Computation of Resistive Wakefields

Roger Barlow and Adina Toader

CLIC08

CERN, October 162008

Resistive Wakefields

Longitudinal $m=0$ wakefield

- Long Range approximation (Chao)
- Short Range approximation (Bane and Sands)
- Full treatment

Longitudinal $m>0$ wakefields
Transverse wakefields
AC conductivity
Implementation

Scenario

Uniform circular pipe of radius b, conductivity σ
Interested in short range intrabunch fields

Assume thick pipe
Solve Maxwell's equations in vacuum and in metal pipe.

Decompose into angular modes $(\cos (m \theta), m=0,1,2 \ldots)$

Match boundary conditions.
Work in frequency space as differentiation \rightarrow multiplication

The longitudinal wake for $\mathrm{m}=0$

$$
\tilde{E}_{z}(k)=\frac{2 q}{b} \frac{1}{\frac{i k b}{2}-\left(\frac{\lambda}{k}+\frac{k}{\lambda}\right)\left(1+\frac{i}{2 \lambda b}\right)}
$$

where

$$
\lambda(k)=\sqrt{\frac{2 \pi \sigma|k|}{c}}(i+\operatorname{sgn}(k))
$$

Introduce s_{0}, the scaling length (20μ for 1 cm Copper)

$$
s_{0}=\sqrt[3]{\frac{c b^{2}}{2 \pi \sigma}} \quad K=s_{0} k \quad s^{\prime}=\frac{s}{s_{0}}
$$

The simplest case: Chao's formula

In the long range (etc) limit $\tilde{E}_{z}=-\frac{2 q k}{\lambda b}$
The Fourier Transform is well known to be $E_{z}(s)=\frac{q}{2 \pi b} \sqrt{\frac{c}{\sigma}} s^{-\frac{3}{2}}$
We do it the hard way by numerical integration of:
$E_{z}(s)=\frac{1}{s_{0} \pi} \int_{0}^{\infty}\left(\operatorname{Re}\left[f_{\text {even }}(K)\right] \cos \left(K s^{\prime}\right)+\operatorname{Im}\left[f_{\text {odd }}(K)\right] \sin \left(K s^{\prime}\right)\right) d K$
$f_{\text {even }}(K)=\frac{1}{2}[f(K)+f(-K)]=-\frac{q}{b^{2}} \sqrt{K}$
$f_{\text {odd }}(K)=\frac{1}{2}[f(K)-f(-K)]=\imath \frac{q}{b^{2}} \sqrt{K}$

A problem and its solution

$\sqrt{K} \sin K x$ oscillations increase. Numerical integration $\int_{0}^{\infty} d K$ hopeless
Solution:
First integrate analytically wrt x. Function becomes $-\cos (K x) \sqrt{K} / K$ Integrate numerically wrt K
Differentiate numerically wrt x

Long range wake

Actually has our results and the Chao formula superimposed.

A more accurate formula: Bane and Sands

$\tilde{E}_{z}=\frac{2 q}{b} \frac{1}{\frac{i k b}{2}-\frac{\lambda}{k}}$
Solution well known to be
$E_{z}(s)=\frac{4 q c}{\pi b^{2}}\left(\frac{e^{-s^{\prime}}}{3} \cos \left(\sqrt{3} s^{\prime}\right)-\frac{\sqrt{2}}{\pi} \int_{0}^{\infty} \frac{x^{2} e^{-x^{2} s^{\prime}}}{x^{6}+8} d x\right)$
We have
$f_{\text {even }}(K)=-\frac{q}{b^{2}} \frac{\frac{2}{\sqrt{K}}}{\left(\frac{K}{2}-\frac{1}{\sqrt{K}}\right)^{2}+\frac{1}{K}}, f_{\text {odd }}(K)=-\frac{q}{b^{2}} \frac{2 \imath\left(\frac{K}{2}-\frac{1}{\sqrt{K}}\right)}{\left(\frac{K}{2}-\frac{1}{\sqrt{K}}\right)^{2}+\frac{1}{K}}$

Shows our results and Chao formula. Reproduces B\&S

Wake is a function of three parameters $(s, b$ and $\sigma)$, but use of s_{0} enables it to be written as a universal function $f\left(s^{\prime}\right)$, where $E_{z}(s, b)=\frac{q}{b^{2}} f\left(s / s_{0}\right)$.

The full formula

Full version, with $\xi=s_{0}^{2} / b^{2}$
$f_{\text {even }}(K)=-\frac{8 q}{b^{2}} \frac{\xi^{2}+\xi 2 \sqrt{K}+4 \frac{\sqrt{K}}{K}}{4\left[\xi \sqrt{K}-\frac{1}{K}(\xi+2 \sqrt{K})+K\right]^{2}+\left(\xi^{2}+\xi 2 \sqrt{K}+4 \frac{\sqrt{K}}{K}\right)^{2}}$
$f_{o d d}(K)=-\frac{8 \imath q}{b^{2}} \frac{2\left[\xi \sqrt{K}-\frac{1}{K}(\xi+2 \sqrt{K})+K\right]}{4\left[\xi \sqrt{K}-\frac{1}{K}(\xi+2 \sqrt{K})+K\right]^{2}+\left(\xi^{2}+\xi 2 \sqrt{K}+4 \frac{\sqrt{K}}{K}\right)^{2}}$
Although this is no longer a universal curve, it can still be expressed as a function of two variables (s^{\prime} and ξ) rather than the full set of three. The $\mathrm{B} \& \mathrm{~S}$ approximation corresponds to the function at $\xi=0$.

Figure shows how the function changes for different values of ξ.
For ξ below about 0.1 the approximation is very good.
For ${ }_{\mathrm{Ez}}$ a copper beam pipe with araḑiuss of $1 \mathrm{~cm} \xi \approx 0.000004$

Page 12

Longitudinal: Higher order modes

For higher modes, using the same technique for $m>0$
$\tilde{E}_{z}^{m}=\frac{4}{b^{2 m+1}} \frac{1}{\frac{\imath k b}{m+1}-\left(\frac{2 k}{\lambda}+\frac{\lambda}{k}\right)\left(1+\frac{\imath}{2 \lambda b}\right)-\frac{\imath m}{k b}}$
The equivalent of $\mathrm{B} \& \mathrm{~S}$ is $\tilde{E}_{z}^{m}=\frac{4}{b^{2 m+1}} \frac{1}{\frac{\tau k b}{m+1}-\frac{\lambda}{k}}$
This can be separated into odd and even parts,
$f_{\text {even }}=-\frac{2}{b^{2} m+1} \frac{\frac{1}{\sqrt{K}}}{\left(\frac{K}{m+1}-\frac{1}{\sqrt{K}}\right)^{2}+\frac{1}{K}} \quad f_{\text {odd }}=-\frac{2 n}{b^{2} m+1} \frac{\left(\frac{K}{m+1}-\frac{1}{\sqrt{K}}\right)}{\left(\frac{K}{m+1}-\frac{1}{\sqrt{K}}\right)^{2}+\frac{1}{K}}$

Page 14

The full formula can be separated

$$
\begin{aligned}
& f_{\text {even }}(K)=-\frac{8}{b^{2 m+2}} \frac{\xi^{2}+\xi 2 \sqrt{K}+2 \frac{\sqrt{K}}{K}}{\left[\xi 2 \sqrt{K}-\frac{1}{K}(\xi+2 \sqrt{K})+2\left(\frac{K}{m+1}-\xi \frac{m}{K}\right)\right]^{2}+\left(\xi^{2}+\xi 2 \sqrt{K}+2 \frac{\sqrt{K}}{K}\right)^{2}} \\
& f_{\text {odd }}(K)=-\frac{8 \imath}{b^{2 m+2}} \frac{\left[\xi 2 \sqrt{K}-\frac{1}{K}(\xi+2 \sqrt{K})+2\left(\frac{K}{m+1}-\xi \frac{m}{K}\right)\right]}{\left[\xi 2 \sqrt{K}-\frac{1}{K}(\xi+2 \sqrt{K})+2\left(\frac{K}{m+1}-\xi \frac{m}{K}\right)\right]^{2}+\left(\xi^{2}+\xi 2 \sqrt{K}+2 \frac{\sqrt{K}}{K}\right)^{2}}
\end{aligned}
$$

Dependence on ξ for $m=1$ and $m=5$.

Dependence on ξ increases for higher modes but still looks ignorable for any sensible collimator.

Is $\mathrm{m}=1$ proportional to $\mathrm{m}=0$?

This is true for $\xi=0$ but not in general.
And not for other m. Shapes different (See slide 13)

Transverse wakes

Transverse wake also a sum over angular modes

$$
\vec{E}_{T}(r, \theta, s)=\sum_{m} r^{m-1}(\hat{r} \cos (m \theta)-\hat{\theta} \sin (m \theta)) W_{T}^{m}(s)
$$

The Panofsky-Wenzel theorem $\nabla E_{z}=\frac{\partial \vec{E}_{T}}{\partial z}$
applies term by term giving $W_{T}^{m}(s)=\int_{0}^{s} E_{z}(x) d x$
Lucky we have that integral already evaluated!

Evaluate transverse wake

Using $\frac{2}{b^{2}}$ factor. Chao's formula also shown

Transverse wakes - various modes with $\xi=0$

AC conductivity

$\tilde{\sigma}=\frac{\sigma}{1-i k c \tau}=\frac{\sigma}{1-i K \Gamma}$
Γ typically 1 at most. Usually much smaller.
Introduce into previous formulae - proceed as before

The $m=0$ wake for various Γ

Implementation

Use Mathematica to integrate even and odd functions and generate table of values as function of s^{\prime}, ξ, Γ

Only 3 variables - and 2 of them don't vary (for a given collimator).
Write to file
C++ object collimatortable(file, Gamma, xi) - portable
reads complete table and interpolates to get single table for s^{\prime}
double collimatortable::interpolate(double x) returns the value

Implementation in MERLIN

Easy. Fits into existing structure introduced (see previous work) for geometric wakes.

Class ResistivePotentials inherits from SpoilerWakePotentialsi
Reads a set of tables from files when created and contains functions Wtrans (z, m) and Wlong (z, m) which each return a value from the tables (using parabolic interpolation), scaled by appropriate factors.

Only handles circular apertures

PLACET

Current version includes $m=1$ transverse mode
Does include Anzsatz for rectangular collimators
$y_{\text {trailing }} \rightarrow 0.822 \times y_{\text {trailing }}+0.411 \times y_{\text {leading }}$
Implemented using C++

Examples

MERLIN used to evaluate resistive contributions to kick factors for ESA test collimators

Shown to be (much) less than geometric wakes (and \leq measurement errors)

PLACET:

Future Work

Generate examples - CLIC and LHC
Make table (applies to ANY collimator) and program and documentation available

Extend to rectangular apertures

