
CLIC Drive Beam : Open Issues,'Work Packages', new problems, new ideas

> Introductory material for discussion, B.Jeanneret CLIC workshop, October 2008

Drive Beam, list of open issues by system

- INJECTOR
- INJECTION LINAC
 - RF Structures
 - Linear optics
 - Collective effects
 - dE/dz correlation for later compression
- DELAY LOOP & COMBINER RINGS
 - Train construction (rise time / flat section / Fall time)
 - Isochronous & achromatic optics, linear aberrations, dynamic alignment
- RF DEFLECTORS FOR DL, CR1, CR2

- TRANSFER LINE DOWN TO TUNNEL
 - Isochronous & achromatic optics
 - Collective effects
- LONG TRANSFER LINE
 - Optics & layout
 - Kick-out and matching to turnarounds
 - Beam-based alignment
- TURN-AROUND (see also DL+CR)
 - Matching to decelerator
 - Instrumentation of compressors
- DUMP
 - Conceptual design
 - Extraction section

Drive Beam, list of open issues by subject

	$\delta \phi = 0.1^{\circ} \text{ or } dt = 0.025 \text{ ps}$ (<i>a</i>) 12GHz
	\Rightarrow ds = cdt = 7 μ m
TIMING Drive Beam / Main Beam	Timing correction :
– Phase / time scale	Cable length variation with temperature s=10m, $\Delta T=1K \Rightarrow ds=\alpha_{cu}\Delta T s = 200 \ \mu m$
ALL SYSTEMS	Power/magnet ~ 5kW
 Beam-based alignment in rings 	$dE/E \sim [1.5 \ 10^{-3} - 7.5 \ 10^{-3}]$ w/o shielding
– SR and Coherent SR	Compare to spec $\sigma_E / E = 3$ 10-5 for final compression &
- Collective effects $I = 100 A$	$\Delta z = d(dE/E)R_{56} = 5 \ 10^{-3} \ x \ 0.2m = 1mm$
Transverse feed-back	Suppression by vac.ch. helps, but in conflict
 Longitudinal feed-back 	with resistive wall instabilities (need large
– Instrumentation	chamber)
 Signals traveling at light-speed 	Compare CSR $\delta E/E = 4 \ 10^{-5}$ per magnet
– Beam loss physics, showering, collimation	to $E_{\perp}/E = 6 \ 10^{-5}$ No transverse CSR effects ?
 fast kickers 	
– Magnet design	Long Transfer Line :
 Vacuum system 	$\cos \theta / \cos 2\theta$ coil, no yoke