Intra-beam Scattering Studies for the CLIC damping Rings Status and Plan

Michel Martini, CERN

CLIC Workshop
CERN, October 14-17, 2008
Injectors and Damping rings Working Group

Contents

> Plan for CLIC Damping Ring IBS studies
$>$ Kinetic analysis of IBS (1) P. Zenkevich et al.
$>$ Kinetic analysis of IBS (2) C. Benedetti et al.
> Appendix: workable non-Gaussian distributions for IBS ?

Plan for CLIC Damping Ring IBS studies

\Rightarrow The aim

- Estimate the equilibrium beam emittance in the CLIC damping rings for intra-beam scattering (IBS) and radiation damping dominated emittances
> The issue
- From the material collected in the IBS mini-workshop at Cockcroft Institute (Aug 07) classical and novel approaches for IBS and related computer codes have been reviewed
- Research of schemes to compute the equilibrium phase space distribution in lepton storage rings in the case of strong IBS is a challenge for CLIC performance
» Conventional Gaussian-beam models, Fokker-Planck approach for arbitrary distributions, molecular dynamics method for particle-particle interaction ...
» No ready to use solution clearly exists to quantify the effect of IBS for nonGaussian beams in the presence of radiation damping
» Development efforts on IBS in progress in theory and numerical tools

Plan for CLIC Damping Ring IBS studies

$>$ CLIC damping ring and IBS considerations (in brief)

- Beam parameters: energy 2.424 GeV , bunch population 4.1×10^{9}, max. extracted hor/ver \& longitudinal normalized emittances $550 / 5 \mathrm{~nm} \&$ 5000 eVm
- Presently IBS growth times calculations are based on the modified Piwinski formalism
- Numerical/analytical approach for effect of strong IBS yielding nonGaussian tails with radiation damping not available so far (codes handling non-Gaussian beams exist but do not include the damping effect of wigglers

Plan for CLIC Damping Ring IBS studies

$>$ Toward a solution: explore other ways to solve the IBS problem

1. Theory \& numerical tools: P. Zenkevich et al.
$>$ Use existing codes, e.g. MOCAC "MOnte CArlo Code" for simulations
" "Kinetic effect in multiple intra-beam scattering",
P. Zenkevich, O. Boine-Frankenheim, A. Bolshakov
2. Theory: C. Benedetti et al.
$>$ Investigate for a stochastic-diffusion approach of IBS beyond the conventional models

- "Time series analysis of Coulomb collisions in a beam dynamic simulation", C. Benedetti, G. Turchetti, A. Vivoli
» IBS theory can be based on the Landau collision integral yielding collision effects in a mean field framework as a stochastic process. Data obtained from integration of the equation of motion for a 2D-model of transverse beam dynamics are analyzed, and a suitable stochastic process is added to the mean field equations to describe the dynamics
- "Collisional effects in high intensity beams", C. Benedetti, COULOMB’05
- "Models of anomalous diffusion based on Continuous Time Random Walk", A. Vivoli, PhD thesis, 2006

Kinetic analysis of IBS (1) P. Zenkevich et al.

$>$ FPE in coordinate-momentum space

- The evolution of the beam distribution (coordinate-momentum space) induced by IBS (multiple small angle Coulomb scattering) is based on the solution of a FPE.
- Introducing the beam distribution $\Phi(\boldsymbol{r}, \boldsymbol{p}, \boldsymbol{t})$, the friction and diffusion terms $F(\boldsymbol{r}, \boldsymbol{p}, t)$ and $D(\boldsymbol{r}, \boldsymbol{p}, t)(F$ and D are averaged over the field particles, denoted by ') and the Coulomb logarithm L_{C}, the FPE in 6D phase-space can be written as

$$
\vec{r}=\left(\begin{array}{c}
z-z_{s} \\
x \\
y
\end{array}\right) \quad \vec{p}=\left(\begin{array}{c}
\gamma^{-1} \frac{\Delta p}{p} \\
x^{\prime}=p_{x} / p \\
y^{\prime}=p_{y} / p
\end{array}\right) \quad \frac{\partial \Phi}{\partial t}=-\sum_{m} \frac{\partial}{\partial p_{m}}\left(F_{m} \Phi\right)+\frac{l}{2} \sum_{m, m^{\prime}} \frac{\partial^{2}}{\partial p_{m} \partial p_{m^{\prime}}}\left(D_{m, m^{\prime}} \Phi\right)
$$

- The friction force due to IBS and the diffusion coefficients can be cast into the form

$$
\begin{gathered}
\vec{F}=-\frac{2 \pi c r_{0}^{2}}{\beta^{3} \gamma^{5}} \int L_{C}\left(\vec{p}, \vec{p}^{\prime}\right) \frac{\vec{p}-\vec{p}^{\prime}}{\left|\vec{p}-\vec{p}^{\prime}\right|^{3}} \Phi\left(\vec{p}, \vec{p}^{\prime}, t\right) d^{3} \vec{p}^{\prime} \\
\bar{D}_{m, m^{\prime}}=\frac{\pi c r_{0}^{2}}{\beta^{2} \gamma^{5}} \int L_{C}\left(\vec{p}, \vec{p}^{\prime}\right) \frac{\delta_{m, m^{\prime}}\left|\vec{p}-\vec{p}^{\prime}\right|^{2}-\left(p_{m}-p_{m}^{\prime}\right)\left(p_{m^{\prime}}-p_{m^{\prime}}^{\prime}\right)}{\left|\vec{p}-\vec{p}^{\prime}\right|^{3}} \Phi\left(\vec{p}, \vec{p}^{\prime}, t\right) d^{3} \vec{p}^{\prime}
\end{gathered}
$$

Kinetic analysis of IBS (1) P. Zenkevich et al.

> FPE in invariant space

- The 6 variables in the FPE in coordinate-momentum space can be reduced to 3 by reformulation in the space of invariants: energy (for the longitudinal motion) and Courant-Snyder invariants (for the transverse motion)
- Using the action-angle variables J_{m}, Ψ_{m}, components of the invariant and phase vectors, yielding the Courant-Snyder invariant :

$$
J_{m}=\gamma_{m} \widetilde{r}_{m}^{2}+2 \alpha_{m} \widetilde{r}_{m} \widetilde{p}_{m}+\beta_{m} \widetilde{p}_{m}^{2}
$$

- Particle coordinate-momentum are expressed via the action-angle variables

$$
\widetilde{\vec{r}}=\left(\begin{array}{c}
z-z_{s} \\
x-D_{x} \Delta p / p \\
y
\end{array}\right) \widetilde{\vec{p}}=\left(\begin{array}{c}
\frac{1}{\gamma} \frac{\Delta p}{p} \\
x^{\prime}-D_{x}^{\prime} \Delta p / p \\
y^{\prime}
\end{array}\right) \quad \begin{aligned}
& \widetilde{r}_{m}=\sqrt{\beta_{m} J_{m}} \cos \psi_{m} \\
& \widetilde{p}_{m}=-\frac{\alpha_{m}}{\beta_{m}} \widetilde{r}_{m}-\sqrt{\frac{J_{m}}{\beta_{m}}} \sin \psi_{m}
\end{aligned}
$$

$-\alpha_{2,3}, \beta_{2,3}, \gamma_{2,3}$ are the Twiss parameters, $\alpha_{1}=0, \beta_{1}=1 ; \gamma_{1}=0$ for coasting beams and $\gamma_{1}=\mathrm{Q}_{\mathrm{s}}{ }^{2} / \gamma^{2}\left[\left(\gamma^{-2}-\gamma_{\mathrm{t}}{ }^{-2}\right) \mathrm{R}\right]^{2}$ for bunched beams

- For uniform phase distributions over [0, $2 \pi]$ the FPE can be written as

$$
\frac{\partial \Phi}{\partial t}=-\sum_{m} \frac{\partial}{\partial J_{m}}\left(\widetilde{F}_{m} \Phi\right)+\frac{1}{2} \sum_{m, m^{\prime}} \frac{\partial^{2}}{\partial J_{m} \partial J_{m^{\prime}}}\left(\widetilde{D}_{m, m^{\prime}} \Phi\right)
$$

Kinetic analysis of IBS (1) P. Zenkevich et al.

> Solution of the FPE

- The beam distribution Φ and the coefficients in the FPE depend on the 3 invariants J_{m} and t. The FPE coefficients can be expressed as follows, with friction and diffusion kernels $\mathrm{K}_{\mathrm{m}}^{\mathrm{F}}$ and $\mathrm{K}^{\mathrm{D}}{ }_{\mathrm{m}, \mathrm{m}}$

$$
\begin{gathered}
\widetilde{F}_{m}(\vec{J}, t)=-\frac{2 \pi c r_{0}^{2}}{\beta^{3} \gamma^{5}} \int \widetilde{K}_{m}^{F}\left(\vec{J}, \vec{J}^{\prime}\right) \Phi(\vec{J}, t) d^{3} \vec{J}^{\prime} \\
\widetilde{D}_{m, m^{\prime}}(\vec{J}, t)=\frac{\pi c r_{0}^{2}}{\beta^{3} \gamma^{5}} \int \widetilde{K}_{m, m^{\prime}}^{D}\left(\vec{J}, \vec{J}^{\prime}\right) \Phi(\vec{J}, t) d^{3} \vec{J}^{\prime}
\end{gathered}
$$

- Classical grid based methods for the numerical solution of the FPE are too difficult to put into practice
- A convenient method to solve the FPE is to use the "Binary collisions" map model (BCM)
- An approximate model (AM) of the FPE was derived to reduce the macro-particle number presuming that most of the IBS interactions happen in the beam core
» AM supposes (i) Gaussian beams, (ii) constant components of the diffusion coefficients and friction kernel, (iii) constant Coulomb log
» The AM of the FPE is solved by means of the Langevin equation
» The AM usually needs only $\sim 10^{2}$ to 10^{3} macro-particles, instead of more than 10^{4} macro-particles for the BCM model

Kinetic analysis of IBS (1) P. Zenkevich et al.

$>$ Solution of the FPE with BCM multi-particle algorithm

- BCM is implemented in the MOCAC code (MOnte-CArlo Code) for IBS simulations
» For two colliding macro-particles the "collision angle" $\Psi^{i, j}$ is computed and the momentum change of each interacting particle is derived (ρ_{0} is the particle density)

$$
\sin \left(\frac{\Psi^{i, j}}{2}\right)=\sqrt{\frac{2 A \rho_{0} L_{C}^{i, j} \Delta t}{N\left|\vec{p}^{i}-\vec{p}^{j}\right|^{3 / 2}}}
$$

- The beam volume is divided into cells on a grid. The algorithm over time Δt is :
» Form an initial macro-particle set with random phases and compute the particle momenta and coordinates (the beam is characterized by a set of macro-particles with given invariants)
» Allocate particles in cells and link a particle to each particle in the cell
» Compute the collision map in each cell for each particle
» Derive the new invariant and check the boundary conditions
" Collect the final macro-particle set
- Besides IBS MOCAC includes further processes: electron cooling, target interactions ... but radiation damping is missing

Kinetic analysis of IBS (1) P. Zenkevich et al.

> Results of numerical IBS modeling for HESR ring (GSI)

- Study of the formation of non-Gaussian beam tails
- Beam momentum distribution computed using MOCAC in the presence of IBS, e^{-} cooling and beam target interaction dependence on equilibrium r.m.s. momentum spread. The tails appear to be mostly due to IBS

Kinetic analysis of IBS (1) P. Zenkevich et al.

$>$ Results of numerical IBS modelling for TWAC storage ring (ITEP)

- Time-evolution of the r.m.s. momentum spread and beam emittances for $\mathrm{Al}_{27}{ }^{+13}$ coasting ion beams at $620 \mathrm{MeV} / \mathrm{u}$ (10^{12} ions)
- Simulations parameters : 20000 macro-particles, 0.3 s time-step, 38 azimuthal points, 100 transverse cell (BCM model)
- Approximate model (AM) results are very close to those obtained using the "binary collision" map (BCM)
- AM results also match the results of the Bjorken-Mtingwa model

Kinetic analysis of IBS (2) C. Benedetti et al.

$>$ Coulomb oscillators (2D model)

- Coulomb interaction effects (space charge) significant for intense protons or ions beams at intermediate energies: non-relativistic energies are assumed
- Very long bunches are supposed to rotate in storage rings: coasting beams are assumed (2D model)
- Consider a coasting beam with N_{p} charged particles per unit length, R_{B} is the mean beam radius, the mean particle density is $\rho_{B} \sim N_{p}\left(\pi R_{B}\right)^{-1}$.
- Define $l \sim \rho_{B}^{-1 / 3}$ and associate a charged "wire" to each particle in a cylinder of radius R_{B} and height l, the number of wires N_{w} is

$$
N_{w}=\pi^{1 / 3}\left(N_{p} R\right)^{2 / 3} \equiv N_{p} l
$$

- $\quad N_{w} \sim 10^{6}$ for $N_{p} \sim 10^{11}$ particles per unit length and $R_{B} \sim 10 \mathrm{~mm}$. Only $\sim 10^{4}$ "wires" can be simulated in practice, so scaling laws are needed to make the right extrapolations

Kinetic analysis of IBS (2) C. Benedetti et al.

$>$ Equation of motion

- The (non-relativistic) Hamiltonian describing the transverse dynamics of the oscillators system is, using the logarithmic potential

$$
H=\sum_{i=1}^{N} \frac{\vec{p}_{i}^{2}+\omega_{0}^{2} \vec{r}_{i}^{2}}{2}+\frac{\xi}{N_{w}} \sum_{1 \leq i i j \leq N_{w}}^{N_{w}} \log \left|\vec{r}_{i}-\vec{r}_{j}\right|
$$

- $\boldsymbol{r}_{i}, \boldsymbol{p}_{i}$ are the position and momentum of the $i^{\text {th }}$ "wire" (refer to as particles), ω_{0} is the phase advance per meter, ξ the perveance, N_{w} the number of particles
- Changing N_{w} changes the collisionality level (scaling laws)

> Landau's equation

- The collisions (IBS) can be introduced in a mean field framework and modeled as a random process as long as they are instantaneous, frequent and soft.
- In the mean field framework the evolution of a collisionless single particle ("wire") phase space distribution $\Phi(\boldsymbol{r}, \boldsymbol{p})$ (assumed to be continue) is defined by the VlasovPoisson equations

$$
\begin{aligned}
\frac{\partial \Phi}{\partial s}+[\Phi, H] & =0 \\
\Delta U(\vec{r})=-4 \pi \int \Phi(\vec{r}, \vec{p}) d \vec{p} \text { where } U & =-\iint \log \left|\vec{r}-\vec{r}^{\prime}\right| \Phi(\vec{r}, \vec{p}) d^{2} \vec{r}^{\prime} d^{2} \vec{p}
\end{aligned}
$$

Kinetic analysis of IBS (2) C. Benedetti et al.

- The (test) particle momentum change is

$$
\Delta \boldsymbol{p}=-(\partial H / \partial \boldsymbol{r}) \Delta s+\Delta_{c} \boldsymbol{p} \quad\left(\text { with } \Delta s \sim v_{0} \Delta t\right)
$$

- The first term is due to the mean field, the second to collisions (IBS) and is assumed to be a Wiener (i.e. Gaussian) stochastic process
- Hence, the evolution of the single (test) particle ("wire") phase space distribution $\Phi(\boldsymbol{r}, \boldsymbol{p})$ is the solution of the Vlasov-Poisson-Focker-Planck-Landau equation (VPFPL)

$$
\frac{\partial \Phi}{\partial s}+[\Phi, H]=-\sum_{m=1}^{2} \frac{\partial}{\partial p_{m}}\left(F_{m} \Phi\right)+\frac{1}{2} \sum_{m, n=1}^{2} \frac{\partial^{2}}{\partial p_{m} \partial p_{n}}\left(D_{m, n} \Phi\right)
$$

- $\quad F(\boldsymbol{r}, \boldsymbol{p})$ and $D(\boldsymbol{r}, \boldsymbol{p})$ are the friction (or drift) and diffusion coefficients (averaged over the field particles)

$$
F_{m}=\left\langle\frac{\Delta_{c} p_{m}}{\Delta s}\right\rangle \quad D_{m, n}=\left\langle\frac{\Delta_{c} p_{m} \Delta_{c} p_{n}}{\Delta s}\right\rangle
$$

- The friction term can be rewritten as

$$
\vec{F}=-\frac{N_{w}}{2} \int d \vec{p}^{\prime} \Phi\left(\vec{r}, \vec{p}^{\prime}\right)\left(\sigma^{(0)}-\sigma^{(I)}\right)\left|\vec{p}-\vec{p}^{\prime}\right|\left(\vec{p}-\vec{p}^{\prime}\right) \text { with } \sigma^{(k)}=\int \frac{d \sigma}{d \theta} \cos ^{k} \theta d \theta
$$

- $d \sigma / d \theta$ is the cross section for a 2D binary collision between particles ("wires") and θ is the scattering angle

Kinetic analysis of IBS (2) C. Benedetti et al.

> Simulations

A. Direct numerical integration of the Hamilton's equations of a 2D system of particles describing the transverse dynamics of the beam has been done
B. Numerical simulations via the mean field equations with the addition of a Wiener process in order to model Coulomb collisions has been done
C. The data of both simulations have been compared, analysing the found differences as a time series of a stochastic process describing the Coulomb collisions between the particles
D. Replacement of the Wiener process in the mean field equations by a nonGaussian stochastic process to model the Coulomb collisions has been investigated (A. Vivoli)

Further studies are needed to find a full theory of the stochastic process describing Coulomb collisions in more general cases

Appendix: workable non-Gaussian distributions for IBS ?

> Beam phase-space distributions

- Gaussian model (Bjorken-Mtingwa, Piwinski)
» Gaussian phase-space distribution $\mathrm{p}\left(\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{y}, \mathrm{y}^{\prime}, \delta, \mathrm{s}\right)$ expressed in terms of transverse and longitudinal phase-space coordinates writes (with $\delta=\Delta p / p, N$ particle number)

$$
\begin{aligned}
& \mathrm{p}\left(x, x^{\prime}, y, y^{\prime}, \delta, s\right)=N \frac{\exp \left(-S^{(H)}\left(x, x^{\prime}\right)-S^{(V)}\left(y, y^{\prime}\right)-S^{(L)}(\delta, s)\right)}{\int \exp \left(-S^{(H)}\left(x, x^{\prime}\right)-S^{(V)}\left(y, y^{\prime}\right)-S^{(L)}(\delta, s)\right) d x d x^{\prime} d y d y^{\prime} d \delta d s} \\
& \mathrm{~S}^{(\mathrm{H})}\left(x, x^{\prime}\right)=\frac{1}{2 \varepsilon_{x}}\left(\gamma_{x} x^{2}+2 \alpha_{x} x x^{\prime}+\beta_{x} x^{\prime 2}\right) \\
& S^{(V)}\left(y, y^{\prime}\right)=\frac{1}{2 \varepsilon_{y}}\left(\gamma_{y} x^{2}+2 \alpha_{y} y y^{\prime}+\beta_{y} x^{\prime 2}\right) \quad \varepsilon_{x}=\frac{\sigma_{x}^{2}}{\beta_{x}} \quad \varepsilon_{y}=\frac{\sigma_{y}^{2}}{\beta_{y}} \quad \sigma_{\delta}=\frac{\sigma_{\mathrm{p}}}{\mathrm{p}_{0}} \\
& S^{(L)}(\delta, s)=\frac{\delta^{2}}{\sigma_{\delta}^{2}}+\frac{\left(s-s_{0}\right)^{2}}{2 \sigma_{s}^{2}} \text { (bunched beam) }
\end{aligned}
$$

- Non-Gaussian model
» In the presence of non-Gaussian tail how would it be possible to substitute nonGaussian to Gaussian distributions into the "classical" Gaussian model? (e.g. Lstable distributions, quasi-polynomials distributions ...)

Appendix: workable non-Gaussian distributions for IBS ?

> L-stable distributions

- Characteristic function $\Pi(\mathrm{t})$ (no analytical $\mathrm{p}(\mathrm{x})$ in general)
» L-stable laws $S(\alpha, \beta, \gamma, \mu)$ have parameters:
- index tail $0<\alpha \leq 2$,
- skewness $-1 \leq \beta \leq 1$,
- scale $\gamma>0$ (determines the width)
- location μ (determines the peak)
» $\mathrm{S}(2,0, \gamma, \mu)$ is a Gaussian law (with $\gamma=\sigma^{2} / 2, \sigma^{2}$ is the variance)
» $\mathrm{S}(1,0, \gamma, \mu)$ is a Cauchy law
» For $\alpha<2$ the variance is infinite; for $\alpha>1$ the mean exists and is equal to μ

$$
\log \Pi(t)=\left\{\begin{array}{ll}
i \mu t-\gamma|t|^{\alpha}(1+i \beta(t / t) \tan (\pi \alpha / 2)) & \alpha \neq 1 \\
i \mu t-\gamma|t|^{\alpha}(1+2 i \beta(t / t) \log (t) / \pi) & \alpha=1
\end{array} \quad \mathrm{p}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \Pi(t) d t\right.
$$

- Tail behavior
» For $\alpha<2$ the tails converge toward a Pareto law, i.e.
» $\mathrm{p}(\mathrm{x}) \sim \mathrm{x}^{-1-\alpha}$ as $\mathrm{x} \rightarrow \infty$, where $\mathrm{p}(\mathrm{x})$ is the probability density function
» $\operatorname{Prob}(\mathrm{X}>\mathrm{x})=1-\mathrm{F}(\mathrm{x}) \sim \mathrm{x}^{-\alpha}$ as $\mathrm{x} \rightarrow \infty, \mathrm{F}(\mathrm{x})$ being cumulative probability function of $\mathrm{p}(\mathrm{x})$

Appendix: workable non-Gaussian distributions for IBS ?

- Plots
» Log-log plot of symmetric ($\beta=0, \mu=0$) L-stable distribution functions $p(x)$ for $\alpha=0.75,1,1.5,1.8,1.9,1.95,1.99,1.999,1.9999,1.99999$ and 2, with $\gamma=1 / 2$
» Pareto power tails are clearly visible for $\alpha<2$. The Gaussian $(\alpha=2)$ tail decays as a parabola in the log-log plot
» Laws converging asymptotically toward Pareto laws with $\alpha>2$ have fat tailed character but are not L-stable, e.g. $\mathrm{p}_{\sigma}(\mathrm{x})$ with variance σ^{2}

$$
\mathrm{p}_{\sigma}(x)=\frac{2 \sigma^{3}}{\pi\left(x^{2}+\sigma^{2}\right)^{2}}
$$

» $\mathrm{p}_{\sigma}(\mathrm{x})$ falls off as $\mathrm{p}_{\sigma}(\mathrm{x}) \sim \mathrm{x}^{-4}$ as $\mathrm{x} \rightarrow \infty$ yielding a tail index $\alpha=3$ (red dotted line).

Appendix: workable non-Gaussian distributions for IBS ?

$>$ Quasi-polynomials distributions (E. Métral, A. Verdier)

- Distribution with heavier tail than the Gaussian
» Let $\mathrm{p}\left(J_{x}, J_{y}\right)$ a bivariate distribution of "invariant-space" variables J_{x}, J_{y} extending up to 6σ (e.g. for truncated beam distributions due to collimation)
» Suitably choosing the parameters $\mathrm{a}, \mathrm{b}, \mathrm{n}, \mathrm{p}$ (with $\mathrm{n}>15, \mathrm{p}<15$, and $\mathrm{b}=18 \sigma^{2}$) of $\mathrm{p}\left(J_{x}, J_{y}\right)$ yields projected distributions $\mathrm{p}_{\mathrm{x}}(\mathrm{x})$ with fatter tails than a Gaussian (when approaching the cutoff point 6σ)
» Tails of quasi-polynomials laws do not converge toward a Pareto law due to the truncated nature of the distributions

$$
\begin{gathered}
\mathrm{p}\left(J_{x}, J_{y}\right)=a\left(1-\frac{J_{x}+J_{y}}{b}\right)^{n}+d\left(1-\frac{J_{x}+J_{y}}{b}\right)^{p} \\
\mathrm{p}_{\mathrm{x}}(x)=\frac{1}{9 \pi(n-p) \sqrt{2 b}}\left\{\begin{array}{l}
\frac{(n+2)(n+3)(15-p)\left(2^{n+1}(n+1)!\right)^{2}}{(2 n+3)!}\left(1-\frac{x^{2}}{2 b}\right)^{n+\frac{3}{2}} \\
+\frac{(p+2)(p+3)(n-15)\left(2^{p+1}(p+1)!\right)^{2}}{(2 p+3)!}\left(1-\frac{x^{2}}{2 b}\right)^{p+\frac{3}{2}}
\end{array}\right.
\end{gathered}
$$

Appendix: workable non-Gaussian distributions for IBS ?

- Plots
» Left: Quasi-polynomials law tails $\mathrm{p}(\mathrm{x})$ near 6σ for $\mathrm{n}=16$ and $\mathrm{p}=1,2,3,4,5,6$, with $\sigma=1$. Close to the cutoff point 6σ the tails become slimmer than the Gaussian tail
» Right: Semi-logarithm plot of the above distribution functions $\mathrm{p}(\mathrm{x})$

