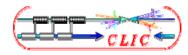
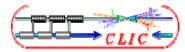


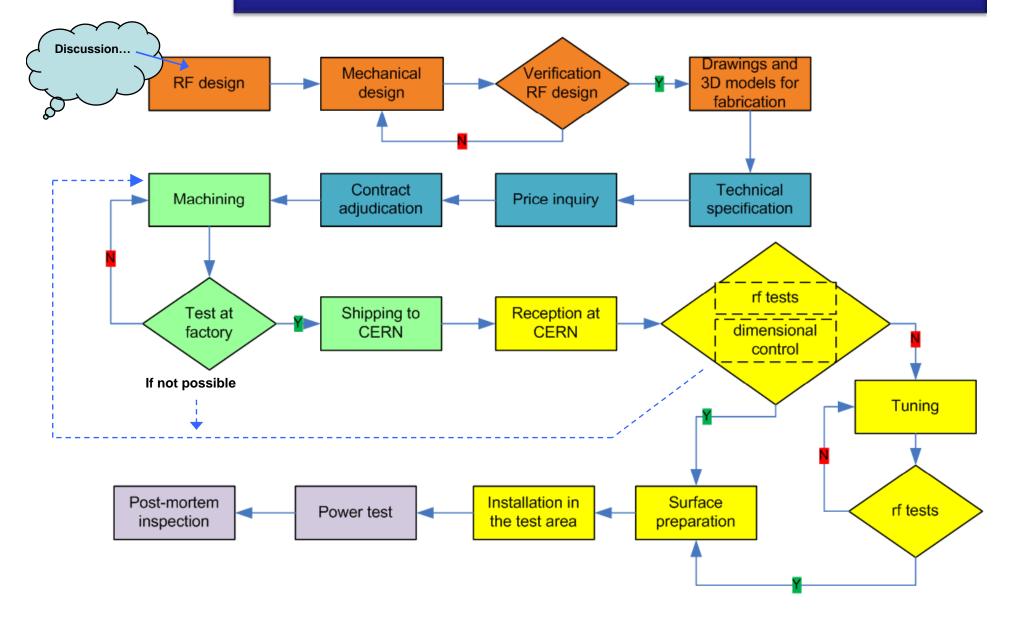
CLIC08 workshop


Structure production: CERN activities and Master Schedule

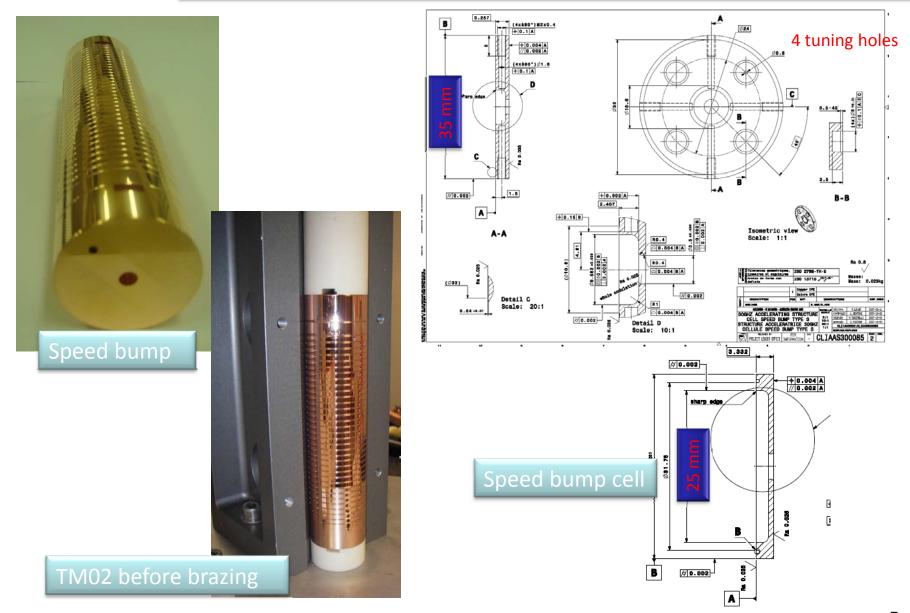
G. Riddone, W. Wuensch, R. Zennaro,

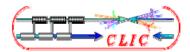

Contributions from C. Achard, S. Atieh, V. Dolgashev, D. Glaude, S. Heikkinen, A. Samoshkin, I. Syratchev + KEK/SLAC collaborations

15.10.2008

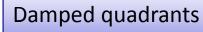

- Accelerating structures
- PETS
- RF components
- Structure Master Schedule

ACCELERATING STRUCTURES




Production cycle for acc. structures

30 GHz – Speed bump, TM02, vg2.6

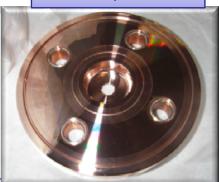


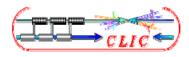
11.4 GHz - CLIC vg1, T18

QUADRANTS 2 damped structures (1 from KEK and 1 from CERN)

DISKS

5 undamped structures (4 from KEK/SLAC and 1 from CERN) 3 damped structures (2 from KEK/SLAC and 1 from CERN)

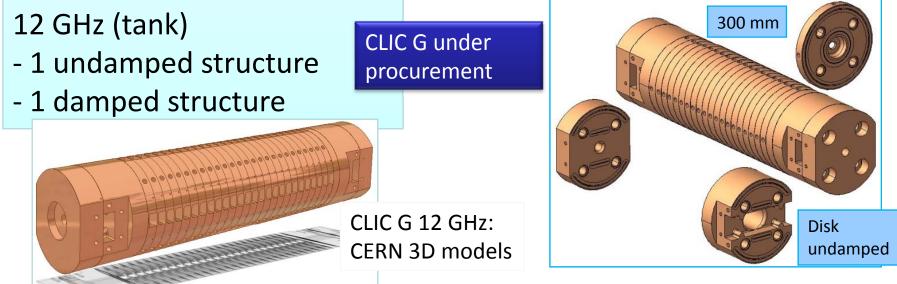




Damped structure#1 ready for brazing (CERN)

Undamped disk

Damped disks

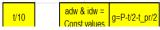


11.4 GHz - CLIC G and C10

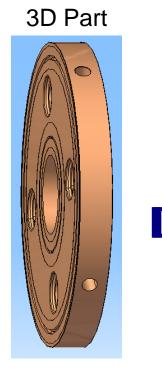
CLIC G - T24 11.4 GHz (tank and sealed configurations possible) - 2 undamped structures from CERN

 1 damped structure from CERN C10 (sealed configuration, tuning as SLAC design)- 10 undamped structures(2 from KEK/SLAC and 8 from SLAC)

- 4 damped structures(2 from KEK/SLAC and 2 from CERN)

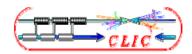


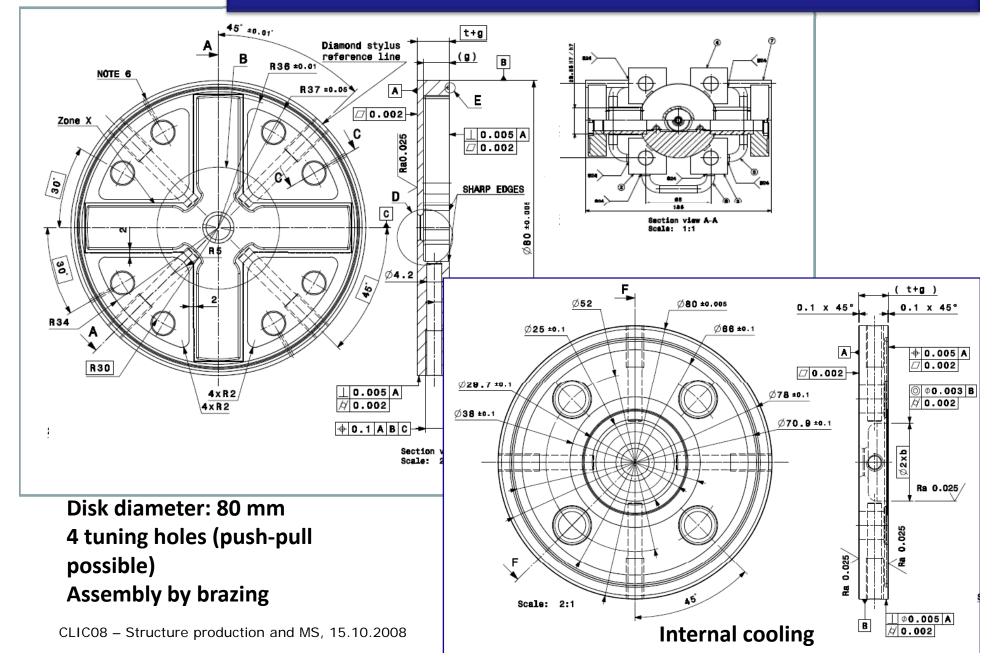
Mechanical design – Parameterization

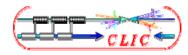

Alexandre.Samochkine @ cern.ch

RF INPUT

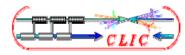
No	b' (mm)	a' (mm)	t' (mm)	rdw' (mm)	C' (mm)	c_iris' (mm)	eb' (mm)	adw' (mm)	adw'idw'g'		ltem'	t_pr (mm)	
<u>0</u>	11.5	5.917	2.897	()	()	0.290	1.304	11.8	9.2	()	Match.Iris A	()	
1	9.575	4.060	2.794	3.364	0.592	0.279	1.517	11.8	9.2	5.976	Match.Cell A		
2	9.178	4.019	2.750	4.118	0.33	0.275	1.492	11.8	9.2	5.976	Cell 1	2.794	
3	9.125	3.936	2.663	4.121	0.33	0.266	1.442	11.8	9.2	6.041	Cell 2	2.750	
4	9.073	3.854	2.576	4.123	0.33	0.258	1.392	11.8	9.2	6.128	Cell 3	2.663	
5	9.023	3.772	2.489	4.125	0.33	0.249	1.342	11.8	9.2	6.215	Cell 4	2.576	
6	8.974	3.689	2.402	4.127	0.33	0.240	1.292	11.8	9.2	6.302	Cell 5	2.489	
7	8.927	3.607	2.315	4,129	0.33	0.232	1.242	11.8	9.2	6.389	Cell 6	2.402	
8	8.882	3.525	2.228	4,131	0.33	0.223	1.193	11.8	9.2	6.476	Cell 7	2.315	
9	8.838	3.442	2.141	4,133	0.33	0.214	1.143	11.8	9.2	6.563	Cell 8	2.228	
10	8.796	3.360	2.054	4.134	0.33	0.205	1.094	11.8	9.2	6.650	Cell 9	2.141	
11	8.755	3.278	1.967	4.135	0.33	0.197	1.045	11.8	9.2	6.738	Cell 10	2.054	
12	8.716	3.195	1.880	4.137	0.33	0.188	0.995	11.8	9.2	6.825	Cell 11	1.967	
13	8.678	3.113	1.793	4.138	0.33	0.179	0.946	11.8	9.2	6.912	Cell 12	1.880	
14	8.642	3.031	1.706	4.138	0.33	0.171	0.897	11.8	9.2	6.999	Cell 13	1.793	
15	8.608	2.948	1.619	4.139	0.33	0.162	0.848	11.8	9.2	7.086	Cell 14	1.706	
16	8.576	2.866	1.532	4.139	0.33	0.153	0.800	11.8	9.2	7.173	Cell 15	1.619	
17	8.544	2.784	1.445	4.140	0.33	0.144	0.751	11.8	9.2	7.260	Cell 16	1.532	1
18	8.515	2.701	1.358	4.140	0.33	0.136	0.703	11.8	9.2	7.347	Cell 17	1.445	1
19	8.487	2.660	1.314	4.139	0.33	0.131	0.679	11.8	9.2	7.412	Cell 18	1.358	1
20	<u>8.925</u>	<u>5.224</u>	<u>2.157</u>	<u>4.066</u>	<u>0.33</u>	<u>0.257</u>	<u>0.95</u>	11.8	9.2	7.013	Match.Cell B	1.314	

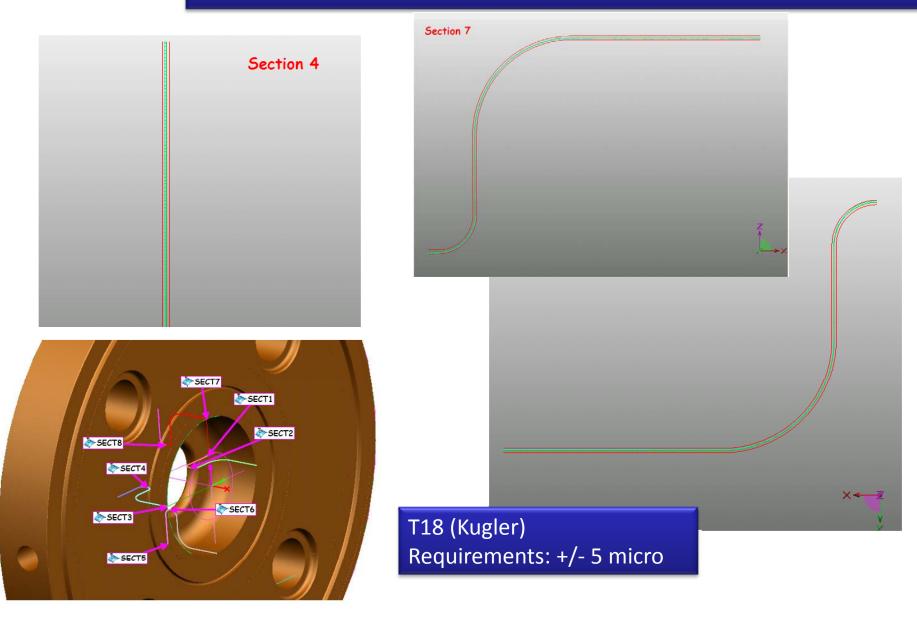





Generated 3D Parts

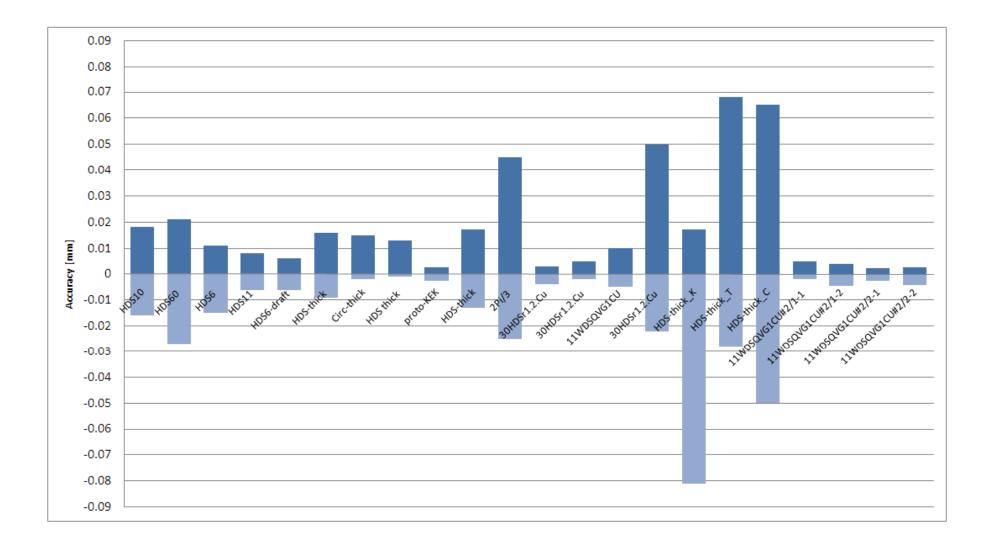
Name 🔺 11WNSDVG1_0_001.CATPart 11WNSDVG1_1_002.CATPart 11WNSDVG1_2_003.CATPart 11WNSDVG1_3_004.CATPart 11WNSDVG1_4_005.CATPart 11WNSDVG1_5_006.CATPart 11WNSDVG1_6_007.CATPart 11WNSDVG1_7_008.CATPart 11WNSDVG1_8_009.CATPart 11WNSDVG1_9_010.CATPart 11WNSDVG1_10_011.CATPart 11WNSDVG1_11_012.CATPart 11WNSDVG1_12_013.CATPart 11WNSDVG1_13_014.CATPart 11WNSDVG1_14_015.CATPart 11WNSDVG1_15_016.CATPart 11WNSDVG1_16_017.CATPart 11WNSDVG1_17_018.CATPart 11WNSDVG1_18_019.CATPart 11WNSDVG1_19_020.CATPart 11WNSDVG1_20_021.CATPart <u>م</u> 11WNSDVG1_A_023.CATPart 11WNSDVG1_B_022.CATPart





Dimensional control

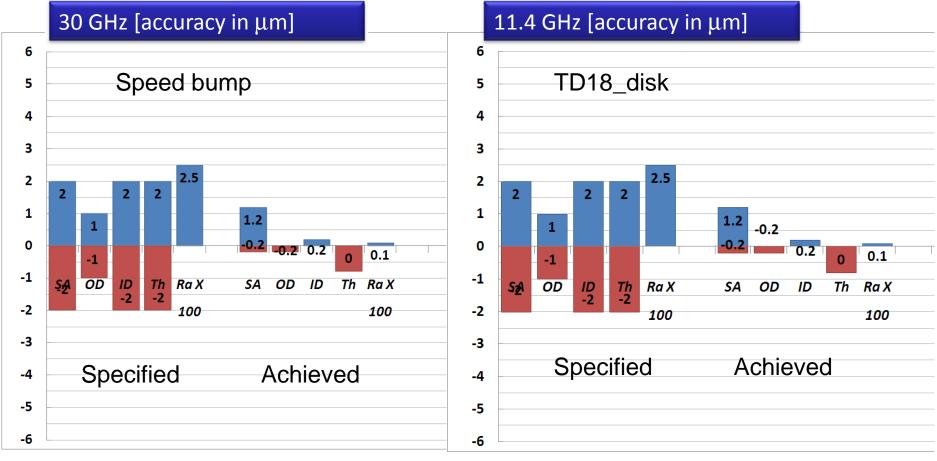
	S En	abling Technologies Grou	p		Inspec	tion Re	port	
	Drawing no.	CLIAAS110069					Prod. Nr.	1
		11 GHZ ACCELLERATING STRUCTUR	RE CELL 07 -	11WDSDV	G1CU		Meas. Date	14
TD18 (VDL)				Dir	nensions	;		
	Measurand	Description	Nominal	Upper	Lower	Actual	Deviation Pass	Fall
	1	Ref A 0.002	0.000	0.0020	0.0000	0.0012	0.0012 📢	
	2	Outer diameter Ref B	80.000	0.0050	-0.0050	79.9998	-0.0002 🗸	
	3	<2 0.002	0.000	0.0020	0.0000	0.0010	0.0010 🗸	
Verafuste Holos line scan : kruis linis boven_11.07.2008.bdt / kruit // San data // Calulators	4	0.005 A	0.000	0.0050	0.0000	0.0002	0.0002 🗸	
Scan direction y - 2 · · 0.0040 (b) Nr points 250 Max deviation 0.0001 Max. point 137 Points out of televance Invert ·	5	Width of cross Z+	11.800	0.0040	-0.0040	11.7999	-0.0001 🗸	
DiffX Y magnification Use 2nd tolerance zone Max X 38.7229 Max Z 39.0055 Min deviation 40.0020 Min. point 133	6	Width of cross Z-	11.800	0.0040	-0.0040	11.7999	-0.0001 🗸	
Min X 4.6004 Min Z 4.5555 Range 0.0021 C 0.0040 (non-symmetrica)	7	Width of cross Y-	11.800	0.0040	-0.0040	11.7999	-0.0001 🗸	
Contour plot Linear plot Points Histograms Input file	8	Width of cross Y+	11.800	0.0040	-0.0040	11.8006	0.0006 √	
Profile 🗠 Measured profile 🔀 Upper tolerance limit 🎼 Upper tolerance limit 👘 Upper tolerance limit	9	⊕ 0.005 A	8.7045	0.0025	-0.0025	8.7056	0.0011 📢	
38.000-	10	Plane opposite Ref A 🕖 0.002	0.000	0.0020	0.0000	0.0012	0.0012 🗸	
36.000 - 39.000 -	11	⊕ 0.005 A	6.4765	0.0025	-0.0025	6.4767	0.0002 🗸	
32.000	12	Bottom plane cross 0.002	0.000	0.0020	0.0000	0.0016	0.0016 🗸	
28.000 -	13	Depth of recess for solder foil	0.040	0.0100	-0.0100	0.0375	-0.0025 🗸	
24.000 -	14	Diameter undulation	7.050	0.0040	-0.0040	7.0525	0.0025 🗸	
E 22.000	15	0.002	0.000	0.0020	0.0000	0.0011	0.0011 🗸	
18.000 -	18	Undulation 0.004 A B	0.000	0.0040	0.0000	0.0040	0.0040 🗸	
16.000	19	Cross 0.004 A B	0.000	0.0040	0.0000	0.0040	0.0040 🗸	
18.0	- 000							
8.000-	- 000	3						
4.00	- 000							
3.000 - 2.000 4.000 6.000 8.000 13.000 12.000 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.0		1						
Image: Second period 12.0 Measurement [mm] ■ 20 million	- 00	1. 1. 1						
Head find & TO TO	- 000	1 - Frank Lat						
8.0	- 000				_			
50	- 000	The second second						
	~~~		the second		-			
	- 000							
5.0		4.000 6.000 8.000 10	.000 12	2.000	14.00			
CLIC08 – Structure production and MS, 15.10.200							-	10





### **Dimensional control**





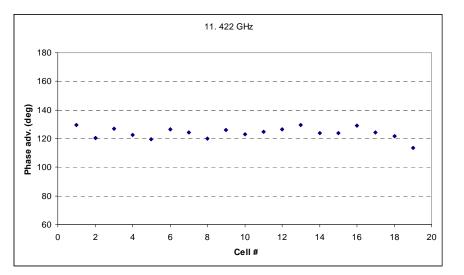

## Achieved shape accuracy (quadrant)



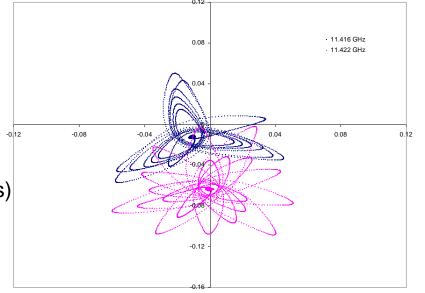


## Achieved accuracy (disk)



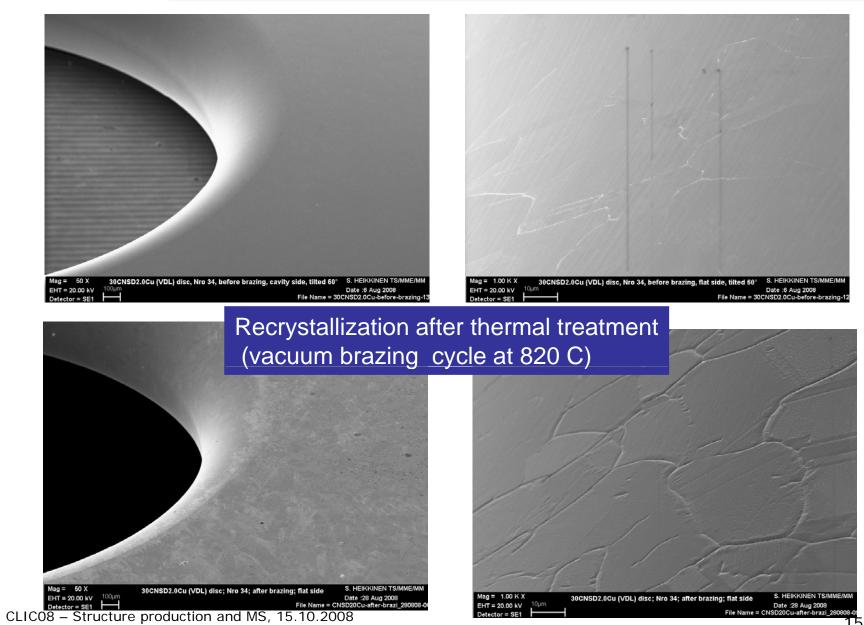

SA: iris shape accuracy OD: outer diameter ID: inner diameter Th: iris thickness Ra: roughness




### RF measurements – TD18 quadrant



11.422 GHz: average phase advance/cell~ 124.3 deg/cell (average only for the regular cells)




S11+S21 (240 deg phase advance)



### SEM – disk #34 speed bump





# **Single Cell Accelerator Structures**

### Goals

• Study rf breakdown in practical accelerating structures: dependence on circuit parameters, materials, cell shapes and surface processing techniques

### Difficulties

• Full scale structures are long, complex, and expensive

### Solution

- Single cell Traveling wave (TW) and single cell standing wave (SW) structures with properties close to that of full scale structures
- Reusable couplers

# We want to predict breakdown behavior for practical structures

# High Power Tests of Single Cell Standing Wave Structures

### Tested

- •Low shunt impedance, a/lambda = 0.215, 1C-SW-A5.65-T4.6-Cu, 4 tested
- •Low shunt impedance, TiN coated, 1C-SW-A5.65-T4.6-Cu-TiN, 1 tested
- Three high gradient cells, low shunt impedance, *3C-SW-A5.65-T4.6-Cu*, 2 tested
  High shunt impedance, elliptical iris, *a/lambda* = 0.143, *1C-SW-A3.75-T2.6-Cu*, 1 tested
- •High shunt impedance, round iris, *a/lambda* = 0.143, *1C-SW-A3.75-T1.66-Cu*, 1 tested
- •Choke in high gradient cell, 1C-SW-A5.65-T4.6-Choke-Cu, 2 tested
- •Low shunt impedance, made of CuZr, 1C-SW-A5.65-T4.6-CuZr, 1 tested

Now 13th test under way, low shunt impedance cupper structure *1C-SW-A5.65-T4.6-Cu-Frascati-#2* 

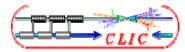


### Next experiments, as for 13 October 2008

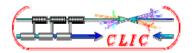
### Reproducibility tests:

High shunt impedance, elliptical iris, *1C-SW-A3.75-T2.6-Cu* High shunt impedance, round iris, *1C-SW-A3.75-T1.66-Cu* Low shunt impedance, made of CuZr, *1C-SW-A5.65-T4.6-CuZr* Three high gradient cells, low shunt impedance, *3C-SW-A5.65-T4.6-Cu* 

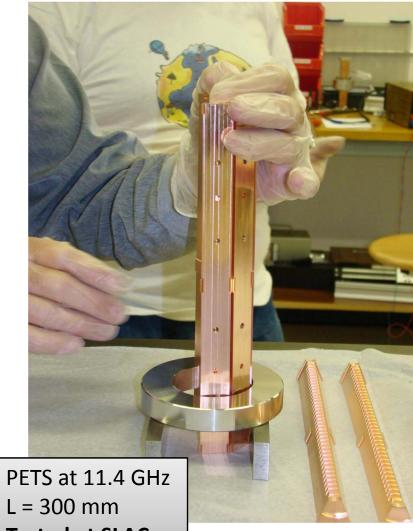
### Geometry tests:


Photonic-Band-Gap in high gradient cell, *1C-SW-A5.65-T4.6-Cu-PBG* Highest shunt impedance, *a/lambda* = 0.105, *1C-SW-A2.75-T2.0-Cu* Three cells, WR90 coupling to power source, *3C-SW-A5.65-T4.6-Cu-WR90* High shunt impedance, choke with 4mm gap, *1C-SW-A3.75-T2.6-Choke-Cu* 

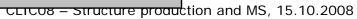
#### Materials:

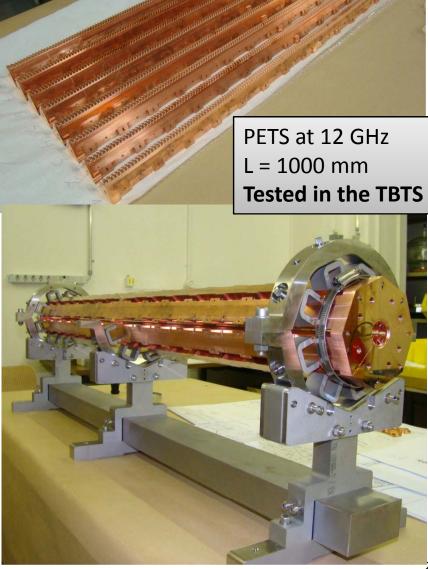

High shunt impedance, elliptical iris, 6N copper, *1C-SW-A3.75-T2.6-6N-Cu* High shunt impedance, made of CuZr, *1C-SW-A3.75-T2.6-CuZr* Low shunt impedance, made of CuCr, *1C-SW-A5.65-T4.6-CuCr* High shunt impedance, made of CuAg, *1C-SW-A3.75-T2.6-CuAg* Low shunt impedance, made of CuAg, *1C-SW-A5.65-T4.6-CuAg* 

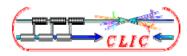
#### **Traveling Wave structures, different materials**


T53MC first cell: Copper, 1C-TW-A3.88-T1.66-Cu Stainless steel, 1C-TW-A3.88-T1.66-SS Copper-Molybdenum, 1C-TW-A3.88-T1.66-CuMo

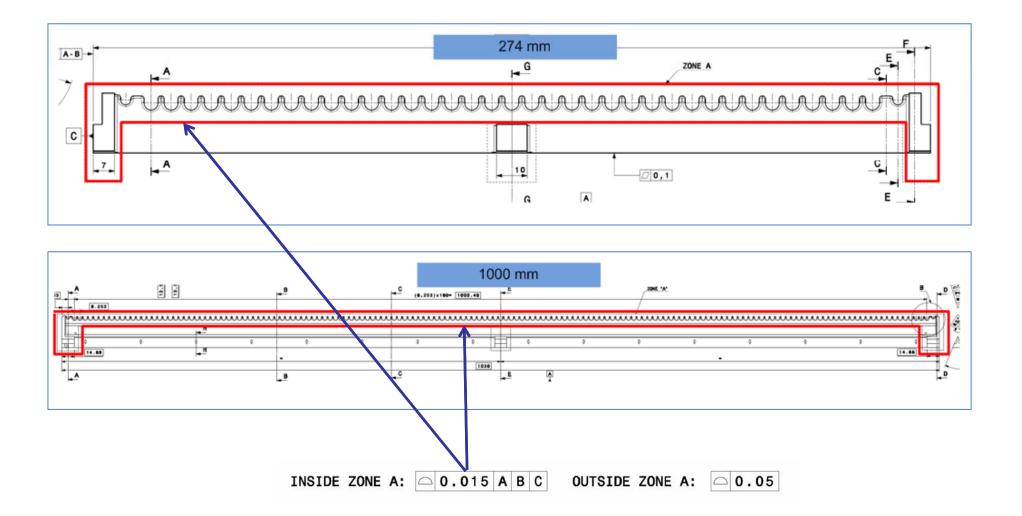




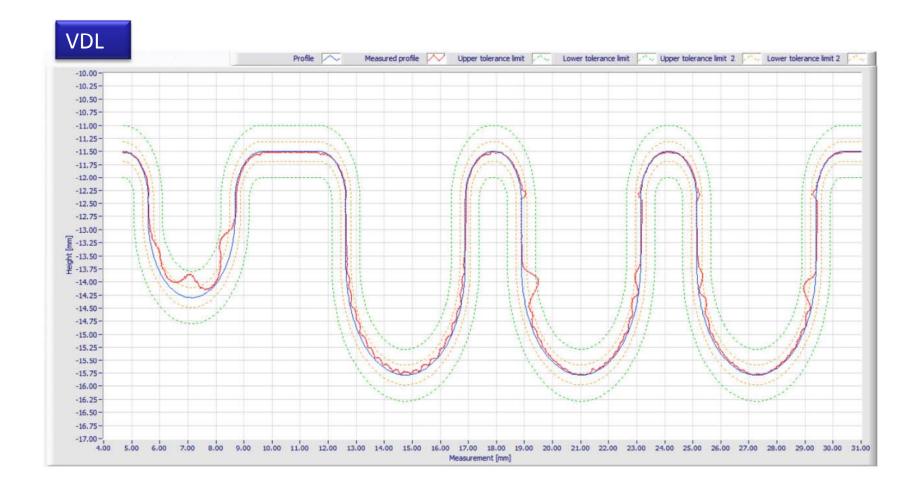





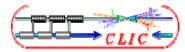





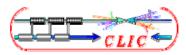



## Mechanical design







### Dimensional control – 1-m long PETS



#### During fabrication decision to enlarge the shape tolerance to +/- 25 $\mu$ m



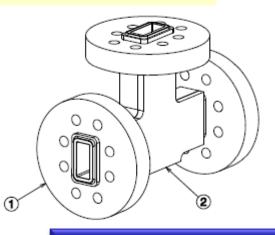
# **RF Components**



### **RF** components

#### **Directional couplers**



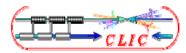

GYCOM, Russia 10 units, all available at CERN



RF and mechanical design, CERN Fabrication CINEL, Italy 5 units , 2 available at CERN

CLIC08 – Structure production and MS, 15.10.2008

#### Splitters




RF and mechanical design, CERN Under fabrication VDL, Holland 10 units

#### Choke mode flanges



Fabrication Fluckiger, CH 2 units shipped to SLAC

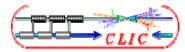


### **RF** components

#### Attenuator/phase shifter

Scaled from 30 GHz CERN version. GYCOM Russia. 5 units: 2 available at CERN






#### (stainless steel) RF load



#### 12 GHz RF and mechanical design, CERN Fabrication CINEL, Italy and VDL, Holland 10 units: 6 available at CERN (AISI316LN)

11.4 GHz RF and mechanical design, CERN Under fabrication CINEL 4 units (SS430)



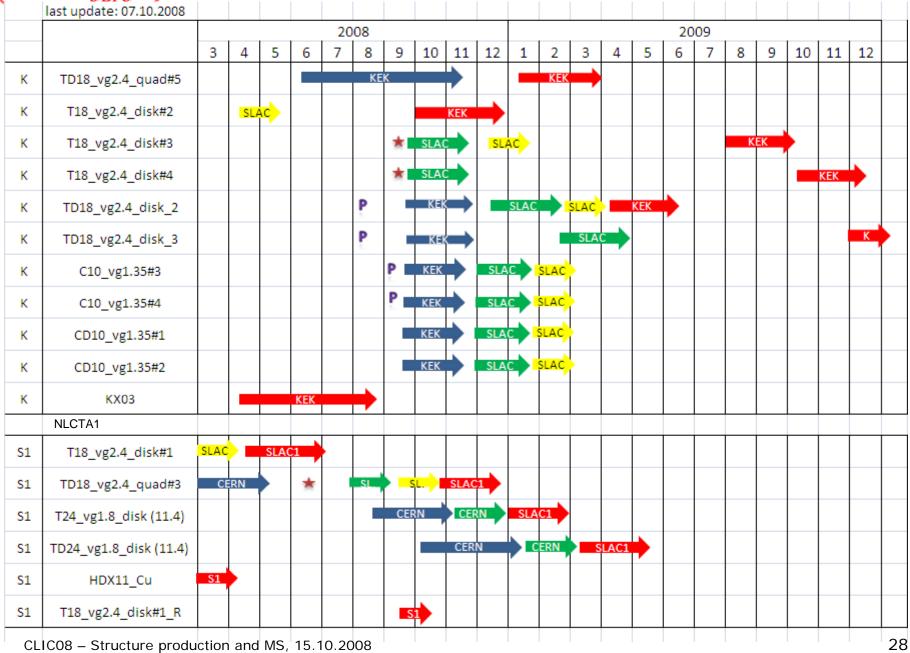
# STRUCTURE MASTER SCHEDULE

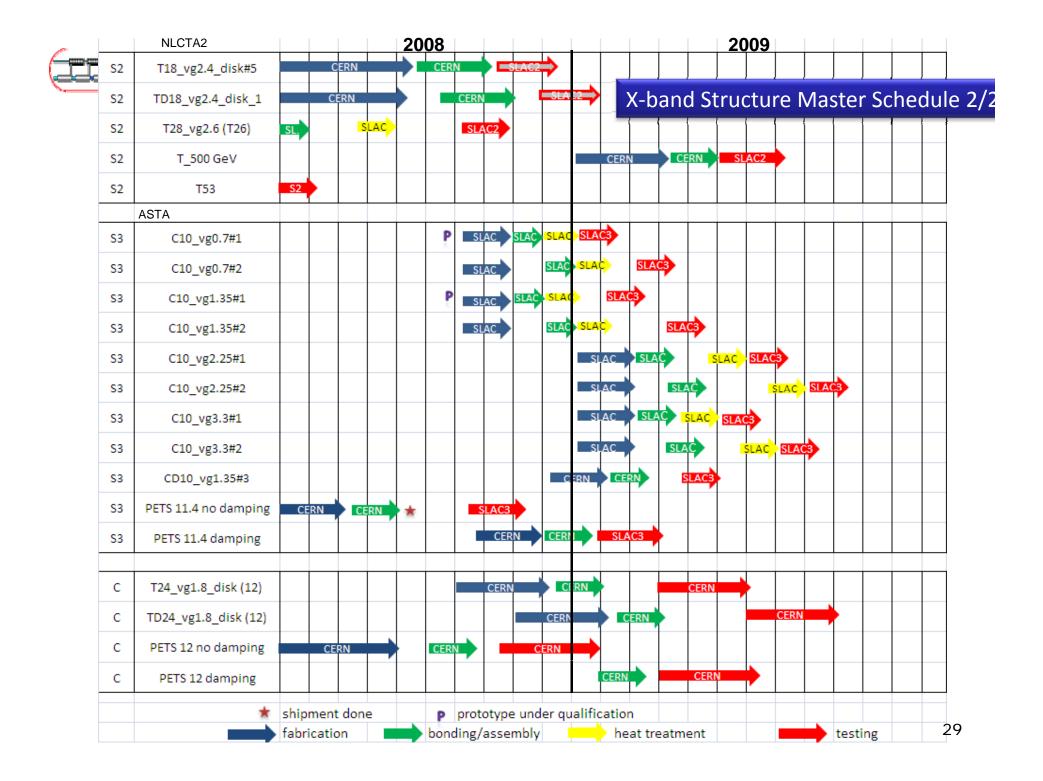


30 GHz in the pipeline



		CLIC :	accelerating	) sti	ructures (from 2007)	EDMS# Last update			
Freq.		Structu	ire	Cat.	Status	Sup	olier		
- Cqi		C30_vg1.1	old vg1.1	ES	available at KEK				
		TD18_vg2.4_quad#1	11WDSQvg1Cu.1		available at CERN, not conform (damage on last iris)	CERN (VDL)			
		TD18_vg2.4_quad#3	11WDSQvg1Cu.3		shipped to SLAC in CW26/08	CERN (VDL)			
		TD18_vg2.4_quad#4	11WDSQvg1Cu.4		quadrant delivered at KEK in CW18/08	KEK (U-Coorp	oration)		
		TD18_vg2.4_quad#2	11WDSQvg1Cu.2		quadrant delivered at KEK in CW18/08	KEK (Hitachi)			
		TD18_vg2.4_quad#5	11WDSOvg1Cu.5		mechanical design finished	KEK			
		T18_vg2.4_disk#2	11WNSDvg1Cu.2	тυ	under testing at KEK	KEK, tested a	L KEK		
		T18_vg2.4_disk#1	11WNSDvg1Cu.1		tested at SLAC	KEK, tested a			
	VG1	T18_vg2.4_disk#3 11WNSDvg1Cu		ΤU	available at SLAC, bonded	KEK			
	-	T18_vg2.4_disk#4 11WNSDvg1Cu.		ΤU	available at SLAC, under bonding	KEK			
		T18_vg2.4_disk#5 11WNSDvg1Cu.			cells available at CERN, brazed finished, tuning?	CERN (Kugler)			
		TD18_vg2.4_disk#1 11WDSDvg1Cu.			cells available at CERN, under brazing	CERN (VDL)			
GHz		TD18_vg2.4_disk#2 11WDSDvg1Cu.		FS	being machined	KEK			
		TD18_vg2.4_disk#3	11WDSDvg1Cu.3	FS	being machined	KEK			
		T28_vg2.9	11T26vg3DCu	ΤU	under testing at SLAC	SLAC			
		T18_vg2.4_quad	11WNSQvg1Cu	ΤU	on hold			LIDE VGTIO_CIDIK	1211000000
	G CI0	C10_vg2.25_thick#1	11CNSD2.3Cu.1	ES	postponed by CERN to 2009	SLAC		C40_vg4.x_n/2	30CNSD1p2
424 (		C10_vg2.25_thick#2	11CNSD2.3Cu.2		postponed by CERN to 2009	SLAC	_	C30 vg4.7 W	
4		C10_vg0.7#1	11CNSD0.7Cu.1		being machined pieces ready CW43	SLAC	_		W 2π/3 clar
Ξ.		C10_vg0.7#2	11CNSD0.7Cu.2		being machined pieces ready CW43	SLAC	_	Pulse heatin	
		C10_vg3.3#1	11CNSD3.3Cu.1		postponed by CERN to 2009	SLAC	_	HDS11_vgx_Cu	30HDS115_
		C10_vg3.3#2	11CNSD3.3Cu.2		postponed by CERN to 2009	SLAC		HDS11_vgx_Mo	30HDS11S_
		C10_vg1.35#1	11CNSD1.4Cu.1		being machined pieces ready CW43	SLAC	_	HDS11_vgx_Ti	30HDS11S
		C10_vg1.35#2	11CNSD1.4Cu.2		being machined pieces ready CW43	SLAC	_	HDS4_vg2.6_thick#2	30HDS_Tk
		C10_vg1.35#3		ES	being machined	KEK	_		
		C10_vg1.35#4	11CNSD1.4Cu.4		being machined	KEK	_	HDS4_vg2.6_thick#1	30HDS_Tk
		CD10_vg1.35#1	11CDSD1.4Cu.1		being machined	KEK		NDS4_vg2.5_thick#1	30CNSQ_Tk
		CD10_vg1.35#2	11CDSD1.4Cu.2		being machined	KEK	_	NDS4_vg2.5_thick#2	30CNSQ_Tk
		CD10_vg1.35#3		FS	under mechanical design	CERN	N	NDS4_vg3.6_thin	30CNSQ_Th
		CD10_vg1.35#4	11CDSD1.4Cu.4	FS	under mechanical design	CERN	- E	HDS11_vg2#1	30HDSR12_
		CD10_choke damped	La cumon cono		under conceptual design	0501		HDS11_vg2#2	30HDSR12_
		T24_vg1.8_disk	11WNSDCGCu	TU	being machined	CERN	8		
		TD24_vg1.8_disk TD24_vg1.8_disk_CuZr	11WDSDCGCu	FS	mechanical design finished	CERN	_	C30_vg4.7_quad	30CNSQ2p3
	500	T 500 GeV						C30_vg4.7_sb	30CNSDsbC
	500	r New coupler design					_	C30_vg4.7_Cu iris	
	Couple	in Intel Coupler design					_	C30_vg2.6	30CNSD2.60
12 GHz	U	T24_vg1.8_disk	12WNSDCGCu	TU	being machined	CERN		C30 vg8.2	30CNSD8.20
- 0		TD24_vg1.8_disk	12WDSDCGCu	FS	mechanical design finished	CERN		C30 vg2 TM02	30CNSD2.00
	1	Ican yeary etc.	LOOCHED 18000	IFC.	tested in 2007			HDS11 vgx CuSS	30HDS11SC
									300031130
								T28_vg2.9	
					• • • •			HDS4_vg2.6_thick_Mo	30HDSTk
				~	s in the nineline			NDS4_vg2.5_thick	30CNSQ_Tk


X-band structures in the pipeline


- CLIC vg1
- CLIC G (11.4 and 12 GHz)
- C10
- CLIC 500 GeV structure
- C10 choke mode
- CLIC structures with compact coupler
- PETS

ation)					30 0112 111 111	e pipeille	
KEK GLAC					- Speed burn	р	
					- TM02		
		1.02.1_*9110_00K	12110000000		- Vg2.6	_	
		C40 vq4.x n/2	30CNSD1p2Cu	FS	tested in 2007		
		C30_vg4.7_W	W 2n/3 clamped	FS	available at CERN		
		Pulse heating	cavity	ES	available at CERN		
		HDS11_vgx_Cu	30HDS11S_Cu	FS	available at CERN	CERN (IMTEC)	
		HDS11_vgx_Mo	30HDS11S_Mo	FS	available at CERN	CERN (IMTEC)	
		HDS11_vgx_Ti	30HDS11S_Ti	FS	available at CERN	CERN (IMTEC)	
		HDS4_vg2.6_thick#2	30HDSTkCu.2	FS	Tested in 2007 ==> 2008	CERN (GREENFOX)	
		HDS4_vg2.6_thick#1	30HDS TkCu.1	FS	available at CERN (Saclay)	CERN (GREENFOX)	
		NDS4 vg2.5 thick#1	30CNSQ TkCu.1	τu	available at CERN (damage on mid cell iris)		
		NDS4 vg2.5 thick#2	30CNSQ TkCu.2		tested in 2007	CERN (VDL)	
N		NDS4_vg3.6_thin	30CNSQ_ThCu	ΤU	available at CERN (damage on a cell iris)		
E E		HDS11_vg2#1	30HDSR12_Cu.1	FS	available at CERN	CERN (VDL)	
8		HDS11_vg2#2	30HDSR12_Cu.2	FS	available at CERN	CERN (Unitek)	
ē –		C30_vg4.7_quad	30CNSQ2p3Cu	TU	available at CERN (shape error)	CERN (Micron-Cluny)	
		C30_vg4.7_sb	30CNSDsbCu	ES	under testing [SB reverse]	CERN (VDL)	
1 -		C30_vg4.7_Cu iris	5001055500	100		CERN	
		C30_vg2.6	30CNSD2.6Cu	ES	being machined, cells ready CW42	CERN (Kugler)	
		C30_vg8.2	30CNSD8.2Cu	ES	RF design finished	CERN	
		C30 vg2 TM02	30CNSD2.0Cu	ES	available at CERN	CERN (VDL)	
		HDS11_vgx_CuSS		ES	available at CERN	CERN	
		T28_vg2.9	50115511560.55			CERN	
		HDS4_vg2.6_thick_Mo	30HDSTkMo	FS	on hold	CERN (GREENFOX)	
		NDS4_vg2.5_thick	30CNSQ_TkMo	TU	on hold	CERT (CREEN OX)	
		Bi-metal structure	SUCHSQ_TRINO	FS	on hold		
					CLIC PETS		
Freque	ency	Туре	Name	Cat.	Status	Supplier	
		Couplers	11PETSC.1 -2	FS	available at CERN	CERN (G&P vacuum; Unitek)	
11.4 0	SHz	PETS (no damp. mat.)	11PETS.1	FS	available at CERN	CERN (Unitek)	
		PETS (with damp.mat.)		FS	mechanical design finished, fabrication on hold	CERN	
		,					
		Prototype bar	12PETS122.P1	PS	available at CERN	CERN (IMP)	
		Couplers	12PETS122C.1-2	-	available at CERN	CERN (G&P vacuum)	
12 G	U-7						
12 6	12	PETS (no damp. mat.)	12PETS122.1	FS	mechanical design finished, fabrication on hold	CERN (CINEL)	
		PETS (with damp.mat.)		FS	available at CERN	CERN (VDL)	
		PETS (on/off mech.)	12PETS122.3	FS	on hold		
30 G	Hz	replacement PETS	30PETS	FS	available at CERN	CERN (IMTEC)	
LEGEND			110.0				
FS:		Full structure, including			Experimental structure		
TU:		Tapered undamped stru	icture	PS:	Prototype structure		



#### X-band Structure Master Schedule 1/2



