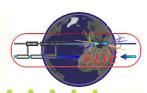
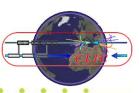
Damping Ring BPM Developments


Upgrade of the ATF Damping Ring BPMs & Beam Tests

Manfred Wendt
Fermilab

for the ATF DR BPM Upgrade Collaboration


Agenda

- Motivation
- The ATF Damping Ring
- Details of the BPM read-out electronics upgrade
- Beam studies and performance measurements
- Conclusions

ATF DR BPM Collaboration

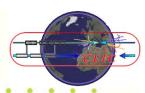
KEK

- Nobuhiro Teranuma
- Junji Urakawa

SLAC

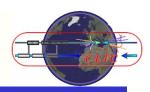
- Doug McCormick
- Joe Frisch
- Justin May
- Janice Nelson
- Andrei Seryi
- Tonee Smith
- Mark Woodley

Fermilab



- Charlie Briegel
- Nathan Eddy
- Eliana Gianfelice
- Bill Haynes
- Peter Prieto
- Dennis Nicklaus
- Ron Rechenmacher
- Duane Voy
- Manfred Wendt

...and many others (Marc Ross!)


Motivation

- ILC damping ring R&D at KEK's Accelerator Test Facility (ATF):
 - Investigation of the beam damping process (damping wiggler, minimization of the damping time, etc.)
 - Goal: generation and extraction of a low emittance beam ($\epsilon_{\rm vert}$ < 2 pm) at the nominal ILC bunch charge
- A major tool for low emittance corrections:
 - a high resolution BPM system
 - Optimization of the closed-orbit, beam-based alignment (BBA) studies to investigate BPM offsets and calibration.
 - Correction of non-linear field effects, i.e. coupling, chromaticity,...
 - Fast global orbit feedback(?)
 - Necessary: a state-or-the-art BPM system, utilizing
 - a broadband turn-by-turn mode (< 10 µm resolution)
 - a narrowband mode with high resolution (~ 100 nm range)

The ATF Damping Ring

Machine and Beam Parameters

beam energy E = 1.28 GeV

beam intensity, single bunch \approx ~1.6 nC \equiv 10¹⁰ e⁻ (\equiv I_{bunch} \approx 3.46 mA)

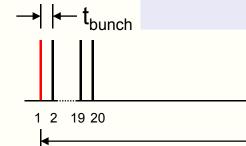
beam intensity, multibunch (20) \approx ~22.4 nC \equiv 20 x0.7 10¹⁰ e⁻ (\equiv $I_{beam} \approx$ 48.5 mA)

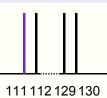
accelerating frequency $f_{RF} = 714 \text{ MHz}$

revolution frequency $f_{rev} = f_{RF} / 330 = 2.1636 \text{ MHz}$ ($\equiv t_{rev} = 462.18 \text{ ns}$)

bunch spacing $t_{\text{bunch}} = t_{\text{RF}} / 2 = 2.8011 \text{ ns}$

batch spacing $t_{\text{batch}} = t_{\text{rev}} / 3 = 154.06 \text{ ns}$

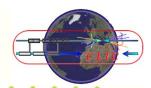

horizontal betatron tune \approx 15.204 ($\equiv f_h \approx 441 \text{ kHz}$)

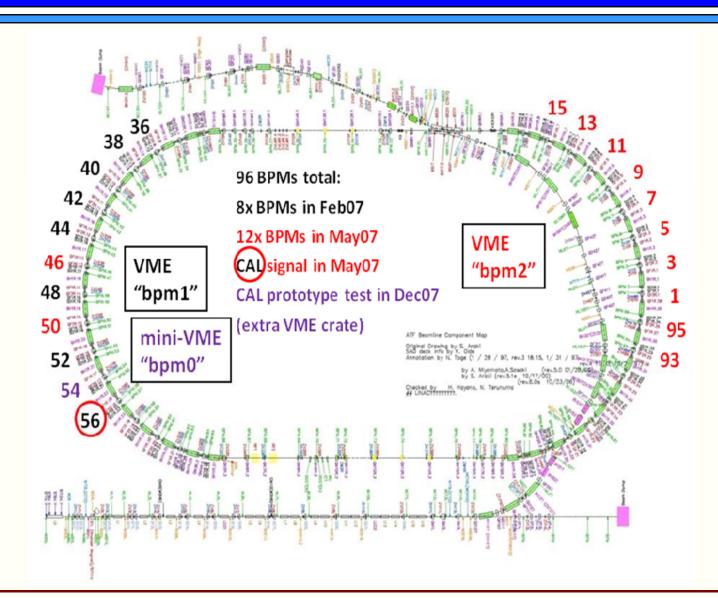

vertical betatron tune $\approx 8.462 \ (\equiv f_v \approx 1000 \ \text{kHz})$

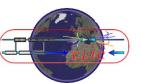
synchrotron tune $\approx 0.0045 (\equiv f_s \approx 9.7 \text{ kHz})$

repetition frequency $f_{rep} = 1.56 \text{ Hz} (\equiv t_{rep} = 640 \text{ ms})$

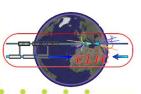
beam time $t_{\text{beam}} = 460.41 \text{ ms} (\equiv \text{turn } # 996170)$

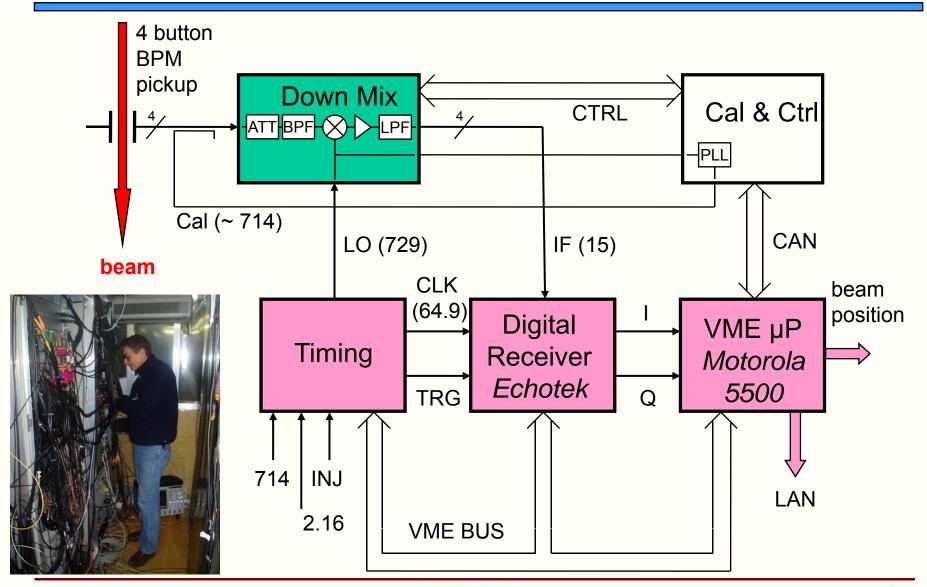




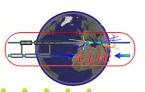


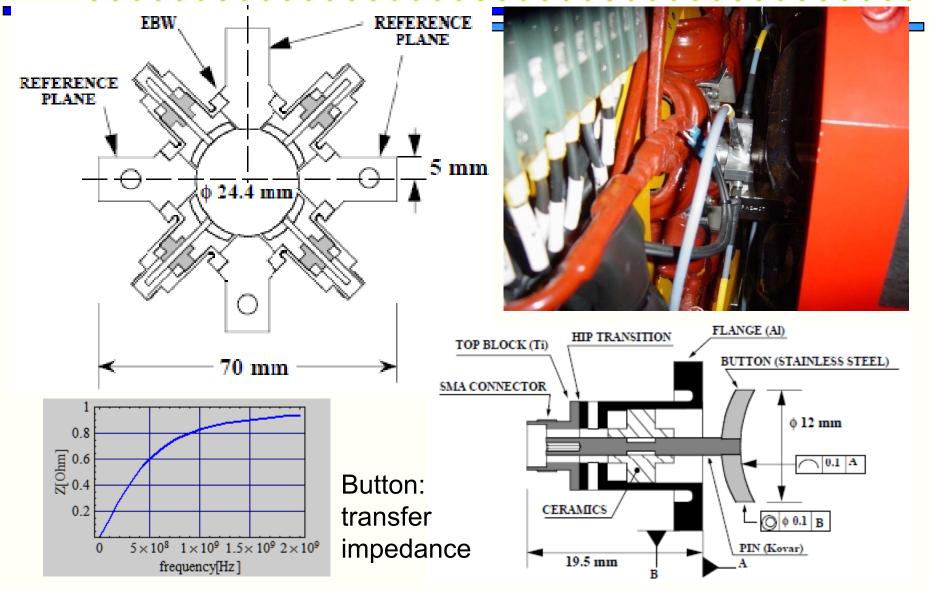
The ATF Damping Ring

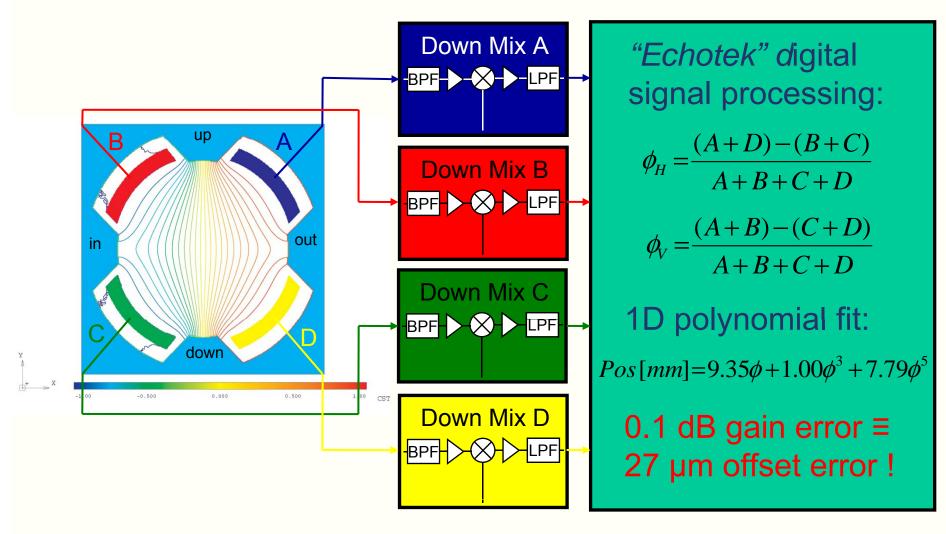




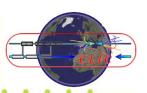
- New read-out hard-, firm- and software, BPM pickups (button-style) stay unchanged.
- Mixed analog/digital signal processing, based on spare Echotek digital receiver boards (pragmatic, cost efficient R&D approach):
 - Still modern, but not of latest technology digital downconverters (DDC)
 - Long term experience at Fermilab (p/pbar), spare units available for a cost effective proof of priniple.
- BPM system components:
 - 714-to-15.1 MHz analog downmixer (SLAC), with high dynamic range (located in the tunnel), plus remote-control & calibration prototype unit (Fermilab)
 - VME hard- & software:
 - 8-ch. *Echotek* digital receiver (105 Ms/s, 14-bit ADC, 4 ch. *Graychip* DDC)
 - VME timing generator (Fermilab).
 - Motorola 5500 VME controller, running VxWorks & EPICS software

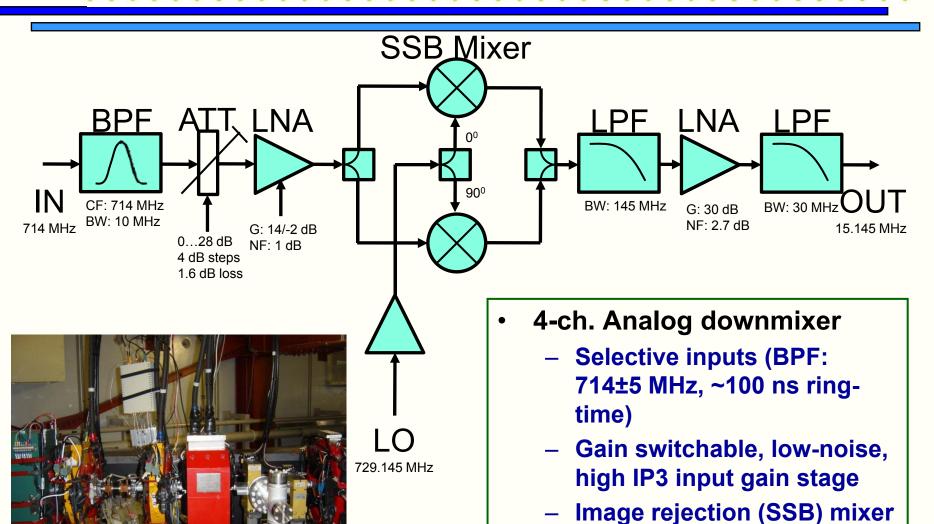

BPM Hardware Overview



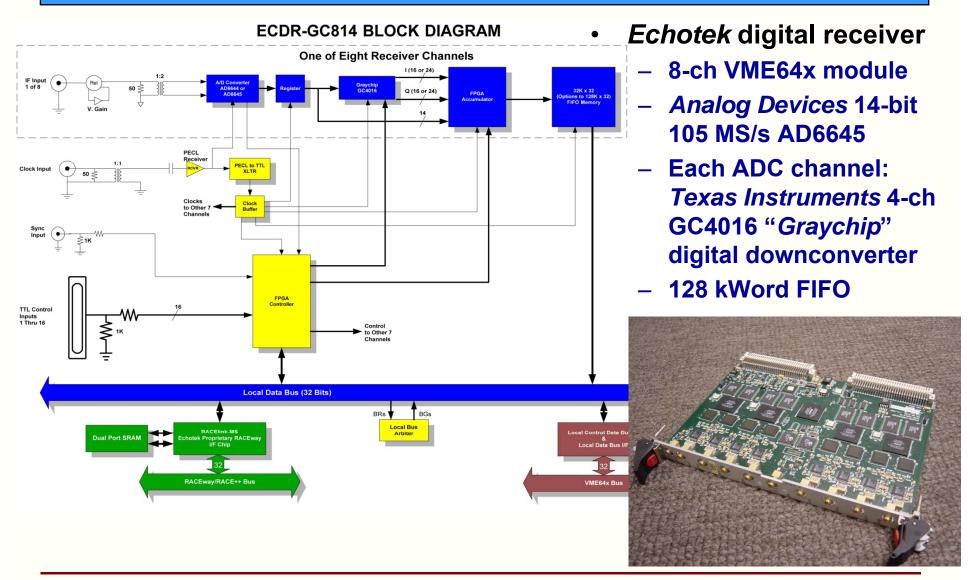


Button-style BPM Pickup

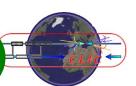


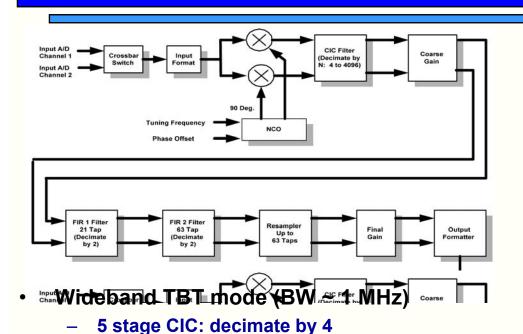


Analog Signal Processing

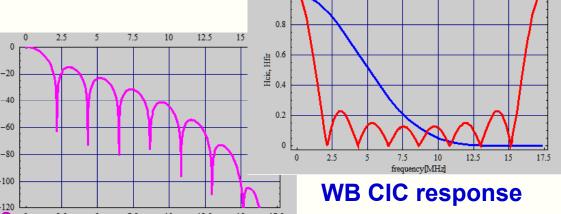

- 15.1 MHz high gain,

ultralinear IF stage




Digital Signal Processing

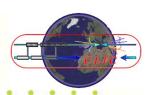
ilc Digital Signal Processing (cont.)



- Graychip digital downconverter
 - 4 independent channels per ADC
 - NCO set to f_{IF} = 15.145 MHz (downconvert to DC baseband)
 - ADC clock set to 32 samples per revoltion: f_{CLK} = 32 x f_{rev} = 69.2 MHz
 - Decimation and filtering for wideand narrowband mode using CIC and FIR digital filters
 - Simultaneous DDC operation of beam and calibration signals!

- PFIR 1-tap, no decimation Narrowband mode (BW ~ 1 kHz), t_{dec} = 158.7 µs, 1280 pt (~200 ms)

CFIR: 7-tap boxcar, decimate by 2


- 5 stage CIC: decimate by 2746
- CFIR: 21-tap RRC, decimate by 2
- PFIR: 63-tap RRC, decimate by 2

WB mode magnitude response of the latest temperature of the latest temperature with th

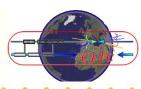
Other Hardware

VME Timing module:

- $f_{CLK} = f_{RF}*32/330 = 69.236 \text{ MHz clock signals (4x)}$
- t_{rev} = 462.2 ns turn marker signals (4x), 0...115 double-buckets (2.8 ns) delayable
- To f_{RF} phase-locked f_{LO} = 729.145 MHz
- Auxiliary f_{rev} and f_{IF} signals

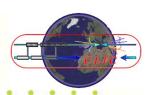
Motorola 5500 VME CPU:

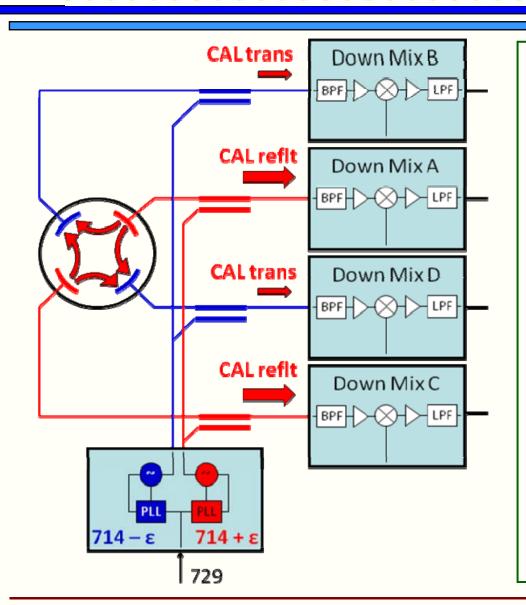
- Data collection and normalization
- Box-car post-processing filter (20 ms)
- Local diagnostic and control software
- EPICS control interface



- To f_{RF} phase-locked f_{CAL} ≈ 714 MHz (*Analog Devices* ADF4153)
- In-passband, through button-BPM, or reflected signal calibration
- 2nd and 3rd *Graychip* channels for CAL signal downconversion
- CAN-bus remote control functions (attenuation, temperature, etc.)

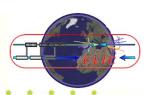
Downconverter & CAL Proto


- Mini VME crate accommodating:
- Motorola 5500 CPU
- PMC CAN bus interface ECAN-2
- Timing module TGF
- Echotek digital receiver module



- BPM #54 prototype installation (temporary):
- CAN bus remote control & CAL signal PLL unit (Fermilab)
- 4 ch. Downconverter unit (SLAC)

Calibration Schema



2 calibration tones:

- $-714 + \epsilon MHz$
- $-714 \epsilon MHz$
- In passband of the downconverter
- Coupled through the button BPM
- Alternative: Reflected CAL signal
- On-line calibration
 - In presents of beam signals
 - Available only in narrowband mode
 - Using separateGraychip channels

Calibration Details

Calibration tone frequencies:

$$- f_{CALx} = 713.6 \text{ MHz}$$

$$- f_{CALy} = 714.4 \text{ MHz}$$

Calibration procedure:

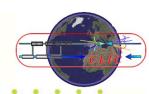
– Correction values:

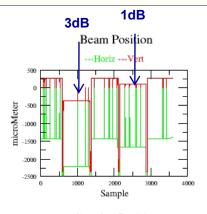
$$A_{Corr} = \frac{A_{CAL} + B_{CAL} + C_{CAL} + D_{CAL}}{4A_{CAL}}$$

$$\frac{A_{CAL} + B_{CAL} + C_{CAL} + D_{CAL}}{4A_{CAL}} \qquad B_{Corr} = \frac{A_{CAL} + B_{CAL} + C_{CAL} + D_{CAL}}{4B_{CAL}}$$

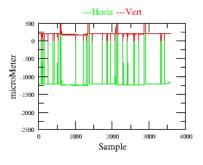
$$C_{Corr} = \frac{A_{CAL} + B_{CAL} + C_{CAL} + D_{CAL}}{4C_{CAL}}$$

$$C_{Corr} = \frac{A_{CAL} + B_{CAL} + C_{CAL} + D_{CAL}}{4C_{CAL}} \qquad D_{Corr} = \frac{A_{CAL} + B_{CAL} + C_{CAL} + D_{CAL}}{4D_{CAL}}$$

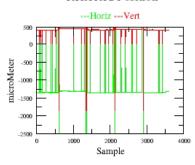

– Corrected beam positions:

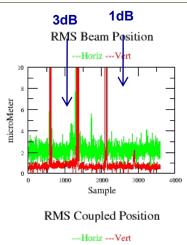

$$\phi_{Hcorr} = \frac{(A A_{Corr} + D D_{Corr}) - (B B_{Corr} + C C_{Corr})}{A A_{Corr} + B B_{Corr} + C C_{Corr} + D D_{Corr}}$$

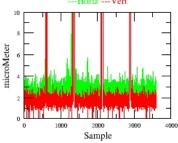
$$\phi_{Vcorr} = \frac{(A A_{Corr} + B B_{Corr}) - (C C_{Corr} + C C_{Corr})}{A A_{Corr} + B B_{Corr} + C C_{Corr} + D D_{Corr}}$$



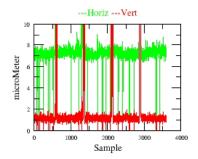
CAL System Test



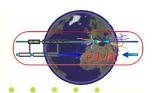

Coupled Position

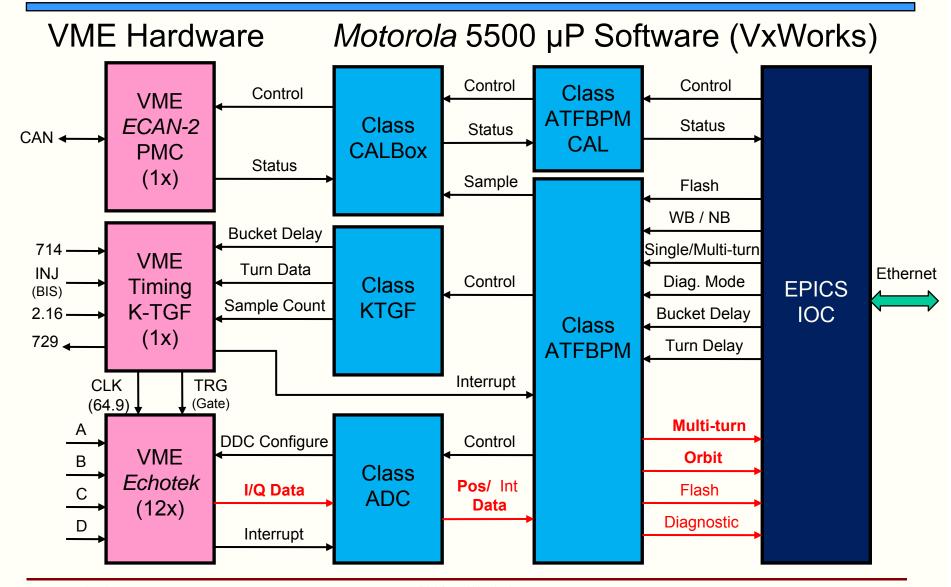


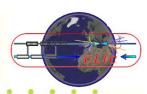
Reflected Position



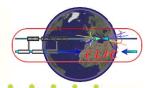
- Calibration on, datalogger on
- Comparing uncorrected, corrected (coupledthrough), and corrected (reflected)
- Introduce large 3 & 1 dB gain errors.
- Automatic correction compensates the gain error almost completely!!
- Corrected beam position shows a slight increase of the RMS error (to be further studies!).




RMS Reflected Position

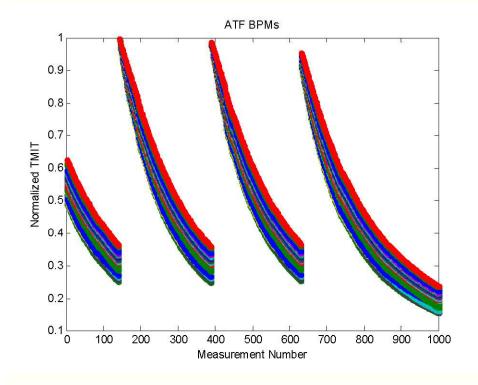

Software Components

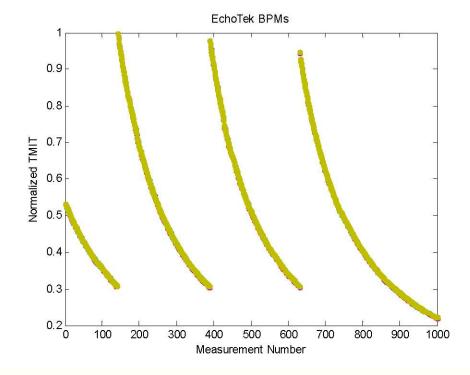
EPICS Data Acquisition



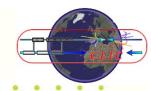
20

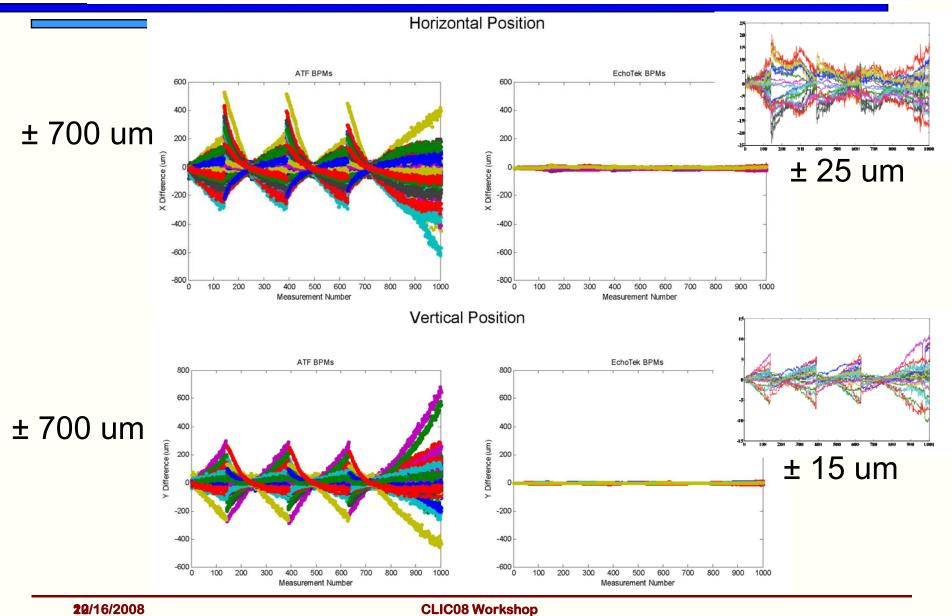
	Multi-turn	Orbit	Flash
Wide- Band	Samples: 4096 Samples/turn: 4 Turns: 1024 POSITION Intensity	Average Samples: 4096 Turns: 1024 POSITION (RMS & StdDev) Intensity (RMS & StdDev)	Nth Sample (1) POSITION Intensity
Narrow- Band	Samples: 1280 µsec/Sample: 158.73 Turns: 439600 POSITION Intensity	Average Samples: 126 (50 Hz Boxcar) Turns: 43273 POSITION (RMS & StdDev) Intensity (RMS & StdDev)	Nth Sample (1) POSITION Intensity



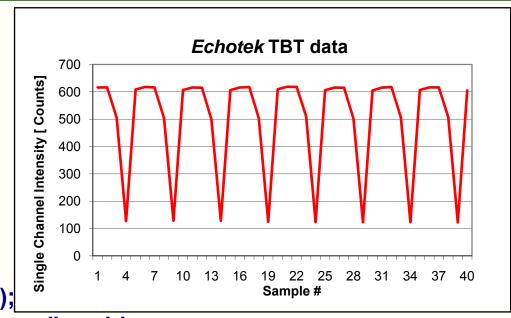

Scrubbing Mode, Intensities

070518


Normalized Intensities

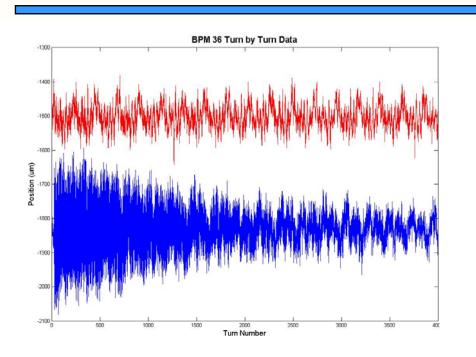


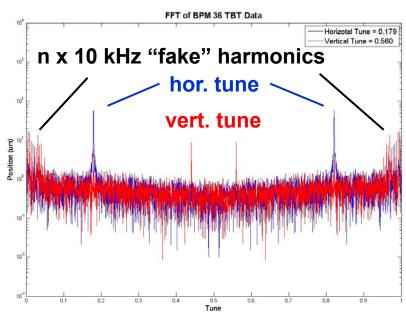
Scrubbing Mode, Positions



070518

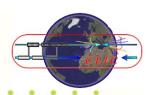
ilc Wideband, TBT Mode Beam Tests


- Several "issues" had to be resolved:
 - CIC & FIR digital filter impulse responses to resolve true turn-by-turn data (no "smearing")
 - Timing issues, e.g.
 channel-to-channel,
 as well as between BPMs
 and "houses" (VME crates);
 and of course the usual "seam" problem.



- In particular for the kicked beam TBT response tests:
 - Vertical beta at pinger is 0.5 m
 (12 times smaller than the horizontal one):
 we had to resort to injection oscillations -> lower resolution.

ilc Kicked Beam Tests (May 2007)



- Turn-by-Turn data BPM #36 (pinger: On)
- Identifying hor. and vert. tune lines (387 kHz, 1.212 MHz).
- Observed short time, broadband TBT resolution: few µm!
- Observation of "fake" harmonics at n x 10 kHz (not f_s), due to power supply EMI in the analog downconverter unit!

TBT Fourier Analysis

TBT data at the jth BPM following a single kick in the z-plane (z ≡ x, y):

$$z_n^{j} = \frac{1}{2} \sqrt{\beta_z^{j}} e^{i\Phi_z^{j}} A_z e^{iQ_z(\theta_j + 2\pi n)} + c.c.$$

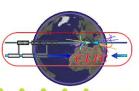
with

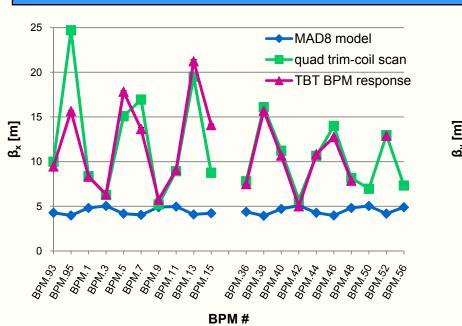
$$n \equiv \text{turn number}$$
, $A_z = |A_z| e^{i\delta_z} \equiv \text{constant of motion}$

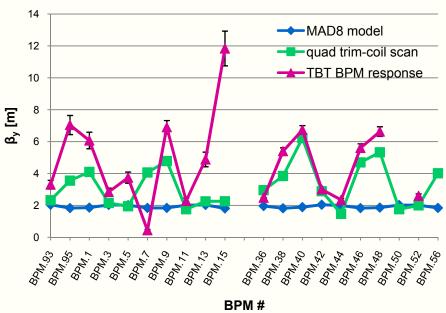
$$\Phi_z \equiv \mu_z - Q_z \theta$$
 (periodic phase function)

Twiss functions:

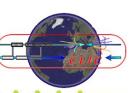
$$\beta_z^j = |Z_j(Q_z)|^2 / A_z^2$$
 $\mu_z^j = \arg(Z_j) - \delta_z$


$$Z_i(Q_z) \equiv Fourier$$
 component of z_i


Amplitude fit:

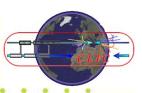

$$|A_z|^2 = \frac{\sum_j 1/\beta_z^{0j}}{\sum_j 1/|Z_j(Q_z)|^2}$$

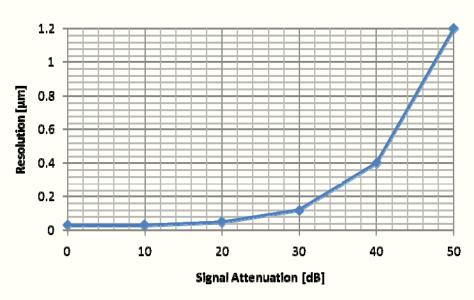
Comp.: Measurements vs. Model



- MAD8 model (M. Woodley, marginal differences wrt. Kuroda SAD model).
- Nearby quadrupole trim coil scan (May 2008).
- TBT Fourier analysis, amplitude by fit to beta measured through trim coil scan (April 2008).

ilc Narrowband Mode Resolution


Single Shot BPM RMS **SVD Mode Amplitudes** No SVD 4.5 Mode 1:3 Amplitude (um) 9.0 9.0 9.0 4 3.5 RMS (um) Mode Number 1.5 0.5


Arbitrary BPM Number (1:20 Vert, 21:40 Horz)

- Triggered at turn #500,000
- ~200 ms position data **per shot (1280** narrowband mode **BPM** measurements).
- 126 tap box car filter to reject 50 Hz:
 - ~ 800 nm resolution
- **SVD** analysis, removing modes with hor./ vert. correlation:
 - ~200 nm resolution

NB Mode Resolution Limit

Theoretical:

ADC SNR: 75 dB

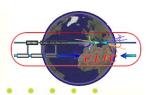
Process gain: 40.4 dB

NF 1st gain stage: ~ 1 dB

CAL tone level: -10 dBm

Splitter attenuation: 6 dB

Effective gain: ~ 100 dB


BPM sensitivity: 240 µm/dB

 Calculated equivalent resolution: ~ 20 nm

CAL tone resolution measurement on BPM #56: ~30 nm(!) equiv. resolution (no beam operation at ATF!, magnets off)

Conclusions

- A DR BPM read-out system with high resolution in TBT (few µm), and narrowband mode (<200 nm) has been implemented.
- An automatic calibration system for gain drift correction was tested. It operates in presence of the beam signal!
 - Systematic long term studies using the automatic gain correction system need to be accomplished.
- Recent soft-/firmware activities & beam studies at ATF could be realized through remote operation!
- TBT kicked beam response studies uncovered discrepancies between theoretical and measured ATF DR optics.
- A revised analog/calibration electronics is under development.
 Problems and limitations on the existing setup will be addressed.
- 20-out-of 96 ATF DR BPMs have been upgraded, more will follow in FY09/10 (limited by available M&S funds).