number of electrons, know from the experiment

I F (ω), the longitudinal bunch form factor, the measurement
purpose

I Se(ω), the single electron radiation, should be predictable from
theory
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Basic CDR theory
I The two polarization components of diffraction radiation are

given by:

El
x,y =

1
4π2

∫∫
iek
πγ

(
cosψs

sinψs

)
K1

(
k
γ ρs

)
×

× eika

a exp
[

ik
2a

(
x2

s + y2
s

)
− ik

a (xsξ + ysη) +

+ ik
2a

(
ξ2 + η2

)]
dysdxs (3)

I Pseudo-photon field

I Phase difference

I ρs and ψs are the radius and azimuthal angle of the particle field
in polar coordinates

I Therefore xs = ρscosψs and ys = ρssinψs

I ρs =
√
x2

s + y2
s

More theory
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CDR Spectra calculations

I The spatial distributions are calculated using:

d2WDR

dωdΩ
= 4π2k2a2

[∣∣EDR
x

∣∣2 +
∣∣EDR

y

∣∣2] (4)

I The spectra are then found by integrating Eq. 4 over the angular
detector aperture. Changing this to Cartesian coordinates the
spectra are then given by:

dWDR

dω
=

∫ ∆ξ
2

−∆ξ
2

∫ ∆η
2

−∆η
2

4π2k2
[∣∣EDR

x

∣∣2 +
∣∣EDR

y

∣∣2] dξ dη
(5)

where ∆ξ and ∆η are the detector apertures.
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CDR Spectrum
I This plot shows the DR spectrum for different beam energies

for the DXP19 Schottky Barrier Diode (SBD) detector
(wavelength range 5 - 7.5mm) for a zero impact parameter:
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I Simulations take the conditions of the CDR setup at CTF3 into
account:

I Finite target size, xs and ys (40 × 40mm)
I Finite distance from target to the detector, a (≈ 1.5m)
I DXP19 Detector aperture, ∆ξ and ∆η (46 × 35mm)

I ITR
max =

αγ2

4π2
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CDR Spectrum

I This plot shows the DR spectrum for different impact
parameters for the DXP19 detector at a beam energy of
γ = 235:
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I The intensity for wavelength smaller than 1mm and for
non-zero impact parameters will drop to zero but due to CPU
time the simulations in this area were not performed. An
indication for this can be seen for h = 10 mm
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CDR Intensity Variation with Impact Parameter

I This plot shows the DR intensity variation with impact
parameter for different wavelengths for the DXP19 detector at a
beam energy of γ = 235:
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I The CDR intensity for increasing impact parameters only shows
a slight decrease

I Allows for measurements 10− 15 mm away from the beam



Coherent Diffraction
Radiation

CDR Introduction

CDR Theory
Phenomenon

Coherent Radiation

Simulations

Spectra calculations

Characteristics

Power estimation

CDR Hardware
CDR Location

Vacuum assembly

Optical system

CDR Outlook

Appendix

15 / 24

Power generated by CDR at CTF3
I This plot shows the average power emitted per train by DR for

DXP19 detector for a zero impact parameter (h = 0):
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I Assuming longitudinal Gaussian beam shape
I Bunch separation of 0.33 ns and 0.66 ns, respectively
I For a 2 mm Gaussian beam the energy emitted into the detector

is 6.8× 10−9 J

I The average power per train is 10.3 W and 22.7 W for
1.5 GHz and 3 GHz operation, respectively.

I For 2.5× 1010 electrons per bunch the energy contribution per
electron is 1.7 eV
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Power generated by CDR at CTF3

I This plot shows the average power emitted per train by DR for
DXP19 detector for a non-zero impact parameter (h = 10 mm):
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I For a 2 mm Gaussian beam the energy emitted into the detector
is 3.6× 10−9 J

I The average power per train is 5.5 W and 11.0 W for 1.5 GHz
and 3 GHz operation, respectively.

I For 2.5× 1010 electrons per bunch the energy contribution per
electron is 0.9 eV
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Location of CDR setup
I CDR setup in the CRM line after the vacuum pump and in front

of the OTR screen

767.578

2862.047

865.8

456.5

1350.

I CRM line (before & after installation of CDR):

CTF3 Layout
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Vacuum assembly

I Vacuum assembly of the CDR setup in the CRM line:
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Optical system

I This drawing shows the optical system which will be used
during the first stage of the experiment (explained later):

I The diffraction radiation emission and the beam axis is shown.
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Outlook and Future Plans
I Different phases of CDR:

1. October 2008 - December 2008:
I Observation of CSR signal
I Check hardware performance
I Check signal level
I Debugging the DAQ
I Study CSR characteristics
I Observation of CDR signal as function of target position

and orientation angle
I Single target

2. March/April 2009:
I Setting up an interferometer for spectral measurements

3. May - December 2009:
I Interferometric measurements of CDR and CSR spectra
I Detailed data analysis and reconstruction of the

longitudinal electron beam profile
4. Later:

I Inserting second target
I Considering putting interferometer in vacuum
I Single shot spectral measurements using grating type

spectrometer
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More theory

I Polarization components:

El
x,y =

1
4π2

∫∫
Ei

x,y (xs, ys)
eiϕ

|~r|
dys dxs (6)

with Ei
x,y the pseudo-photon field and

eiϕ

|~r|
the phase difference.

I Pseudo-photon field:

Ei
x,y(xs, ys) =

iek

πγ

(
cosψs

sinψs

)
K1

(
k

γ
ρs

)
(7)

I Phase difference:

eiϕ

|~r|
=
eik|~r|

|~r|
=
exp

(
ik

√
a2 + (xs − ξ)2 + (ys − η)2

)
√
a2 + (xs − ξ)2 + (ys − η)2

(8)

Back
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CTF3 layout

I CTF3 layout:

I CRM line at the top right of the combiner ring

Back
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