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Plan for CLIC Damping Ring IBS studies

The aim
– Estimate the equilibrium beam emittance in the CLIC damping rings for 

intra-beam scattering (IBS) and radiation damping dominated emittances

The issue
– From the material collected in the IBS mini-workshop at Cockcroft 

Institute (Aug 07) classical and novel approaches for IBS and related 
computer codes have been reviewed

– Research of schemes to compute the equilibrium phase space distribution 
in lepton storage rings in the case of strong IBS is a challenge for CLIC 
performance

» Conventional Gaussian-beam models, Fokker-Planck approach for arbitrary 
distributions, molecular dynamics method for particle-particle interaction ...

» No ready to use solution clearly exists to quantify the effect of IBS for non-
Gaussian beams in the presence of radiation damping

» Development efforts on IBS in progress in theory and numerical tools
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Plan for CLIC Damping Ring IBS studies

CLIC damping ring and IBS considerations (in brief)
– Beam parameters: energy 2.424 GeV, bunch population 4.1×109, max. 

extracted hor/ver & longitudinal normalized emittances 550/5 nm & 
5000 eVm

– Presently IBS growth times calculations are based on the modified 
Piwinski formalism

– Numerical/analytical approach for effect of strong IBS yielding non-
Gaussian tails with radiation damping not available so far (codes 
handling non-Gaussian beams exist but do not include the damping 
effect of wigglers
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Plan for CLIC Damping Ring IBS studies

Toward a solution: explore other ways to solve the IBS problem

1. Theory & numerical tools: P. Zenkevich et al.
Use existing codes, e.g. MOCAC “MOnte CArlo Code” for simulations

» “Kinetic effect in multiple intra-beam scattering”,                                       
P. Zenkevich, O. Boine-Frankenheim, A. Bolshakov

2. Theory: C. Benedetti et al.
Investigate for a stochastic-diffusion approach of IBS beyond the 
conventional models

– “Time series analysis of Coulomb collisions in a beam dynamic simulation”,       
C. Benedetti, G. Turchetti, A. Vivoli

» IBS theory can be based on the Landau collision integral yielding collision 
effects in a mean field framework as a stochastic process. Data obtained 
from integration of the equation of motion for a 2D-model of transverse 
beam dynamics are analyzed, and a suitable stochastic process is added to 
the mean field equations to describe the dynamics

– “Collisional effects in high intensity beams”, C. Benedetti, COULOMB’05
– “Models of anomalous diffusion based on Continuous Time Random Walk”,      

A. Vivoli, PhD thesis, 2006
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FPE in coordinate-momentum space
– The evolution of the beam distribution (coordinate-momentum space) induced by IBS 

(multiple small angle Coulomb scattering) is based on the  solution of a FPE. 
– Introducing the beam distribution Φ(r, p,t), the friction and diffusion terms F(r, p, t) and

D(r, p, t ) (F and D are averaged over the field particles, denoted by ‘) and the Coulomb 
logarithm LC, the FPE in 6D phase-space can be written as

– The friction force due to IBS and the diffusion coefficients can be cast into the form
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Kinetic analysis of IBS (1) P. Zenkevich et al.
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FPE in invariant space
– The 6 variables in the FPE in coordinate-momentum space can be reduced to 3 by 

reformulation in the space of invariants: energy (for the longitudinal motion) and 
Courant-Snyder invariants (for the transverse motion)

– Using the action-angle variables Jm, Ym, components of the invariant and phase vectors, 
yielding the Courant-Snyder invariant :

– Particle coordinate-momentum are expressed via the action-angle variables

– α2,3, β2,3, γ2,3 are the Twiss parameters, α1=0, β1=1; γ1=0 for coasting beams and
γ1=Qs

2/γ2 [(γ-2 - γt
-2)R]2 for bunched beams

– For uniform phase distributions over [0, 2π] the FPE can be written as
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Kinetic analysis of IBS (1) P. Zenkevich et al.



October 16, 2008 M. Martini 8

Solution of the FPE
– The beam distribution Φ and the coefficients in the FPE depend on the 3 invariants Jm

and t. The FPE coefficients can be expressed as follows, with friction and diffusion
kernels KF

m and KD
m,m

– Classical grid based methods for the numerical  solution of the FPE are too difficult to 
put into practice

– A convenient method to solve the FPE is to use the “Binary collisions” map model 
(BCM)

– An approximate model (AM) of the FPE was derived to reduce the macro-particle 
number presuming that most of the IBS interactions happen in the beam core 

» AM supposes (i) Gaussian beams, (ii) constant components of the diffusion
coefficients and friction kernel, (iii) constant Coulomb log

» The AM of the FPE is solved by means of the Langevin equation
» The AM usually needs only ∼102 to 103 macro-particles, instead of more than 104

macro-particles for the BCM model
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Kinetic analysis of IBS (1) P. Zenkevich et al.
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Kinetic analysis of IBS (1) P. Zenkevich et al.

Solution of the FPE with BCM multi-particle algorithm 
– BCM is implemented in the MOCAC code (MOnte-CArlo Code) for IBS simulations

» For two colliding macro-particles the “collision angle” Ψi,j is computed and the 
momentum change of each interacting particle is derived (ρ0 is the particle density) 

– The beam volume is divided into cells on a grid. The algorithm over time Δt is :
» Form an initial macro-particle set with random phases and compute the particle 

momenta and coordinates (the beam is characterized by a set of macro-particles 
with given invariants)

» Allocate particles in cells and link a particle to each particle in the cell
» Compute the collision map in each cell for each particle
» Derive the new invariant and check the boundary conditions 
» Collect the final macro-particle set

– Besides IBS MOCAC includes further processes: electron cooling, target interactions …
but radiation damping is missing
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Kinetic analysis of IBS (1) P. Zenkevich et al.

Results of numerical IBS modeling for HESR ring (GSI)
– Study of the formation of non-Gaussian beam tails
– Beam momentum distribution computed using MOCAC in the presence of IBS, e-

cooling and beam target interaction dependence on equilibrium r.m.s. momentum spread. 
The tails appear to be mostly due to IBS
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Results of numerical IBS modelling for TWAC storage ring (ITEP) 
– Time-evolution of the r.m.s. momentum spread and beam emittances for Al27

+13 coasting 
ion beams at 620 MeV/u (1012 ions)

– Simulations parameters : 20000 macro-particles, 0.3 s time-step, 38 azimuthal points, 
100 transverse cell (BCM model)

– Approximate model (AM) results are very close to those obtained using the “binary 
collision” map (BCM)

– AM results also match the results of the Bjorken-Mtingwa model
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Kinetic analysis of IBS (2) C. Benedetti et al.

Coulomb oscillators (2D model)
– Coulomb interaction effects (space charge) significant for intense protons or ions 

beams at intermediate energies: non-relativistic energies are assumed
– Very long bunches are supposed to rotate in storage rings: coasting beams are assumed 

(2D model) 
– Consider a coasting beam with Np charged particles per unit length, RB is the mean beam 

radius, the mean particle density is ρB∼Np(πRB)-1.
– Define l∼ρB

-⅓ and associate a charged “wire” to each particle in a cylinder of radius RB
and height l, the number of wires Nw is 

– Nw∼106 for Np∼1011 particles per unit length and RB∼10 mm. Only ∼104 “wires” can be 
simulated in practice, so scaling laws are needed to make the right extrapolations 

( ) lNRNN ppw ≡= 2/31/3π

Npl particles in the 
cylinder of height l

Nw wires
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Equation of motion
– The (non-relativistic) Hamiltonian describing the transverse dynamics of the oscillators 

system is, using the logarithmic potential

– ri, pi are the position and momentum of the ith “wire” (refer to as particles), ω0 is the 
phase advance per meter, ξ the perveance, Nw the number of particles

– Changing Nw changes the collisionality level (scaling laws)

Landau’s equation
– The collisions (IBS) can be introduced in a mean field framework and modeled as a 

random process as long as they are instantaneous, frequent and soft. 
– In the mean field framework the evolution of a collisionless single particle (“wire”) 

phase space distribution Φ(r, p) (assumed to be continue) is defined by the Vlasov-
Poisson equations

Kinetic analysis of IBS (2) C. Benedetti et al.
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– The (test) particle momentum change is 
Δp=-(∑H/∑r)Δs+Δcp (with Δs∼v0Δt), 

– The first term is due to the mean field, the second to collisions (IBS) and is assumed to 
be a Wiener (i.e. Gaussian) stochastic process

– Hence, the evolution of the single (test) particle (“wire”) phase space distribution Φ(r, p) 
is the solution of the Vlasov-Poisson-Focker-Planck-Landau equation (VPFPL)

– F(r, p) and D(r, p) are the friction (or drift) and diffusion coefficients (averaged over the 
field particles)

– The friction term can be rewritten as

– dσ/dθ is the cross section for a 2D binary collision between particles (“wires”) and θ is 
the scattering angle

Kinetic analysis of IBS (2) C. Benedetti et al.
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Simulations
A. Direct numerical integration of the Hamilton’s equations of a 2D system of 

particles describing the transverse dynamics of the beam has been done
B. Numerical simulations via the mean field equations with the addition of a 

Wiener process in order to model Coulomb collisions has been done
C. The data of both simulations have been compared, analysing the found 

differences as a time series of a stochastic process describing the Coulomb 
collisions between the particles

D. Replacement of the Wiener process in the mean field equations by a non-
Gaussian stochastic process to model the Coulomb collisions has been 
investigated (A. Vivoli)

Kinetic analysis of IBS (2) C. Benedetti et al.

Further studies are needed to find a full theory of the stochastic 
process describing Coulomb collisions in more general cases
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Appendix: workable non-Gaussian distributions for IBS ?

Beam phase-space distributions
– Gaussian model (Bjorken-Mtingwa, Piwinski)

» Gaussian phase-space distribution p(x,x’,y,y’,δ,s) expressed in terms of transverse 
and longitudinal phase-space coordinates writes (with δ=Δp/p, N particle number)

– Non-Gaussian model
» In the presence of non-Gaussian tail how would it be possible to substitute non-

Gaussian to Gaussian distributions into the “classical” Gaussian model? (e.g. L-
stable distributions, quasi-polynomials distributions …) 
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L-stable distributions
– Characteristic function Π(t) (no analytical p(x) in general)

» L-stable laws S(α, β, γ, μ) have parameters: 
• index tail 0<α§2, 
• skewness -1§β§1, 
• scale γ>0 (determines the width)
• location μ (determines the peak)

» S(2, 0, γ, μ) is a Gaussian law (with γ=σ2/2, σ2 is the variance)
» S(1, 0, γ, μ) is a Cauchy law 
» For α<2 the variance is infinite; for α>1 the mean exists and is equal to μ

– Tail behavior
» For α<2 the tails converge toward a Pareto law, i.e. 
» p(x)∼x-1-α as xØ∞, where p(x) is the probability density function
» Prob(X>x)=1-F(x)∼x-α as xØ∞, F(x) being cumulative probability function of p(x)
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– Plots
» Log-log plot of symmetric (β=0, μ=0 ) L-stable distribution functions p(x) for 

α=0.75, 1, 1.5, 1.8, 1.9, 1.95, 1.99, 1.999, 1.9999, 1.99999 and 2, with γ=1/2
» Pareto power tails are clearly visible for α<2. The Gaussian (α=2) tail decays as a 

parabola in the log-log plot
» Laws converging asymptotically toward Pareto laws with α>2 have fat tailed 

character but are not L-stable, e.g. pσ(x) with variance σ2

» pσ(x) falls off as pσ(x)∼x-4 as xØ∞ yielding a tail index α=3 (red dotted line).
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Quasi-polynomials distributions (E. Métral, A. Verdier)
– Distribution with heavier tail than the Gaussian

» Let p(Jx,Jy) a bivariate distribution of “invariant-space” variables Jx, Jy extending 
up to 6σ (e.g. for truncated beam distributions due to collimation)

» Suitably choosing the parameters a, b, n, p (with n>15, p<15, and b=18σ2) of 
p(Jx,Jy) yields projected distributions px(x) with fatter tails than a Gaussian (when 
approaching the cutoff point 6σ)

» Tails of quasi-polynomials laws do not converge toward a Pareto law due to the 
truncated nature of the distributions
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– Plots
» Left: Quasi-polynomials law tails p(x) near 6σ for n=16 and p=1, 2, 3, 4, 5, 6, with 

σ=1. Close to the cutoff point 6σ the tails become slimmer than the Gaussian tail
» Right: Semi-logarithm plot of the above distribution functions p(x)
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