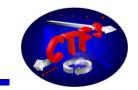
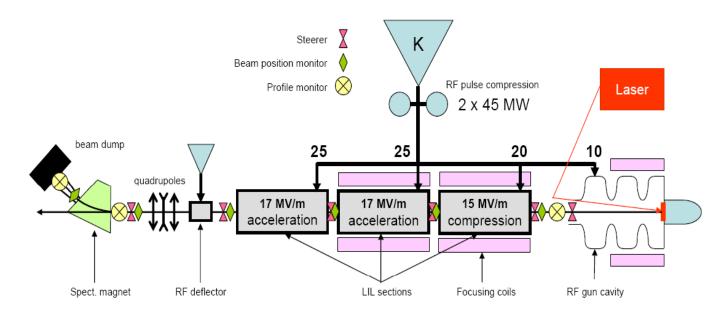

Status and Commissioning Plans for

What is CALIFES ?


Probe beam LINAC for the TBTS


The CTF3 Facility

Inside the CLEX building

CALIFES specifications:	
Energy :	~ 177 MeV
• Energy dispersion :	± 2%
Emitance :	<20 πmm.mrad
Bunch charge :	0.6 nC
Bunch train :	1 – 32 – 226
 Bunch spacing : 	0.667 ns
Bunch length :	0.75 ps
 repetition rate : 	5 Hz

CALIFES break down

Based on:

- Photo-injector (LAL Orsay)
- Laser line (using the same laser than for Drive Beam)
- 3 former LIL accelerating structures
- A single klystron 43 MW, RF distributed to the structures and the gun
- A complete set of diagnostics

The Photo-Injector

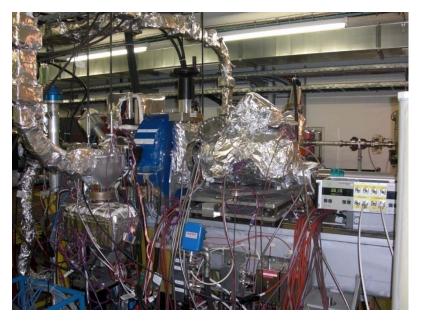


Photo-injector and preparation chamber

Presently in baking

Constructed by LAL Orsay Bunch : 6 ps Energy : 5 MeV RF power : 7 MW 2 ¹/₂ cells – standing wave

Cs₂Te photo-cathode produced in CERN preparation chamber

The LIL Accelerating Structures

Downstream view

Upstream view

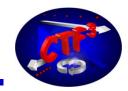
Installation completed (alignments proven to be a difficult task) RF conditioning started week 38 up to 43 MW -1μ s Will be resumed after baking and EMC problems solved

The Beam Diagnostics

1 Impulse Courant Transformer (Bergoz)

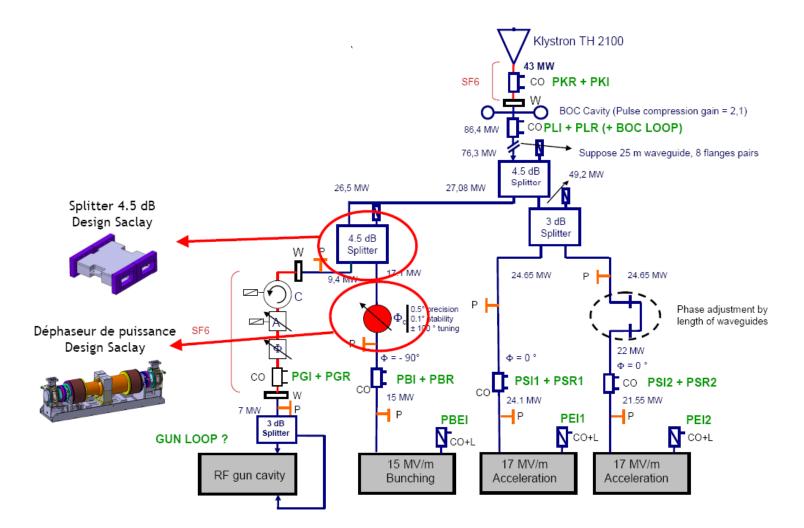
- 6 Re-entrant cavity BPM
- 3 Optical Profile Monitors (YAG and OTR screens)
- 1 Deflecting Cavity
- 1 quadrupole triplet
- 1 analysis dipole
- 1 Faraday Cup

1 RF Pick-up



See Claire Simon's Talk: Wed. 15/10 16.30 Instrumentation: BPM using a Re-entrant Cavity

Interfacing with CERN Control/Command under progress



See Anne Dabrowski's Talk: Wed. 15/10Still to be developedStill to be developedDiagnostics at CTF3

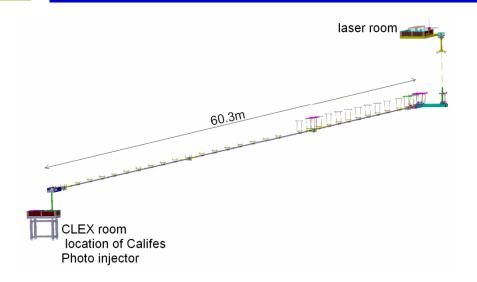
The RF network 1/2

CALIFES RF network break down

The RF network 2/2

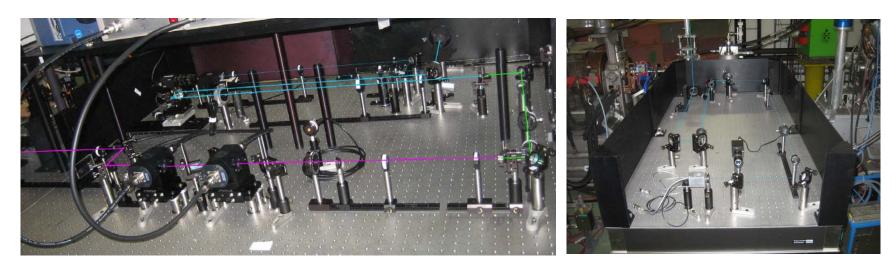
In CLEX Gallery

In CLEX tunnel



Power shifter brazing and fine machining still to be achieved

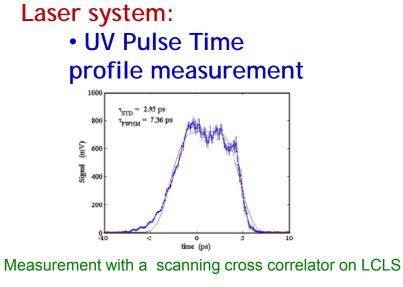
Power Phase Shifter elements


The Laser Line

UV Laser transport under vacuum

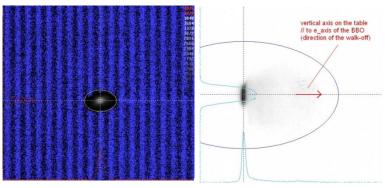
Laser-room table with pulse picker and conversion crystals

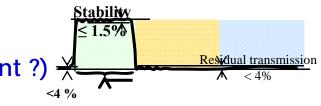
CLEX-room table



- RF conditioning to be achieved by end of October
- Control/Command to be fully operational soon
- Can start without power phase shifter (installed during winter shutdown)
- Laser energy per pulse has now been greatly improved
- Photo-cathode prepared from the 3rd of November
 - \Rightarrow Commissioning from the 10/11/08 up to 15/12/08

œ


Commissioning 1/3


 \rightarrow Not yet foreseen , usefull ?

Measurement with a camera on virtual cathode

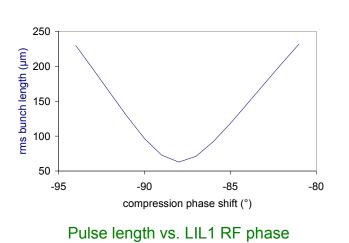
- Number of pulses selection: 1, 32, 226 (control of pulse picker)
- Pulse energy tuning
- Repetition rate selection (5 Hz)
- Laser stability (measurement of beam current ?)

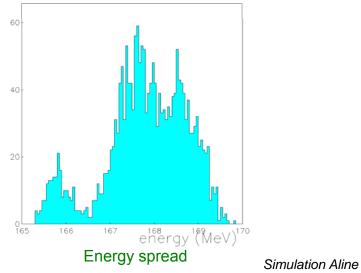
ON time : $200 \text{ps} < \delta t_{on} < 150 \text{ns}$

RF gun

- Monitoring of vacuum level, water temperature, frequency tuning
- Beam current measurement
- Beam transverse profile
- Beam position
 - > no energy measurement, nor emittance at the gun output
 - 1. Scan the RF phase vs. bunch charge
 - 2. Scan the RF phase vs. beam position/profile
 - 3. Scan the coils current vs. beam emittance
 - 4. Scan the laser position on photocathode vs. QE
 - 5. Monitor the QE vs time

RF system


- RF amplitude and phase stability vs. time for each signal coming from: modulator, klystron, BOC, RF gun, LIL1, LIL2, LIL3
- Scan RF phase vs. energy and energy spread
- Scan RF phase vs. bunch length



Beam dynamics

- Scan RF phase vs. energy and energy spread
- Scan RF phase vs. bunch length
- Quad scan for emittance measurement
- Beam losses from gun to end of line
- Beam loading effects : pulse charge vs. energy spread
- Time resolved energy using deflecting cavity and spectrum magnet

And after CALIFES achievement ?

CEA involvement in CLIC/CTF3 will of course continue

CEC CEA contribution to the White Paper for CTF3

- Long term mission (2 years)
 - at CERN for CALIFES commissioning and further CTF3 activities.
- 12 GHz test stand: (604 k€ 25 FTE months) See Franck Peauger's Talk: Th. 16/10 10.30 High-Power RF Test Areas : Design & Planning Progress of the CERN Klystron Test Area
 - Modulator: purchase with CERN specifications (3 industrials already short listed), manufacturing management, factory tests, installation at CERN
 - pulse compressor: design study and specification (3 possible solutions under study : SLED2, BOC or innovative SLED), manufacturing drawings and management, installation at CERN,
 - purchase of RF components
- CLIC Module (249 k€ 6 FTE months)

See Franck Peauger's Talk: Th. 16/10 14.00 Wakefield Monitor Development & Test in the TBTS

- Design and fabrication of damped structures equipped with Wakefield Monitors and the associated electronics to be tested on TBTS in 2010.
- Test Beam Line (218 k€ 5 FTE months)
 - 12 GHz RF network components for 8 PETS