

Software Tool Considerations for ILC Cost Management

John Carwardine, Peter Garbincius October 16, 2008

Three inter-related software tools

- Electronic Document Management System (EDMS)
 - Implemented by DESY using UBS Teamcenter

In place

- Repository for all source information
- Configuration management (release- and version control)
- Cost Management database (the focus of this talk)

Starting

- Roll-ups and analyses of cost estimate information
- Consolidate spreadsheet data provided by technical groups
- Project Management tracking
 - Primavera was selected at beginning of EDR phase for tracking costs and progress for the EDR 'project' and as a pre-cursor for implementing an ILC construction project

On hold

ILC RDR Accelerator Layout

RDR Organization

- Accelerator Area Leaders
- Technical System Groups
- Global System Groups

ILC Reference Design Report and cost estimate were released in August 2007

Cost Estimate Information Flow

Example: CFS Costing Matrix ... (CFS top level from RDR)

Conventional Facilities	Main	Damping	Rings	Positron	BDS &		Exp	Electron	
average over 3 regions	Linac	Rings	to ML	Source	Dumps	Common	Hall	Source	sum
Civil Engineering:					•				
Outsourced Engineering									
Underground Facilities:									
* Shafts									
* Tunnels									
* Caverns & Exp Hall									
* Crossovers & Penetrations									
Surface Structures									
Site Development									
Electrical									
RF power (MW)	75.7	14.0	7.1	4.1				1.1	102.0
Conventional power (MW)	13.5	1.7	3.8	7.3	4.9			1.2	32.5
Room Temperature Magnets	0.8	7.9	4.7	8.9	2.6			0.7	25.6
Water Systems power (MW)	9.9	0.7	1.3	1.3	3.5			1.3	17.9
Cryogenics power (MW)	33.9	1.8	0.0	0.5	0.3			0.5	36.9
Emergency power (MW)	0.4	0.2	0.2	0.2	0.3			0.1	1.4
Total Power (MW)	134.2	26.3	17.2	22.3	11.7			4.8	216.3
Air Treatment									
Piped Utilities									
Process Cooling Water									
LCW load (MW)	56.0	17.7	9.3	17.5	46.3			2.9	149.6
Chilled Water (MW)	21.1	1.8	1.3	5.3	1.0			1.4	32.0
** Cryo Air Towers (MW)	33.9	1.8	0.0	0.5	0.3			0.5	36.9
Handling Equipment									
Safety Equipment									
Survey & Alignment									
sum									

Top-level RDR Costing Matrix

	Main Linac	DR	RTML	e+ source	BDS	common	EXP Hall	e- source	sum
Convent. Facil.									
Cavities & CM									
RF Power									
Cryogenics									
Magnets & PS									
Controls									
Vacuum									
Instrumentation									
Dumps & Collim									
Installation									
e+ specific									
e- specific									
DR specific									
total									

- Consolidation of the costing spreadsheets provided by each technical group
- Level of detail below the top level varies by group

RDR Cost Estimate information ...

- Cost Estimate data
 - Mainly in spreadsheets
 - Data was consolidated into a top-level spreadsheet
 - Individual WBS structures were retained
- Supporting documentation (Bases of Estimates)
 - Detailed work-sheets
 - Specific bases-of-estimate documents
 - Presentations
 - Email
 - ...other

TD Phase...

- RDR Now 18 months old
 - Legacy design effort
 - CRITICAL: maintain and document traceability of value estimate, bases of estimates, and RDR design
 - Every day more is 'forgotten'
- TD Phase extended to 2012, resources are much reduced from RDR
- CRITICAL: demonstrate clear effort to reduce the cost
 - Begin to identify possible cost reductions
 - 'Minimal Machine' value engineering studies
- Must plan for critical reviews: internally in 2010, publically in 2012

Cost Management for TDR

- Machine design value engineering
 - Eg underground volume, cooling water, ...
 - Advance the RDR technical design
 - Study alternative designs and configurations
 - Central injector complex
 - RF clustering proposal
 - Top-level parametric studies

TDR Value Engineering Studies

CLIC Workshop 2008

ILC Cost Management Tools Functional Model

Original information will be under configuration management in EDMS

Cost Management Database will be largely a reporting tool

Ttranslation of RDR Matrix into PBS (snippets)

1.2	Positron Source	where is the			
1.3	Damping Rings		note differe		
1.4	Rings to Main Linac				
1.5	Main Linac	(
1.6	Beam Delivery System				
1.7	Experimental Facilities (only Conventional Fa				
1.8	Common Infrastructure				
1.9	Conventional Facilities do we need				
1.10	Operations, Reliability, Commissioning - Lab				
1.11	Accelerator Physics/Simulations - Labor only				
1.12	Central Lab Team (based on SSC personnel n				

		7 11 Cus 5 y 5 CC	iii speeiiie i			
1.5	Main Lir	iac				
		Cryomodul	es (Cavities,	Couplers)		
		RF Power Systems				
		Cryogenics				
		Controls &	Computing	Infrastructur		
		Installation				
		Instrument	ation			
		Dumps & C	ollimators -	none in ML		
		Vacuum				
		Magnets &	Power Supp	olies		
		Areas System-specific items				
			Labor only			
1.6	Beam De	elivery Syste	m			
		Cryomodules (Cavities, Couplers)				
		RF Power Systems				
		Cryogenics				
		Controls &	Computing	Infrastructur		
		Installation				
		Instrument	ation			
		Dumps & C	ollimators			
		Vacuum				
		Magnets & Power Supplies				
		Areas System-specific items				
			Labor only			

Cost Estimate Templates

- Goal is to have technical groups provide TDR cost estimate information via a common template
- Simplify the process of rolling up an overall cost estimate
- Define a level of detail in the WBS/PBS to be included in the cost estimate roll-up
- Identify the specific required information
- Define top-level parameters provided to groups
- Establish consistent assumptions and bases of estimates across all the technical groups
- Provide framework for traceability of cost estimate information

ILC Template example

			I
Item name (short, but unique and complete)		CM 8C1Q	PS 200 A
EDMS unique item identifier number			
version number		1	1
		1.3 GHz Cryomodule with 8 cavities	
description		and 1 magnet package	magnet PS - 200 A, 5 KW
cost est in K of currency			
currency (dollars, euros, yen, yuan, pound, CHF, etc.)			
unit of estimate (each, lot, kg, meter, etc.)			
year and month, for which estimate is quoted (2006, 2007)		
confidentiality class 1-5 (see next sheet for description			
inflation category (construction or non-construction)			
region of estimate (for inflation calculations)			
estimate provided by: (Engineer in Charge)			
approx quantity assumed for cost estimate			
region or country where labor assumed			
Final Design - institutional labor summary - hours			
Sustaining Engineering - hours			
Install-Integrate-Test (for item, not system) - hours			
estimate reference (URL or EDMS #)			
Basis of Estimate document reference (URL/EDMS)			
Beam Deck file reference: name, date, URL/EDMS?			
Technical System/Global System Group (parent)			
TS/GS sub-group (sub-parent)			
uncertainty shape			
lower parameter %			
upper parameter %			
uncertainty reference			
date entered			
entered/logged by who			

CLIC Workshop 2008

Examples of reports (from CM Tool Requirements document)

- WBS style reports that further drill down on any item
- Total cost of each part with that tag is listed in the matrix.
- Magnet costs, grouped by magnet type
- Magnet costs, grouped by accelerator area
- Damping Ring costs, grouped by technical system
- Damping Ring costs, grouped by accelerator sub-area
- All EDIA (engineering design) costs where they exist
- Export a flat table of the parts and costs to Excel

Implementation practicalities

- DB project will be implemented in stages
 - Start simple, get some experience using the basic functions to see if they are really what we want
 - Multiple machine configurations likely implemented as separate database instances
 - Other functionality to be implemented later as needed, eg automatic linking to documents in EDMS
- Data-entry of RDR cost estimates
 - Eventually will have to capture all RDR and TDR cost estimates
 - Begin by entering RDR costing data 'as is' (WBS,...)
 - Migrate specific cost information to a common format as necessary and as resources allow
 - It is unlikely that all cost estimates will be re-visited for TDR, so some RDR costs must be carried forward

Summary

- Conceptually, we think we know what we want
 - "Devil is in the details"
- Cost Management database is strongly linked with EDMS
- Regardless of the tools, there will be effort in translating and entering cost estimate information
- We expect to have Stage-I implementation and first level of data entry within the next several months

Extras

WBS or Catalog of Parts...?

WBS/PBS

Catalog of Parts

- Traditional structure
- More or less how the existing data is structured

- Perhaps easier to analyze 'many' different configurations
- Perhaps easier to explore unit costs
- More work to implement in db
- Requires translation of existing data