

Full Detector Simulation of  $e^+e^- \rightarrow v_e v_e H \rightarrow \mu^+\mu^-$  at CLIC

Marco Battaglia UC Berkeley, LBNL and IPN Lyon



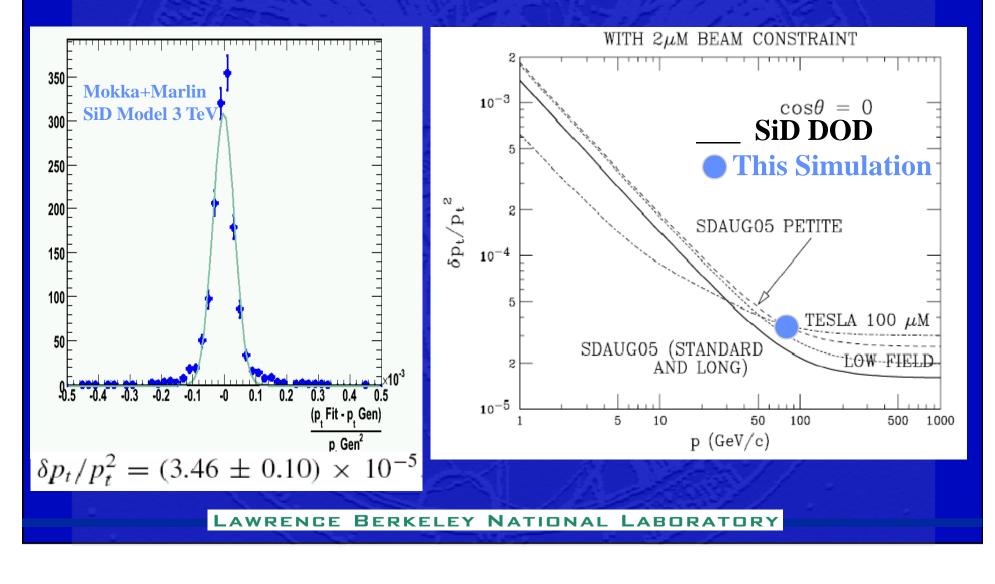
## **A Detector Concept for CLIC**



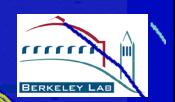
Several performances proposed for the CLIC detector obtained with an ILC-type detector optimised at lower energies;

SiD appears as useful concept to study details of experimentation at CLIC;

But best suited tracker technology for CLIC (continuous <u>3D TPC</u> vs <u>2D Si strips</u> vs <u>3D Si pixels</u>) needs to be assessed by current study;


| $\delta p/p^2 GeV^1$ | Tracker<br>Only             | All<br>Tracker              |
|----------------------|-----------------------------|-----------------------------|
| LEP                  | <b>1.2</b> 10 <sup>-3</sup> | 5 10 <sup>-4</sup>          |
| LHC                  | ~- <u>-</u> ///             | 2 10 <sup>-4</sup>          |
| ILC                  | <b>1.5 10</b> -4            | <b>3-6 10</b> <sup>-5</sup> |

Is the ILC momentum resolution sufficient at CLIC energies ?


# **SiD G4 Simulation with MOKKA**



Track reconstruction using 5-layered Si Main Tracker + Vertex Tracker; Full PatRec and KF in Marlin C++ framework;



## $e^+e^- \rightarrow v_e v_e H \rightarrow \mu^+\mu^-$ at CLIC



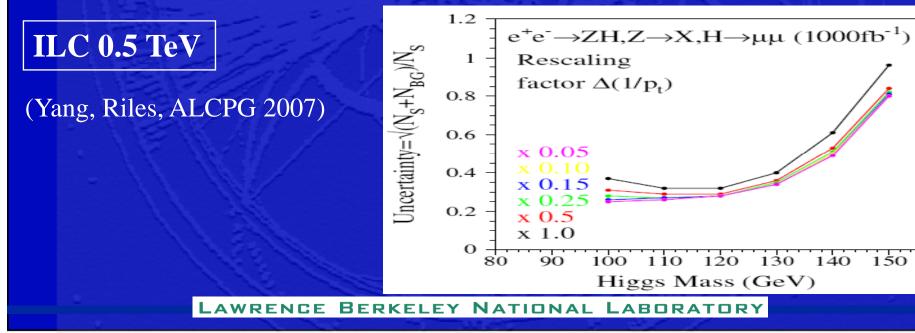
Determination of  $g_{H\mu\mu}$  coupling important to test Higgs mechanism in lepton sector when comparing with  $g_{H\tau\tau}$  measured at 0.25-0.5 TeV; high energy e<sup>+</sup>e<sup>-</sup> collisions offer a unique opportunity through use of WW fusion H production process;

 $σ(e^+e^-→Hνν) = 0.48-0.45 \text{ pb}$ for M<sub>H</sub>=120-150 GeV, E<sub>cm</sub> = 3 TeV

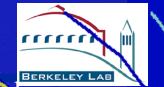
BR(H→µµ) = 2.6 x 10<sup>-4</sup> – 6.5 x 10<sup>-5</sup> for M<sub>H</sub>=120-150 GeV,  $E_{cm} = 3$  TeV

SM Background  $\sigma(e^+e^- \rightarrow \mu\mu\nu_I\nu_I) = 5.3 \text{ fb}$ 

# $e^+e^- \rightarrow v_e v_e H \rightarrow \mu^+\mu^-$ at LHC and ILC




## LHC


### (Han, McElrath, PLB528 (2002))

| $m \cdot (\Gamma \circ V)$ | Luminosity required for $3\sigma$ observation (fb <sup>-1</sup> ) |          |          | Significance for 300 $\rm fb^{-1}$ |          |          |
|----------------------------|-------------------------------------------------------------------|----------|----------|------------------------------------|----------|----------|
|                            | $W\!,g$ Combined                                                  | g fusion | W fusion | $W\!,g$ Combined                   | g fusion | W fusion |
| 115                        | 238                                                               | 464      | 489      | 3.37                               | 2.41     | 2.35     |
| 120                        | 227                                                               | 430      | 482      | 3.45                               | 2.51     | 2.37     |
| 130                        | 267                                                               | 535      | 532      | 3.18                               | 2.25     | 2.25     |
| 140                        | 531                                                               | 1047     | 1076     | 2.26                               | 1.61     | 1.58     |

TABLE II: The SM results for  $h \to \mu^+ \mu^-$  signal from gluon fusion and weak-boson fusion and the DY background, combining the ATLAS and CMS detectors. The cuts used are in Eqs. (4) and (5).



## **Benchmark Analysis:** $e^+e^- \rightarrow v_e v_e H \rightarrow \mu^+\mu^-$



Process already studied in CLIC Physics Study with SIMDET and results presented at LCWS02;

Tests momentum resolution requirement, get realistic estimate of CLIC potential on a crucial part of the Higgs profile program not easily accessible at lower energies and LHC;

Analysis performed using SiD02 model in MOKKA 06-01 and Marlin 00.09.06;

 $\mu\mu\nu_{e}\nu_{e}$  and  $\mu\mu\nu_{\mu}\nu_{\mu}$  SM backgrounds generated with CompHEP 4.4.1+PYTHIA 6.58; Higgs BRs computed with HDecay 2.0;

 $\gamma\gamma \rightarrow$  hadrons background from HADES files by D. Schulte

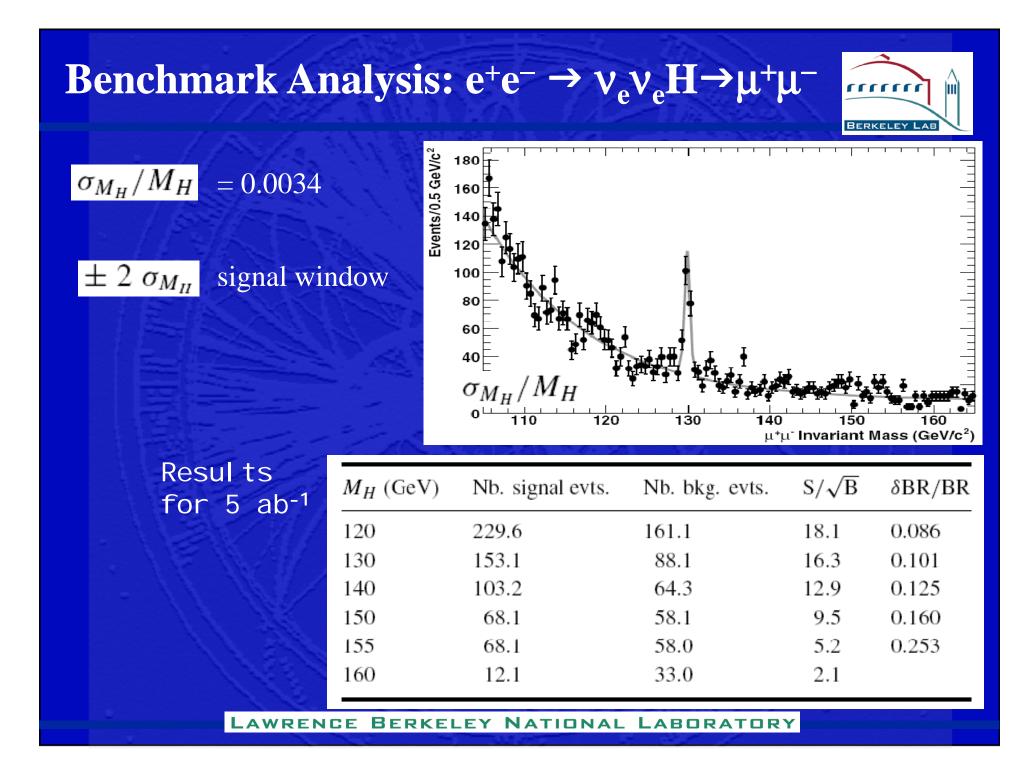


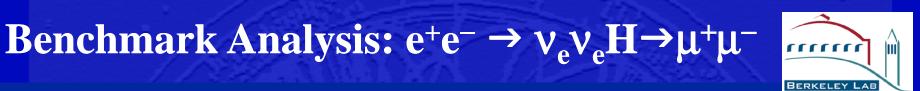
IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 35 (2008) 095005 (5pp)

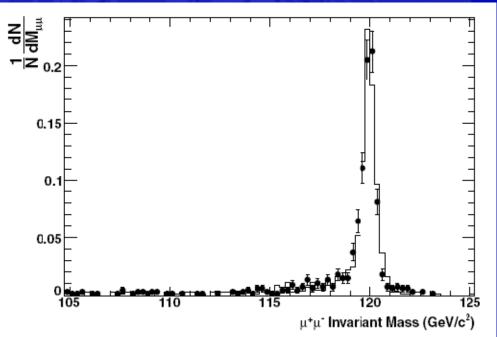
doi:10.1088/0954-3899/35/9/095005


# Testing the Higgs mechanism in the lepton sector with multi-TeV e<sup>+</sup>e<sup>-</sup> collisions


#### M Battaglia

Department of Physics, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: MBattaglia@lbl.gov


Received 4 May 2008 Published DD MMM 2008 Online at stacks.iop.org/JPhysG/35/095005





Test effect of overlaying  $\gamma\gamma \rightarrow$  hadron background (50 BX)

no degradation of reconstruction efficiency observed.



CLIC operating at 3 TeV and high luminosity can determine the muon Yukawa coupling  $g_{H\mu\mu}$  to a statistical accuracy of 0.04-0.08 with 5 ab<sup>-1</sup> of integrated luminosity and ILC-like momentum resolution.