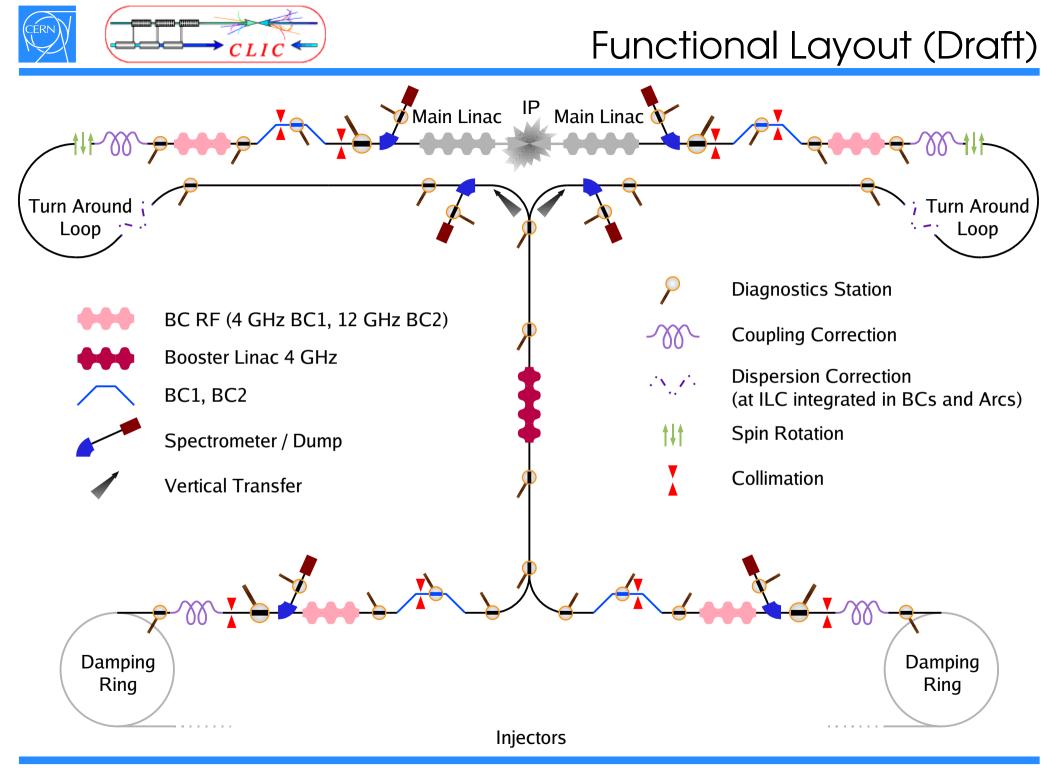
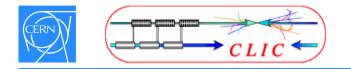

adopted from ILC: Damping Ring To Main Linac Transport = RTML

- => Functions
- => Beam Dynamics Challenges
- => Constraints / Considerations
- => Outlook



Frank Stulle, CLIC Workshop 2008



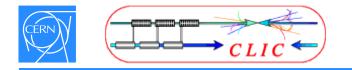
- Transport
 - => Transport Lines, Turn Around Loops, Arcs
- 6D Phase Space Shaping / Matching
 - longitudinal => Bunch Compressors incl. RF for Energy Chirp, Collimators
 - transverse => Optics, Collimators
- Acceleration
 - => Booster Linac
- Re-Orientation of Polarizationvector
 - => Spin Rotator
- Characterization
 - => Diagnostics (Position, RMS Length, longitudinal and transverse Profiles, Energy, Energy Spread, Emittance, Charge, Phase, Polarization,...)
- Correction / Tuning
 - => Dispersion Correction (at ILC: normal and skew quads integrated in BCs, Loop, Arcs), Coupling Correction, Phase Correction / Synchronization, Feedback, Feedforward
- Others
 - => Intermediate Beam Dumps, Spectrometer Beam Lines...

= ILC RTML, but beam parameters and layout are different

Frank Stulle, CLIC Workshop 2008

Parameters / Constraints

initial = at entrance of RTML= exit of Damping Rings


final = at exit of RTML

= exit of Damping Rings		Jitter = entrance of Main Linac		Jitter			
Parameter	Symbol	Value Unit	Tolerance	Parameter	Symbol	Value Unit	Tolerance
Energy	E ₀	2.424 GeV	±?%	Energy	E ₀	9 GeV	±0.1%
Number of Particles	N _e	4.1×10^9	±?%	Number of Particles	N _e	$>3.7 \times 10^9$	$\pm 0.1\%$
Charge	Q_0	0.66 nC	±?%	Charge	Q_0	>0.6 nC	$\pm 0.1\%$
RMS Bunch Length	$\sigma_{ m s}$	1530 μm	±?%	RMS Bunch Length	$\sigma_{ m s}$	44 µm	± 0.5 %
Normalized Emittance	$\mathcal{E}_{n,x}$	550 nm rad	±?%	Normalized Emittance	$\mathcal{E}_{n,x}$	<600 nm rad	±?%
	$\mathcal{E}_{n,y}$	5 nm rad	±?%		$\mathcal{E}_{n,y}$	<10 nm rad	±?%
Total Energy Spread	$\sigma_{\rm E}/E_0$	0.134 %	±?%	Total Energy Spread	$\sigma_{\rm E}/E_0$	<1.5 %	±?%
Uncorrelated Energy Spread	d $\sigma_{\rm E,u}/E_0$	0.134 %	±?%	Uncorrelated Energy Sprea	d $\sigma_{\text{E,u}}/E_{0}$	<1.5 %	±?%
Energy Chirp	$1/E_0 dE/ds$	0 m⁻¹	±?%	Energy Chirp	1/E ₀ dE/ds	0 m⁻¹	±?%
Polarization	$P_{e^{-}}, P_{e^{+}}$?%	±?%	Polarization	$P_{e^{-}}, P_{e^{+}}$?%	±?%
Phase Offset	$\Delta \phi$	0 deg	±?deg	Phase Offset	$\varDelta \phi$	0 deg	± 0.1 deg

The RTML is considered not drive specifications, but just to adapt to them. Furthermore, it must be able to correct incoming errors or jitter. This is true only within a reasonable parameter space! Current achievement:

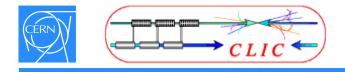
$\Delta \epsilon_{\rm x,RTML}$	<	100	nm rad
$\Delta \varepsilon_{\mathrm{y,RTML}}$	<	5	nm rad

But not all beam lines and beam dynamics issues have been studied yet.

Parameters / Constraints

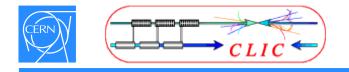
initial = at entrance of RTML

final = at exit of RTML


= exit of Damping Rings		Jitter	= entrance of Main Linac			Jitter	
Parameter	Symbol	Value Unit	Tolerance	Parameter	Symbol	Value Unit	Tolerance
Energy	E ₀	2.424 GeV	±?%	Energy	E ₀	9 GeV	± 0.1 %
Number of Particles	N _e	$4.1 imes 10^9$	±?%	Number of Particles	N _e	$> 3.7 \times 10^{9}$	± 0.1 %
Charge	Q_0	0.66 nC	±?%	Charge	Q_0	>0.6 nC	± 0.1 %
RMS Bunch Length	$\sigma_{ m s}$	1530 μm	±?%	RMS Bunch Length	$\sigma_{ m s}$	$44\mu m$	± 0.5 %
Normalized Emittance	$\mathcal{E}_{n,x}$	550 nm rad	±?%	Normalized Emittance	<i>E</i> _{n,x}	<600 nm rad	±?%
	€ _{n,y}	5 nm rad	±?%		$\mathcal{E}_{n,y}$	<10 nm rad	±?%
Total Energy Spread	$\sigma_{\rm E}/E_0$	0.134%	±?%	Total Energy Spread	$\sigma_{\rm E}/E_0$	<1.5 %	±?%
Uncorrelated Energy Spread	$\sigma_{\rm E,u}/E_0$	0.134 %	¥?%	Uncorrelated Energy Spread	$\sigma_{\rm E,u}/E_0$	<1.5 %	±?%
Energy Chirp	$1/E_0 dE/ds$	0 m ⁻¹	± ?%	Energy Chirp	$1/E_0 \mu E/ds$	0 m ⁻¹	±?%
Polarization	$P_{e^{-}}, P_{e^{+}}$?%	±?%	Polarization	P_{e^+}	?%	±?%
Phase Offset	$\Delta \phi$	0 deg	±?deg	Phase Offset	$\oint \phi$	0 deg	± 0.1 deg

The emittance budget currently allocated to the RTML is most likely too tight! Somebody has to improve: DR? ML? RTML?

The RTML is considered not drive specifications, but just to adapt to them. Furthermore, it must be able to correct incoming errors or jitter. This is true only within a reasonable parameter space! Current achievement:


$\Delta \epsilon_{\rm x,RTML}$	<	100	nm rad
$\Delta \varepsilon_{\mathrm{y,RTML}}$	<	5	nm rad

But not all beam lines and beam dynamics issues have been studied yet.

- Misalignment
 - static and dynamic, e.g. ground motion, vibration,...
 - => all components incl. beam pipes
- Magnetic Field Errors
 - magnet strength / power supply ripple,
 - residual field components, stray fields, earth field
 - => along entire RTML
- RF Voltage and Phase
 - => in booster linac and bunch compressor RF
- Wake Fields
 - geometry, resistivity, surface roughness,...
 - => cavities, collimators, beam pipes
- Space Charge Fields => in transfer lines
- Synchrotron Radiation
 - => ISR in turn around loops and arcs
 - => CSR in bunch compressors
- Beam-Gas Interaction / Beam-Photon Scattering
 - => Fast Beam-Ion Instability in transfer lines
- Jitter of incoming Beam Parameters

phase, energy, charge, length,...

Sources of Beam Quality Degradation

- Misalignment

static and dynamic, e.g. ground motion, vibration,...

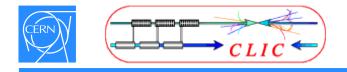
- => all components incl. beam pipes
- Magnetic Field Errors

magnet strength / power supply ripple,

residual field components, stray fields, earth field

- => along entire RTML
- RF Voltage and Phase

=> in booster linac and bunch compressor RF

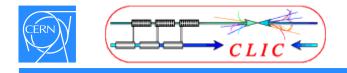

- Wake Fields

geometry, resistivity, surface roughness,...

- => cavities, collimators, beam pipes
- Space Charge Fields => in transfer lines
- Synchrotron Radiation
 - => ISR in turn around loops and arcs
 - => CSR in bunch compressors
- Beam-Gas Interaction / Beam-Photon Scattering
 - => Fast Beam-Ion Instability in transfer lines
- Jitter of incoming Beam Parameters phase, energy, charge, length,...

As identified in ILC RDR:

- Static Misalignment
 - => of cavities, spin rotator, quadrupoles and dipoles
- Stray Magnetic Fields => in transfer line
- Phase Jitter => by cavity errors
- Collimator Wake Fields
- Space Charge => in transfer line
- ISR and CSR
 - => in bunch compressors, loops and arcs
- Beam-Ion Instabilities => in transfer line
- Halo Formation from Scattering => in all beam lines



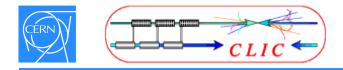
- Misalignment
 - static and dynamic, e.g. ground motion, vibration,...
 - => all components incl. beam pipes
- Magnetic Field Errors
 - magnet strength / power supply ripple,
 - residual field components, stray fields, earth field
 - => along entire RTML
- RF Voltage and Phase
 - => in booster linac and bunch compressor RF
- Wake Fields
 - geometry, resistivity, surface roughness,...
 - => cavities, collimators, beam pipes
- Space Charge Fields => in transfer lines
- Synchrotron Radiation
 - => ISR in turn around loops and arcs
 - => CSR in bunch compressors
- Beam-Gas Interaction / Beam-Photon Scattering
 - => Fast Beam-Ion Instability in transfer lines
- Jitter of incoming Beam Parameters phase, energy, charge, length,...

=> single bunch effect,

dispersion, coupling, pointing stability

- single bunch effect, dispersion, coupling, pointing stability, bunch shape, emittance, optics mismatch
- => single bunch effect, synchronization, bunch length, (energy)
- => single and multi bunch effect, energy distribution, optics mismatch bunch shape, emittance
- => single bunch effect, energy distribution
- => single bunch effect, energy distribution, optics mismatch bunch shape, emittance
- => (single and) multi bunch effect, transverse profiles, emittance

Preliminary studies on error tolerances have been performed for:


- the transfer line

achieved promising results using beam-based-alignment, assuming 100 μ m magnet misalignment and 10 μ m misalignment of BPMs relative to quads

- the bunch compressor chicanes roll error should be ~0.1mrad, alignment of $100 \mu m$ sufficient, required magnet field error within $10^{\text{-4}}$ $10^{\text{-5}}$
- the turn around loop

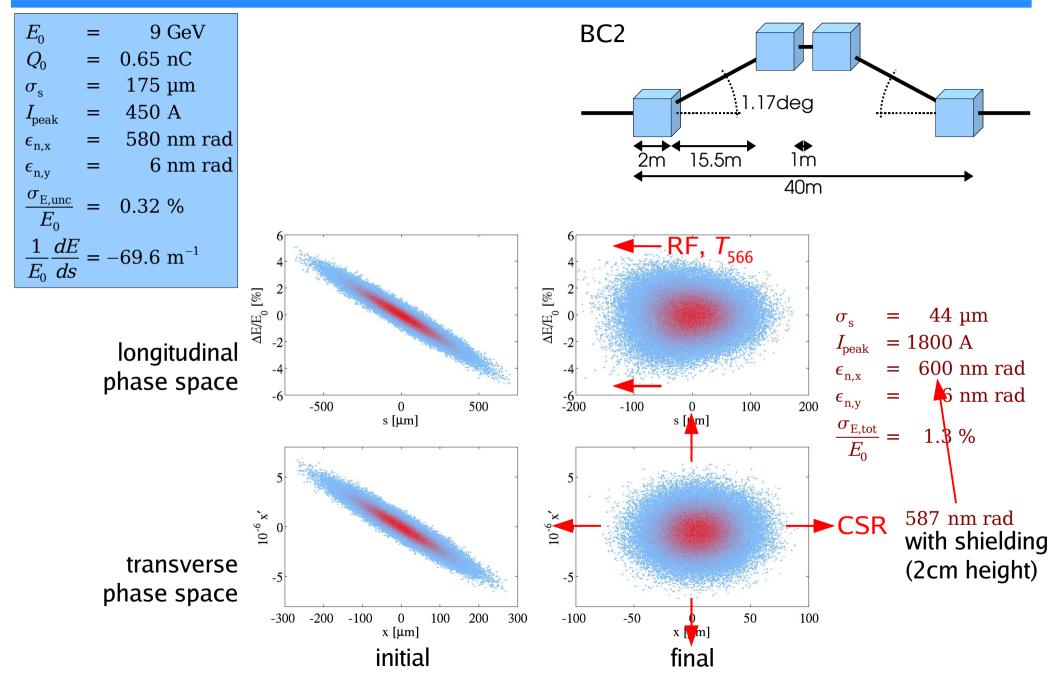

transverse quadrupole and sextupole alignment <10 μ m, roll error ~10 μ rad, alignment of dipoles ~100 μ m, roll error <10 μ rad, magnet field errors ~10⁻⁵

- => main challenge: preservation of vertical emittance
- => alignment of the order of 10 100 μ m required
- => transverse alignment of quadrupoles and sextupoles in loop most challenging
- => nevertheless, alignment seems to be feasible

There are only a few free beam parameters, which are not fixed by initial and final specifications, but which stem from beam dynamics issues in the RTML:

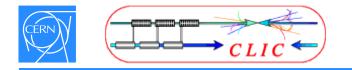
- energy between Booster Linac and BC2 RF (may be even up to Main Linac), low energy is good for ISR in Turn Around Loop ($\Delta \varepsilon \sim E^6$), but bad for BC2 RF (wake fields)
- bunch length between BC1 and BC2, short bunches reduce RF curvature (sinusoidal wave), but increase CSR in Turn Around Loop ($\Delta \epsilon \sim 1/\sigma_s^{4/3}$)
- since full compression is requested for both chicanes energy spread between BC1 and BC2 is not a free parameter

Important boundary conditions:

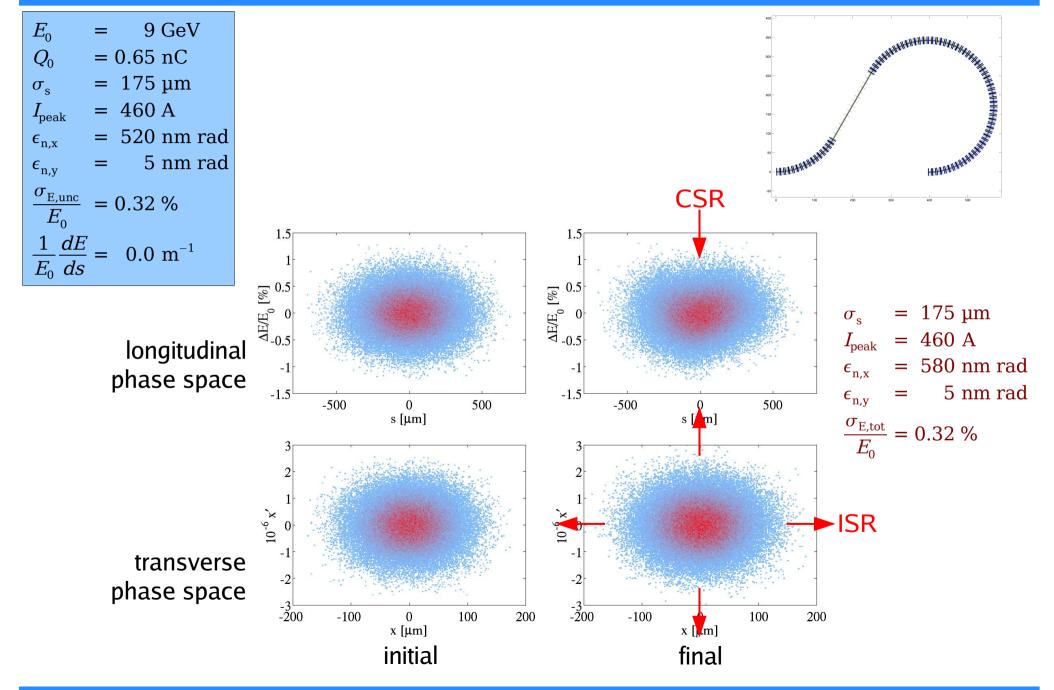

- full compression in BC1 requested, but not mandatory
- definitely full compression in BC2 needed

As long as full compression is requested in both BCs:

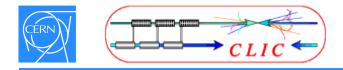
- the bunch compression system can be characterized by four independent parameters
- three parameters are given: initial and final bunch length, initial energy spread
- intermediate bunch length can be chosen as the last free parameter
- => the R_{56} values and the energy chirps are unambiguously defined
 - R_{56} of BC2 can only be reduced by compressing stronger in BC1, not by increasing energy chirp!
 - stronger compression in BC1 only by using higher energy chirp and lower R_{56}



Bunch Compressor Simulations



CLIC <


Frank Stulle, CLIC Workshop 2008

Turn Around Loop Simulations

Frank Stulle, CLIC Workshop 2008

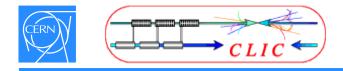
There are only a few free beam parameters, which are not fixed by initial and final specifications, but which stem from beam dynamics issues in the RTML:

- energy between Booster Linac and BC2 RF (may be even up to Main Linac), low energy is good for ISR in Turn Around Loop ($\Delta \epsilon \sim E^6$), but bad for BC2 RF (wake fields)
- bunch length between BC1 and BC2, short bunches reduce RF curvature (sinusoidal wave), but increase CSR in Turn Around Loop ($\Delta \epsilon \sim 1/\sigma_s^{4/3}$)
- since full compression is requested for both chicanes energy spread between BC1 and BC2 is not a free parameter

Are RTML beam dynamics issues strong enough to push the emittance budget?

Considerations for RTML design:

(except for matching initial and final parameters)

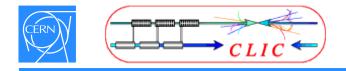

- learn from ILC!
- identify parameters and tolerances along the RTML
- jitter in one sub-system might spoil parameters in following sub-system, e.g. energy jitter in front of BC leads to phase jitter
- objective for final values: $\sigma_{\rm L,RTML}$ < 2 %
- estimate required emittance budget for sub-systems current achievement: $\Delta\epsilon$ < 100 nm rad, but not all beam lines and issues studied yet
- energy in turn around loop (9GeV -> 8GeV => $\Delta \epsilon$ =60nm rad -> $\Delta \epsilon$ =30 nm rad), but may be detrimental effect in cavities due to wake fields
- bunch length between BC1 and BC2
- performance of feedback and feedforward, which beam properties should be corrected? tuning range? single bunch?

- ...

But first we have to fix initial and final parameters!

... or at least agree on reasonable parameter sets...

...which are hopefully rather stable...



Exit of Damping Rings:

			Jitter
Parameter	Symbol	Value Unit	Tolerance
Energy	E ₀	2.424 GeV	±?%
Number of Particles	N _e	4.1×10^{9}	±?%
Charge	Q_0	0.66 nC	±?%
RMS Bunch Length	$\sigma_{\! m s}$	1530 μm	±?%
Normalized Emittance	<i>E</i> _{n,x}	550 nm rad	±?%
	<i>E</i> _{n,y}	5 nm rad	±?%
Total Energy Spread	$\sigma_{\rm E}/E_0$	0.134 %	±?%
Uncorrelated Energy Spread	$\sigma_{\rm E,u}/E_0$	0.134 %	±?%
Energy Chirp	$1/E_0 dE/ds$	0 m ⁻¹	±?%
Polarization	$P_{e^{-}}, P_{e^{+}}$?%	±?%
Phase Offset	$\Delta \phi$	0 deg	±?deg

Entrance of Main Linac:

			Jitter
Parameter	Symbol	Value Unit	Tolerance
Energy	E ₀	9 GeV	± 0.1%
Number of Particles	N _e	$>3.7 \times 10^9$	$\pm 0.1\%$
Charge	Q_0	>0.6 nC	$\pm 0.1\%$
RMS Bunch Length	$\sigma_{ m s}$	44 µm	± 0.5 %
Normalized Emittance	<i>E</i> _{n,x}	<600 nm rad	±?%
	$\mathcal{E}_{n,y}$	<10 nm rad	±?%
Total Energy Spread	$\sigma_{\rm E}/E_0$	<1.5 %	±?%
Uncorrelated Energy Spread	$\sigma_{\rm E,u}/E_0$	<1.5 %	±?%
Energy Chirp	$1/E_0 dE/ds$	0 m ⁻¹	±?%
Polarization	$P_{e^{-}}, P_{e^{+}}$?%	±?%
Phase Offset	$\Delta \phi$	0 deg	± 0.1 deg

Once initial and final parameters are fixed, we can fix the remaining free parameters:

> i.e. energy after Booster Linac (and intermediate bunch length), this implies work on BC2 RF, Turn Around Loop (and BCs)

Afterwards (or parallel?):

- review existing lattices for Transfer Line and Turn Around Loop
- study beam dynamics in Booster Linac and BC RF
- create missing beam lines to compile a preliminary RTML for start-to-end simulations
- create Spin Rotator lattice
- elaborate diagnostics and tuning requirements
- ...

On going effort:

- compilation of functions, requirements, constraints, issues, challenges, ...

Please contribute!