RF Timing Jitter in CLIC

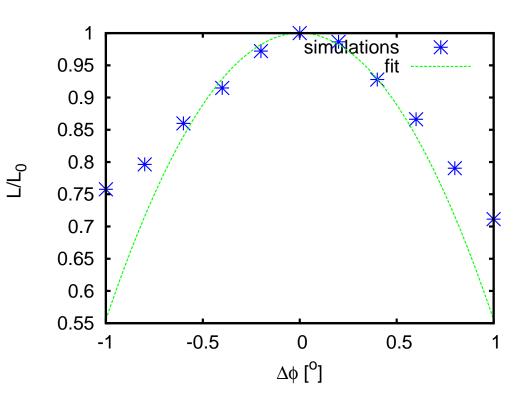
D. Schulte

- Origin of the main linac RF phase and amplitude jitter tolerance
- Sources of main linac RF jitter
- Remarks on Mitigation strategies
- Conclusion

October 15, 2008

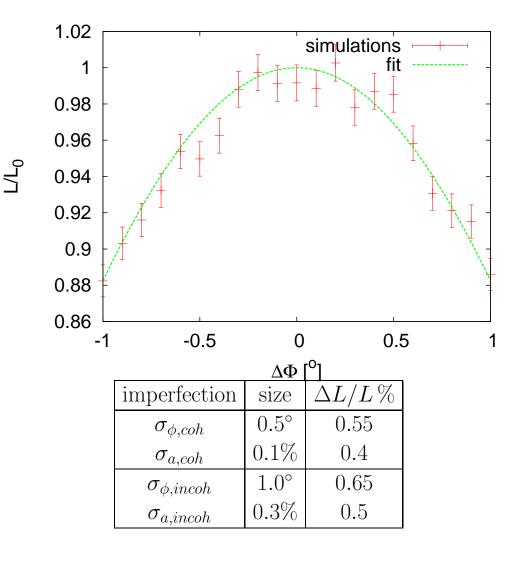
RF Jitter

- An RF phase or amplitude jitter leads to
 - beam energy errors
 - multi-pulse emittance growth
- Both can lead to luminosity loss
 - the energy spread smears the luminosity spectrum
- Relevant is the RF phase with respect to the beam
- The beam loading can also lead to amplitude errors
- All drive beam bunches are generated in one place
 - \Rightarrow may have coherent errors
- In the following will consider jitter effects and assume that static imperfections can be tuned out


Jitter Tolerance

- For the physics an energy spread is bad
 - the intrinsic energy spread is $\sigma_{E,int} \approx 0.0035E$
 - ⇒ Previous CLIC Physics Study Group had already asked for configurations with less energy spread for some measurements
 - $\sigma_{E,jitter} \leq 0.001E$ seems acceptable
 - $\sigma_{E,jitter} \leq 0.002E$ seems significant
 - \Rightarrow aim for 10^{-3}
- Energy errors lead to transverse emittance growth
 - \Rightarrow limit luminosity loss
- The beam delivery system bandwidth is limited
 - \Rightarrow the resulting luminosity reduction needs to be limited

Simulation Results


- Integrated simulations have been performed of main linac, BDS and beam-beam for perfectly aligned system (to determine BDS bandwidth)
 - for old BDS lattice and beam parameters
- \Rightarrow Limited BDS bandwidth leads to 2% luminosity loss for
 - $\sigma_{\Phi} \leq 0.15^{\circ}$
 - $\sigma_G \le 6 \times 10^{-4} G$
 - Final energy error due to uncorrelated jitter σ_{incoh} is about

$$\sigma_{coh} \approx \frac{\sigma_{incoh}}{\sqrt{10}}$$

Simulation Results

- Simulation has been repeated for new parameters and BDS lattice
 - integrated simulations of main linac, BDS and beam-beam for perfectly aligned system
 - multi-pulse emittance growth in the main linac with realistic misalignments
- \Rightarrow Most tight is BDS bandwidth leads to 2% luminosity loss for
 - $\sigma_{\Phi} \leq 0.25^{\circ}$
 - $\sigma_G \leq 10 \times 10^{-4} G$
 - Bandwidth appears significantly better
 - need to be confirmed with higher statistics

Luminosity Loss

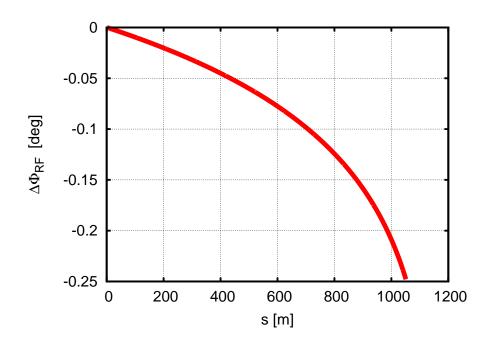
- Main beam current errors lead to different beam loading hence to energy errors
- Main beam phase errors lead to dephasing between main and drive beam and wrong timing at the collision point
 - luminosity loss from energy error is dominating
- For small perturbations one can express the luminosity loss as

$$\frac{\Delta L}{L} \approx 1.0\% \left[\left(\frac{\sigma_{\Phi,coh}}{0.1^{\circ}} \right)^2 + \left(\frac{\sigma_{G,coh}}{4 \cdot 10^{-4} G} \right)^2 + \left(\frac{\sigma_{\Phi,incoh}}{0.3^{\circ}} \right)^2 + \left(\frac{\sigma_{G,incoh}}{12 \cdot 10^{-4} G} \right)^2 + \left(\frac{\sigma_{\Phi,beam}}{0.1^{\circ}} \right)^2 + \left(\frac{\sigma_{I,beam}}{24 \cdot 10^{-4} I} \right)^2 \right]$$

• For new parameters and lattice

$$\frac{\Delta L}{L} \approx 1.0\% \left[\left(\frac{\sigma_{\Phi,coh}}{0.18^{\circ}} \right)^2 + \left(\frac{\sigma_{G,coh}}{7 \cdot 10^{-4}G} \right)^2 + \left(\frac{\sigma_{\Phi,incoh}}{0.6^{\circ}} \right)^2 + \left(\frac{\sigma_{G,incoh}}{22 \cdot 10^{-4}G} \right)^2 + \left(\frac{\sigma_{\Phi,beam}}{0.18^{\circ}} \right)^2 + \left(\frac{\sigma_{I,beam}}{42 \cdot 10^{-4}I} \right)^2 \right]$$

Could propose following budgets

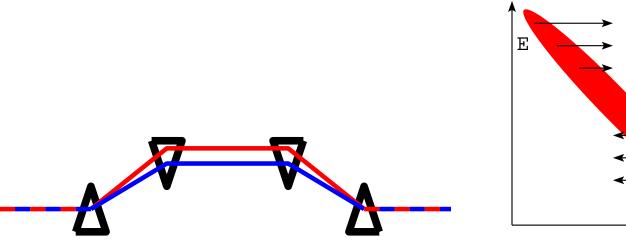

Drive beam current jitter	$7 \cdot 10^{-4}$
Drive beam phase jitter	0.2°
Main beam current jitter	10^{-3}
Main beam phase jitter	0.1°

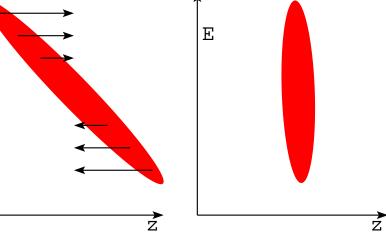
 Need to be able to measure these imperfections

Drive Beam Jitter Sources

- RF gradient error is given by drive beam current error $\Delta G/G = \Delta I/I$
- RF phase error is given by drive beam timing error $\Delta \Phi = 2\pi c \Delta t / \lambda$
- The whole drive beam is generated in one complex
 - \Rightarrow discuss coherent errors first
- Drive beam phase jitter sources
 - transverse jitter
 - energy errors in bunch compressors
 - timing errors in injector
 - path length changes
- Drive beam intensity errors
 - injector current variations
 - collimation
 - other losses

Transverse Drive Beam Jitter

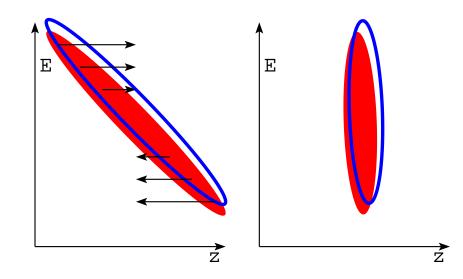



Caluclation by E. Adli

- Longitidinal motion due to transverse angles
- Assumed that systematic effect is tuned out
- \Rightarrow Only jitter component left
- Decelerator is most important (largest phase advance)
- Need to average over local phase error to obtain effective phase error

$$\left(\frac{\Delta x}{\sigma_x}\right)^2 + \left(\frac{\Delta x'}{\sigma_{x'}}\right)^2 + \left(\frac{\Delta y}{\sigma_y}\right)^2 + \left(\frac{\Delta y'}{\sigma_{y'}}\right)^2 \le 1^2$$

Drive Beam Bunch Compressor



- The drive beam needs to be compressed longitudinally
 - \Rightarrow energy errors will translate into phase errors

$$\delta z = R_{56} \Delta E / E$$

 \Rightarrow Can attempt to avoid compression

Example: Tolerances for Single Stage Compressor

- Looking at compression stage just before drive beam decelerator
- Compression is $R_{56} \approx 0.36 \,\mathrm{m}$

 $\Rightarrow \delta E/E = 3 \cdot 10^{-5}$ leads to $\delta z = 10.8 \,\mu{
m m}$

- corresponds to phase tolerance
- for fully loaded operation one finds

$$\frac{\delta E}{E_0} = \frac{2\delta G}{G_0} - \frac{\delta N}{N_0}$$

 \Rightarrow tolerance

 $|\delta G/G_0| \le O(1.5 \cdot 10^{-5})$

 $|\delta N/N_0| \le O(3 \cdot 10^{-5})$

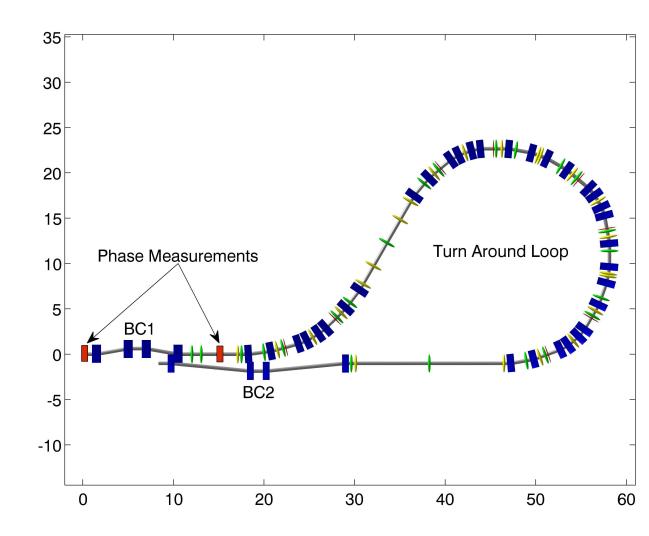
 $|\delta \Phi| \leq O(0.01^\circ)$ for compressor RF

- Compression at an earlier stage with larger energy spread can increase tolerance for $\delta G/G_0$ and $\delta N/N_0$
- \Rightarrow compress in DBA, uncompress for combiner rings, recompress afterwards
 - phase tolerance is not affected much

Mitigation Strategy

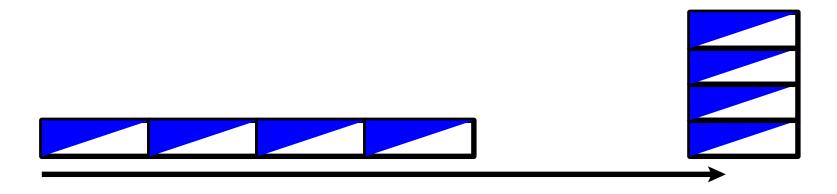
• Increase beam delivery system acceptance

but new limit from physics


- Stabilise drive beam
 - stable injector
 - stable RF
 - longitudinal feedback/feedforward
 - bunch compressor design
- Tie main beam to drive beam phase
 - one to the other or both to a common reference
 - via feedback/feedforward
 - via RF (e.g. bunch compressor)

Feedback/Feedforward Design

- Different locations for feedback/feedforward are possible
 - at the drive beam turn around loop
 - in the drive beam accelerator
 - in the beam transport line
- Need a timing reference
 - coupled local oscillators
 - local oscillator triggered by main beam
 - local oscillator triggered by drive beam
- Need to measure
 - beam phase
 - beam energy
 - other quantities


Example Feedforward at Final Turn-Around

- Final feedforward shown
 - requires timing reference (FP6)
 - phase measurement/prediction (FP7)
 - tuning chicane (PSI)
- Measure phase and change of phase at BC1
- Adjust BC2 with kicker to compensate error
- One could also measure phase and energy at BC1

Feedback

- Long drive beam pulse at generation $\approx 140 \, \mu s$
- End of pulse catches up with beginning due to combiner rings

- Also design of sequence of acceleration and bunch compression for drive beam can help to achieve required performance
 - but still need to beam able to measure final jitter

Conclusion

- A very tight tolerance on the drive beam phase jitter exists
- This leads to tight tolerances in the drive beam generation complex
- To meet these tolerances a number of methods could be used
 - using the drive beam RF to compress the main beam
 - feedforward at the final drive beam turn-around
 - beam feedback/feedforward at other locations
 - feedback on the klystron pulses
 - appropriate drive beam bunch compressor design
- Need time reference with sufficient precision
- Need to understand noise sources (e.g. klystons)