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Introduction

• Trajectory feedback necessary to counteract effect of ground motion
and other dynamic imperfections.

• Trajectory feedback systems use BPM readings to determine suitable
dipole kicks.

• Emittance preservation with traditional feedback systems rely on
correlation between BPM readings and particle distribution at end of
linac, but do not optimally exploit the correlation.

• Formalism developed for design of optimized feedback.

• Formalism also useful for efficient simulations and analytical studies
of dynamic imperfections.

• Reported in Phys. Rev. ST Accel. Beams 11, 051003 (2008)



Response matrices

• BPM readings denoted:

b = (b1, b2, . . . , bq)T

• Macro-particle coordinates at end of linac denoted:

ỹ = (y1, y2, . . . , yp, y
′
1, y
′
2, . . . , y

′
p)T

• BPM and coordinate response matrices denoted:
• R̃cq - for response of coordinates to quadrupole displacements.
• R̃Bq - for response of BPM readings to quadrupole displacements.
• R̃cs - for response of coordinates to accelerating structure

displacements.
• Etc. . .
• First column of R̃cq is the change in ỹ due to a unit displacement of

the first quadrupole.



Emittance function and normalized
coordinates

• Normalized emittance of macro-particle beam is

εN = γr [〈y2〉〈y ′2〉 − 〈yy ′〉2]1/2

where 〈·〉 denotes a weighted average including second moments of
macro-particles.

• To second order ∆εN = εN − εN0 ≈ 1
2 ỹ

THỹ.

• Eigenvalue decomposition of symmetric matrix H⇒

∆εN ≈ ỹTMTMỹ = yTy = |y|2

• Coordinate normalization (y = Mỹ) simplifies emittance function
and analytical treatment of dynamic imperfections and feedback
performance.



Traditional trajectory feedback

• Steers beam to the centre of selected BPMs using dipole correctors.

• Often a least-square solution is necessary.



Traditional trajectory feedback
• Example: 40 communicating feedbacks each consisting of 2

correctors and 3 BPMs. Feedbacks equally spaced along the linac.
ATL ground motion, A = 0.5 · 10−6 µm2/s/m.
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• If only a fraction (gain g) of the calculated corrector change is
applied each pulse, ground motion will cause more emittance
growth.

• Low gain may however be required to reduce effect of, for example,
finite BPM resolution.



Analytical treatment of ground motion

• Emittance growth caused by ground motion after P pulses without
feedback:

〈∆εN〉 ≈ Pσ2
gm||Rcg ||2F

where σ2
gm = A×∆T ×∆L ≈ 7.4 · 10−3 nm2.

• The matrix Rcg describes the coordinate response to relative girder
displacements (see article for details).

• For the 2005 CLIC parameters, emittance growth rate

εg = d〈∆εN〉
dP ≈ 0.26 nm/s.



Analytical treatment of ground motion
and feedback

• Corrector change of traditional trajectory feedback determined from
b + RBd∆d = 0 ⇒ ∆d = −[RT

BdRBd ]−1RT
Bdb = RdBb.

• If gain is taken into account: ∆d = gRdBb.
• ∆y = gRcdRdBb = gRcBb.

• Matrix algebra and geometric sums ⇒

〈∆εN〉 ≈ σ2
gm[Pegm,0 −

2

g
egm,1 +

1

g(2− g)
egm,2]

for large P.

• Scaling factors egm,i may be determined from response matrices,
egm,0 = ||Rcg + RcBRBg ||2F .

• For a traditional feedback system with 80 correctors and 1324

BPMs, emittance growth rate is εg = d〈∆εN〉
dP ≈ 2.5 · 10−3 nm/min.



Optimized feedback system

• By minimizing εg ≈ σ2
gm||Rcg + RcBRBg ||2F , an optimal feedback

response RcB,opt may be determined.

⇒ εg ≈ 1.75 · 10−4 nm/min. ∼ 14 times lower than for traditional
feedback.

• Matrix RcB,opt offers the best achievable prediction of the
macro-particle coordinates for certain BPM readings.

• Determination of RcB,opt does not mean that a new feedback system
is constructed!



Optimized feedback system
• By studying the squared norms of the columns of RcB,opt it is seen

that certain BPM readings predict large emittance growth
(remember ∆εN ≈ |y|2).

• SVD of RcB,opt reveals that a few linear combinations (patterns) of
BPMs contain all information needed to predict the corresponding
coordinate changes.

• Now BPM space is transformed and only most important patterns
used for determination of correction.
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Optimized feedback system
• Construction of optimized feedbacks can be achieved by solving:(

Rcd

RB′d

)
X =

(
RcB′,opt

−I

)
• Matrix X denotes the optimal corrector changes for certain BPM

pattern readings.
• No more than the 30 most important are required for efficient

emittance preservation.
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Optimized feedback system

• A limited number of correctors may be used to contruct the 30
vectors describing the optimal feedback response (as few as 60
sufficient).
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Optimized feedback system

• However, no control of the trajectory components along less
important BPM patterns (⇒ increased trajectory deviations).

• Information from 30 most important BPM patterns is in theory
sufficient to control trajectory equally well as with traditional
feedback system using 1324 BPMs and 80 correctors.
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Optimized feedback system

• Improved trajectory control
requires that the 30 most
important BPM patterns are
used to predict the less
important. A modified equation
gives a better solution:

 Rcd

RB′d

RB′′d

X =

 RcB′,opt

−I
RB′′B′,opt
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• Emittance growth rate nearly
unchanged:
εg ≈ 1.8 · 10−4 nm/min.

• After 14 hours: ∆εN ≈ 0.15 nm
,20 µm trajectory deviations.



Imperfect system knowledge

• Design of feedback system relies on good knowledge of machine
optics, in particular for optimized system.

• Basic and optimized trajectory feedbacks compared on machines
with optics errors for quadrupole strength (0.01%, 0.1%, and 1%).
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Corrector imperfections

• Step size imperfections limit
the number of correctors.

• For a step size error of 10 nm
(correctors simulated as quad
displacements with a minimum
step of 10 nm.), the use of
1324 quads ⇒ ∆εN ≈ 0.72 nm.
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• Calibration error and corrector strength noise (indep. from pulse to
pulse) cause little ∆εN (emittance stated in [10−3 nm]).

Constant error Noise
Feedback setup σ =1% σ =3% σ =5% σ =1%
80 correctors 0.29 2.4 6.7 1.2
60 correctors 0.53 4.2 11 1.9
80 “weak” correctors 0.22 3.0 9.4 0.82



Further imperfections

• A slowly drifting quadrupole is
very severe without feedback

• For most harmful quad,
21 nm displacement ⇒
∆εN ≈ 0.15 nm.

• Both feedback designs
efficiently reduce sensitivity.
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Optimized feedback

• Sensitivity to drifts of the injected beam is also significantly reduced
by feedbacks (in particular optimized feedbacks).

Feedback setup ∆εN/∆d2 [nm/µm2]
No feedback 5.13
Basic feedback (1324 BPMs) 2.20×10−2

Optimized feedback 5.09× 10−4



Gain optimization

• Finite resolution of feedback BPMs cause time-independent
emittance growth. Similarly the feedback system indirectly cause
emittance growth due to various jitter effects. The effects are
gain-dependent and favour a low gain. At the same time low gain
means slow feedback and more emittance growth due to ground
motion.

• Gain was optimized to minimize
∆εN . Optimal gain g ≈ 0.09.

• Multiple gain optimization
tested with only little
improvement.

• Most general approach with
individual gain for each BPM
pattern.  0.01
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Remarks on simulations

• Matrix formalism not only facilitates design of improved feedbacks,
it also allows analytical studies of a number of imperfections (see
article).

• Furthermore, response matrices may be used to perform fast
simulations of dynamic imperfections, through simple matrix
operations.

• In addition, since the state of the machine for this purpose may be
described by the BPM readings and the coordinates of the
macro-particles at the end of the linac, the response matrices may
be reduced significantly in size.

• The 294×21914 response matrix Rcs may be reduced to a 294×294
matrix, by using SVD to remove intrinsic dependencies.



Summary

• Possibility of improving main linac feedback design investigated.

• Formalism developed to facilitate feedback studies.

• Optimized feedback system with one order of magnitude lower

emittance growth rate d〈∆εN〉
dP than for traditional feedback system.

• Optimized feedbacks more sensitive to faulty system knowledge, but
does not seem to be a problem.

• Corrector imperfections cause little emittance growth.

• Formalism also useful for efficient simulations and analytical studies
of dynamical imperfections.

• All details in Phys. Rev. ST Accel. Beams 11, 051003 (2008)
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