

CesrTA Status and Plans

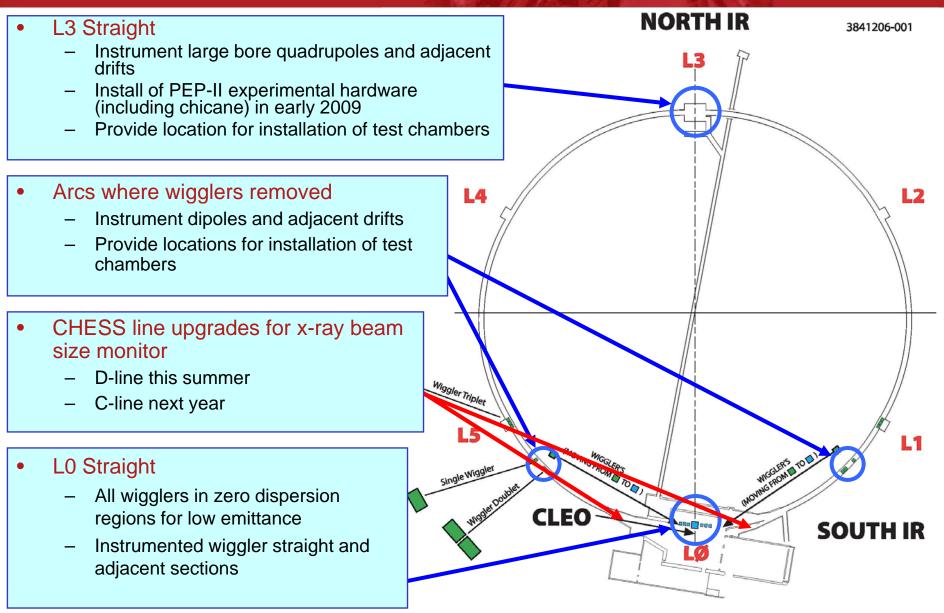
Joe Calvey 10/15/08

- CesrTA is a program to reconfigure the CESR storage ring at Cornell to perform experiments related to the ILC damping ring
- Two main areas of investigation:
 - Low emittance tuning
 - Perform detailed survey and re-alignment of magnets
 - Develop new analysis software
 - Develop instrumentation to characterize ultra low emittance beams
 - X-ray beam size monitor
 - Upgraded BPM system
 - Perform beam dynamics studies with electron and positron beams
 - Electron cloud studies
 - Characterize cloud using simulation programs
 - Code benchmarking
 - Tune shift measurements
 - RFA comparisons
 - Investigate different suppression techniques
 - Develop tools to understand instabilities

Schedule Overview

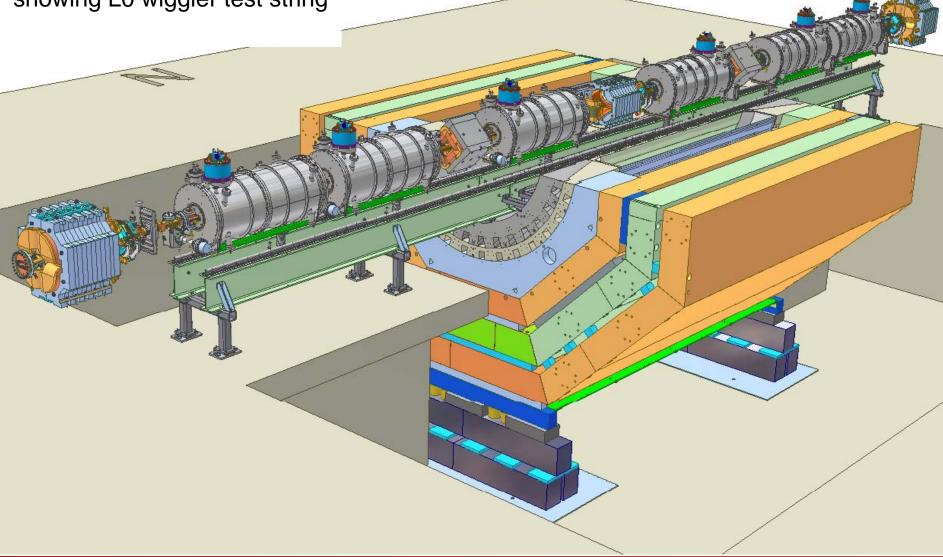
COLDA BA			1			
	2008		2009			2010
	Apr May Jun Jul Aug Sep	Oct Nov Der Ja	n Feb Mar Apr May	Jun Jul Aug Sep	Oct Nov Dec Jan	Feb Ma
Preparation for Ring Reconfiguration						
Downs with Upgrades/Modifications						
CesrTA Runs						
CHESS Runs						
Low Emittance Program						
BPM System Upgrade						
Positron Beam Size Monitor						
Electron Beam Size Monitor						
Survey and Alignment Upgrade						
Beam Studies						
Electron Cloud Studies						
Instrumented Vacuum Chambers w/EC Mitigation						
Feedback System Upgrade						
Photon Stop for 5 GeV Wiggler Operation						
EC Growth Studies						
Beam Dynamics Studies at Low Emittance						
Legend:	Design/Fabrication Down Period Installation Commissioning Operations and Ex		Exact run	ning sched	lule TBD	
• Planned schedule a	s of early th	nis year	. /			

- Phased implementation of instrumentation
- Phased installation of electron cloud diagnostics and support hardware
- Some adjustments are being made
 - Avoid holiday running
 - Maximize efficient use of limited resources


"Run 2"

	2008		2009			2010	
	Apr May Ju	n Jul Aug Sep	Oct Nov Dec	Jan Feb Mar	r Apr May Jun Ju	I Aug Sep Oct Nov De	c Jan Feb Mar
Preparation for Ring Reconfiguration							
Downs with Upgrades/Modifications							
CesrTA Runs				×			
CHESS Runs							

- "Run 2" was recently split into 2 pieces, 2a and 2b
 - Accommodates CHESS request
 - Removes stress of a single long dedicated CesrTA run
 - Adds time to think between CesrTA periods
 - Exact dates in 2009 still undergoing discussion (eg, how long do we want the January '09 down to be? May want to add a short spring '09 down for some hardware installation)
- xBSM optics commissioning
- BPM system commissioning
- Beam-based alignment effort
- Test ultra low emittance lattice for first time
- Characterize electron cloud growth in chambers around the CESR ring (wigglers, dipoles and drifts)
- CESR down through the holidays to minimize power use and manpower limitations



CESR Reconfiguration

- Cutaway through CLEO iron showing L0 wiggler test string

L0

L0 Program Overview

October 2008

- Reconfiguration complete
- First two instrumented wiggler chambers installed
 - One control chamber (uncoated Cu surface)
 - One chamber with TiN coating
- Instrumentation support for a variety of EC experiments
- 2009
 - Further development based on results of initial tests
 - Follow-on wiggler chambers for additional mitigation tests (targeting chamber #3 to be constructed with a clearing electrode)
 - 5 GeV performance tests (requires addition of photon stop at end of L0 straight)

> EC test chambers – Low photon flux region Available in early '09 Spool-piece shown presently

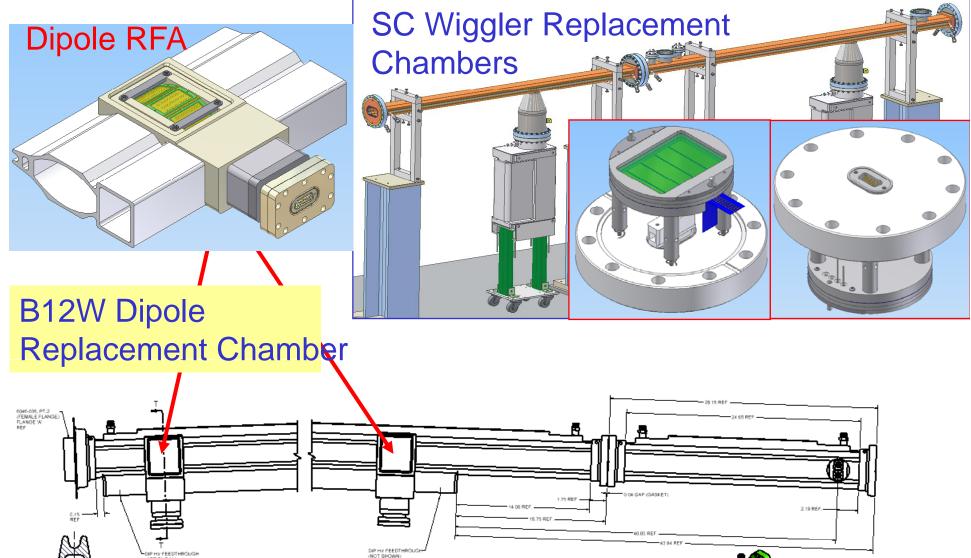
PEP-II chicane – Installation Jan. '09 ~

e⁺

EC test chambers planned for '09

L3

e'


CesrTA Status and Plans- CLIC08

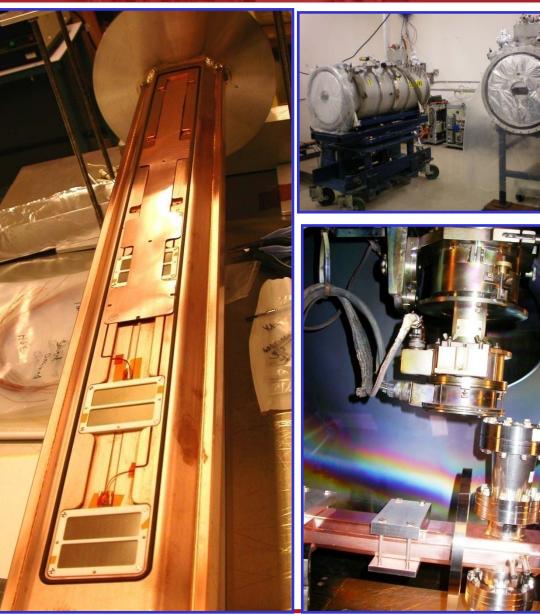
RFAs

- Several different types of Retarding Field Analyzers are employed at CesrTA
 - "APS Style"
 - Well understood- use as a baseline to compare with more novel designs
 - 1 collector
 - Deployed in L1 and L5
 - Cornell "Insertable Segmented" RFAs
 - 5 collectors- probe azimuthal distribution of cloud
 - Deployed in L1 and L5
 - Dipole RFAs
 - Inserted in dipole chambers
 - 9 collectors
 - Wiggler RFAs
 - Deployed in L0 wigglers
 - 3 collectors at different field strengths along wiggler

Instrumented Chambers Installed

- 6

P HV FEEDTHROUGH


DIP HV FEEDTHROU (NOT SHOWN)

Wiggler EC Diagnostics

- RFAs assembled and checked for both VCs
- E-beam welding
 - 1st VC standard
 - 2nd VC TiN coated
- Installation into cryostats underway
- Installation into CESR ~Oct 23

October 8, 2008

CesrTA Status Report

Low Emittance Tuning

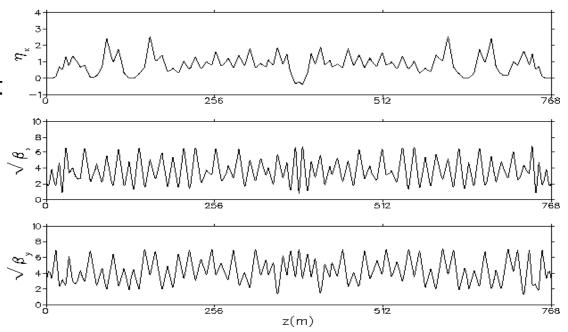
Survey & Alignment

- Complete network of survey monuments have been installed around the CESR tunnel
- All CESR magnets have been measured with respect to network using laser tracker and digital level
- Magnet mounting fixtures that permit precision adjustment are installed on all quadrupoles
- Demonstrated during June run that we could reliably predict the effect on closed orbit and dispersion of ~100 μ m change in quadrupole offset
- Survey network, digital level, and mounting fixtures provide for rapid correction of alignment errors

Low Emittance Parameters

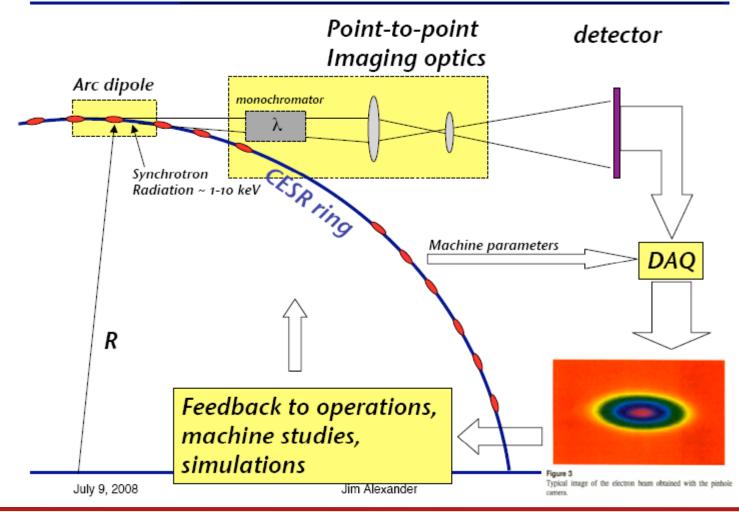
Parameter	Value
E†	2.0 GeV
N _{wiggler}	12
B _{max}	1.9 T
ε_x (geometric)	2.3 nm
ε_{y} (geometric) Target	-5-10 pm 20pm
τ _{x,y}	56 ms
σ _E /E	8.1 x 10 ⁻⁴
Q _z	0.070
Total RF Voltage	7.6 MV
σ _z	8.9 mm
α _p	6.2 x 10 ⁻³
N _{particles} /bunch	2 x 10 ¹⁰
τ _{Touschek}	10s of minutes
Bunch Spacing	Multiples of 4ns and 14ns

Low Emittance Tuning


- BPM upgrade
 - Digital bunch by bunch/ turn by turn BPM electronics and infrastructure is ready for installation
 - That installation will proceed in steps beginning after commissioning CesrTA optics
- Analysis software
 - Orbit response matrix
 - Control system software for collecting differential orbit data has been tested
 - Analysis of orbit differences (response) yields BPM tilts and shears
 - Effectiveness of ORM has been limited by BPM resolution and irreproducibility and it will significantly improve with installation of new BPM electronics
 - AC dispersion
 - Develop technique for measuring dispersion by exciting an energy oscillation and measuring amplitude and phase
 - Software to automate AC measurement is ready for testing
 - Phase/coupling measurement and correction
 - Gain mapping

Low Emittance Tuning

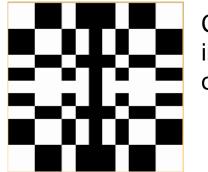
- CesrTA low emittance optics
 We have low emittance optics designed for measurements at
 2.0.2.5 and 5.0CoV
 - 2.0, 2.5, and 5.0GeV
- Accessible by collaborators in BMAD, MAD, or XSIF
- Optics will be commissioned during the October/November CesrTA run


Lattice	Energy[GeV]	Wigglers	B _{max} [T]	$\epsilon_x[nm]$
cta_2000_v8_080403	2.0	12	1.9	2.5
cta_2500_20080521	2.5	12	1.9	3.6
cta_5000_v8_6wig_080506	5.0	6	1.9	31

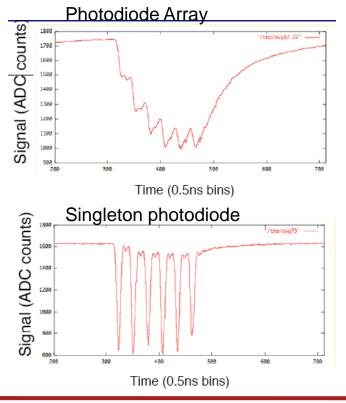
X-Ray Beam Size Monitor

•Bunch-by-bunch measurements of beam profile for fast emittance determination

- •Uses synchrotron radiation (installed at CHESS)
- •Image bunches spaced by 4ns
- •Transverse resolution < 10-15 μ m

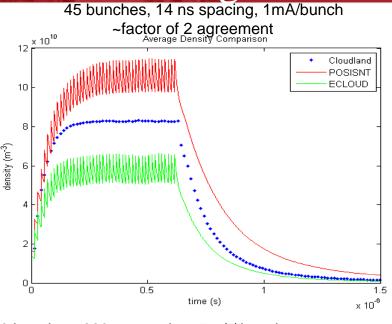


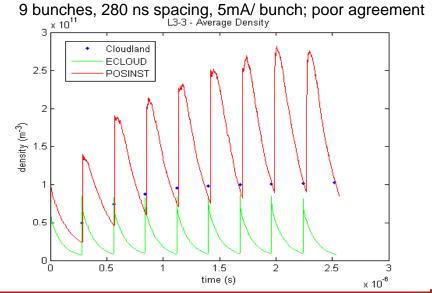
CesrTA Status and Plans- CLIC08



X-Ray Beam Size Monitor

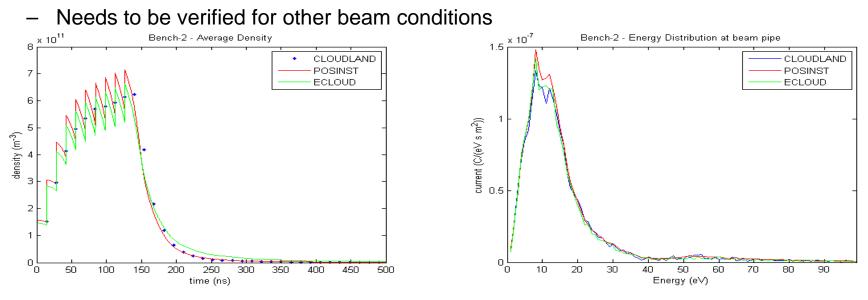
- Different options for optics:
 - Traditional Fresnel zone plate
 - "Coded aperture"
 - Mask used to modulate incoming light
 - Resulting image must be deconvolved
 - Can achieve up to 50% open aperture area
- Recent Progress
 - Upgrade of the positron x-ray beam line is complete (windowless line)
 - X-ray optics
 - "Simple" optics (adjustable slit and 3 slit coded aperture) scheduled for installation 10/22-23
 - X-ray detectors
 - Detectors (from 3 different vendors) will be tested
 - in October/November
 - Readout software under development
- X-ray beam size measurement
 - Measurement of the size of the positron beam with few micron resolution beginning in January
 - Single bunch/single pass measurement May-June


Coded aperture image courtesy of J. Flanagan



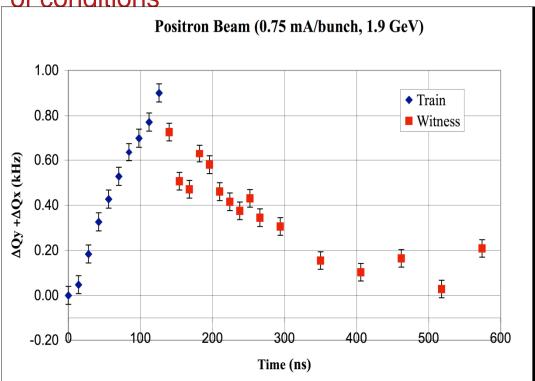
Electron Cloud Code Benchmarking

- "Benchmarking": comparison of different simulations with canonical parameter sets
- Three codes:
 - POSINST (M. Furman, M. Pivi)
 - ECLOUD (G. Rumolo, F. Zimmermann)
 - CLOUDLAND (L. Wang)
- Programs can disagree significantly
- Possible sources of discrepancies:
 - Different SEY models
 - Different primary models
- Example: average density plots on right



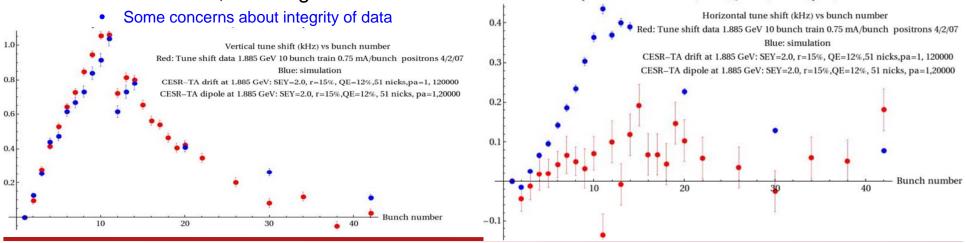
Code Benchmarking

- With no SEY and same primary angular distribution, match is essentially perfect
 - reduces worries about systematic or statistical errors


- Situation is more complicated for SEY models
- POSINST has more detailed model than ECLOUD or CLOUDLAND
 - Includes "rediffused" component
- Different parameterizations can lead to divergent behaviour, even for "similar looking" SEY curves
 - Ex: cannot simply turn off rediffused in POSINST
 - Low energy behavior particularly important

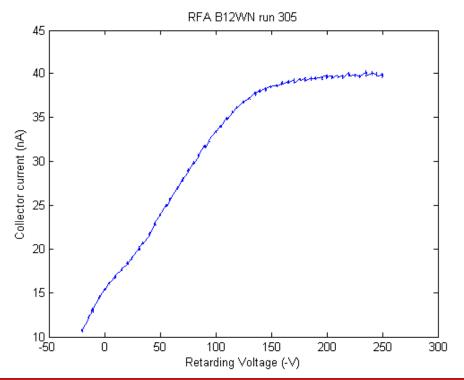
Tune Shift Measurements

Witness Bunch Method


- Electron cloud is generated with a train of "loading bunches"
- Cloud is probed at later times by measuring tune shift of "witness bunches"
- The tune shift is a measure of the beam-averaged field gradient due to the cloud charge density at the time of the witness bunch.
- Gives ring integrated field gradient due to cloud vs time
- Measurements taken in a variety of conditions
 - Electron & positron beams
 - 1.9 GeV and 5.3 GeV
 - Various loading trains
- Measurements are compared to predictions based on cloud simulations (POSINST)

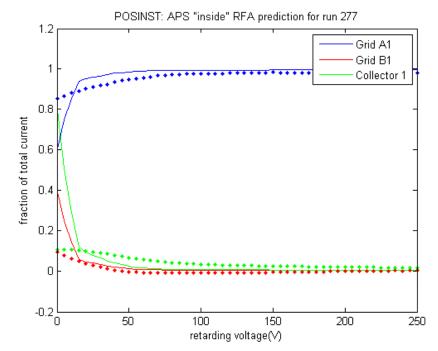
Tune Shift Simulations

- Sum of tune shifts roughly proportional to beam averaged density of cloud:
- We run simulation separately for drifts and dipoles, add tune shifts together with appropriate ring weights
- It is necessary to include a number of corrections
 - Image charges
 - "Pinch effect" during bunch passage
 - "Dynamic effect" due to oscillation of electrons around beam
- By adjusting simulation parameters, we can fit the vertical tune shift well
 - Qualitative features (e.g. dip after generating train) maintained
 - Note that the "plausible" parameter space is quite large
- However, we haven't been able to match the horizontal tune shift
 - Data are small, with large error bars



CesrTA Status and Plans- CLIC08

RFA Simulations


- We have lots of RFA data from June run
- RFAs provide direct measure of the cloud at a particular location
- RFAs themselves need to be simulated
 - Postprocessing output from cloud simulation codes
 - Data shows some idiosyncratic behavior
 - Negative grid currents
 - Collector currents that increase with retarding voltage! (see below)
- Three levels of detail
 - Rough analytic calculation
 - Can be off by an order of magnitude
 - Recursive semi-analytical "simulation"
 - Can include subtleties
 - SEY in the RFA
 - Electrons hitting inside of grids
 - Full particle tracking simulation
 - Includes focusing effects of fields
 - Cross check with semi-analytical model

RFA Simulations

- Simulations roughly match data
- But, a few discrepancies...
 - Simulations overestimate total current (by up to a factor of 2)
 - Predict current spike in collector for low retarding voltage, which is not seen in data
 - True in both semi-analytical and full particle tracking simulations
 - Could the cloud simulation programs be generating too many low energy electrons?
 - Perhaps this could shed some light on the question of low energy SEY
 - Can make fit better by fiddling with parameters
 - Grid efficiencies, SEY, etc.
- Preliminary example shown on right
 - APS RFA
 - Shows normalized current

- Complete the code comparison (benchmarking) and fully understand the differences between the SEY models in ECLOUD, CLOUDLAND and POSINST.
- Improved model of the RFA response
- Fully include dynamic effects in tune shift calculations (requires integration of beam motion into the simulation codes).
- RFA's to be installed in new wiggler chamber will allow measurement of cloudinduced current in a wiggler field. We need a 3D simulation code to analyze this. The present plan is to use WARP-POSINST, relying on our LBNL collaborators.
- Measurements of cloud-induced incoherent emittance growth can be made using XBSM. We need to estimate this in a simulation.
- Dependence of cloud effects on beam as a function of energy, species, bunch population, bunch spacing, and emittance, in alliance with the simulation program, can provide a comprehensive validation of the codes.

Contact Information

- General CesrTA or scheduling questions:
 - Mark Palmer: map36@cornell.edu
- Low Emittance Tuning:
 - Dave Rubin: dlr10@cornell.edu
- Electron Cloud Studies:
 - Mark Palmer: map36@cornell.edu
 - Gerry Dugan: gfd1@cornell.edu
 - Joe Calvey: jrc97@cornell.edu
- More information at the CesrTA Wiki:
 - Main CesrTA Wiki Page:

https://wiki.lepp.cornell.edu/ilc/bin/view/Public/CesrTA/

CesrTA Collaboration Meetings Page:

https://wiki.lepp.cornell.edu/ilc/bin/view/Public/CesrTA/CollabMeetings

- Can subscribe to the mailing list from the main CesrTA Wiki Page
- Potential overlap with CLIC