

## RTML Design and Rational for ILC

Nikolay Solyak Fermilab

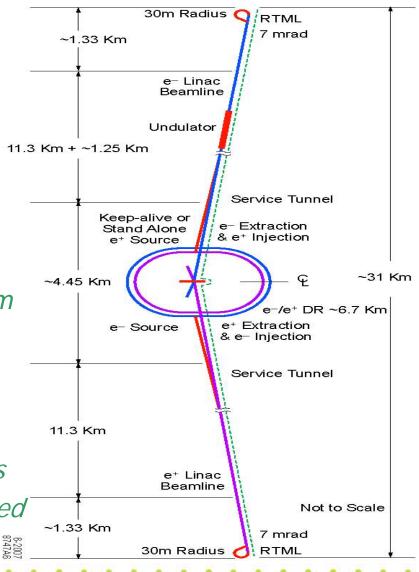
CLIC 08 workshop, CERN, Oct. 14-17, 2008

N.Solyak, RTML

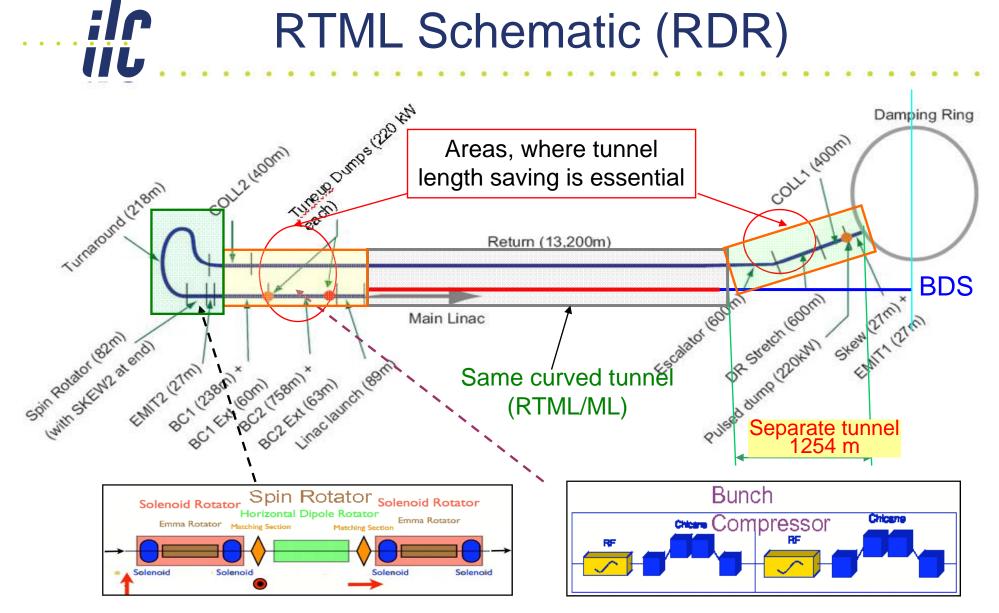
CLIC 08, CERN, Oct. 14-17, 2008

1




### Outline

- RTML Optic Design (RDR)
- Technical Systems
- Emittance control
- Post-RDR changes




## **RTML Functions**

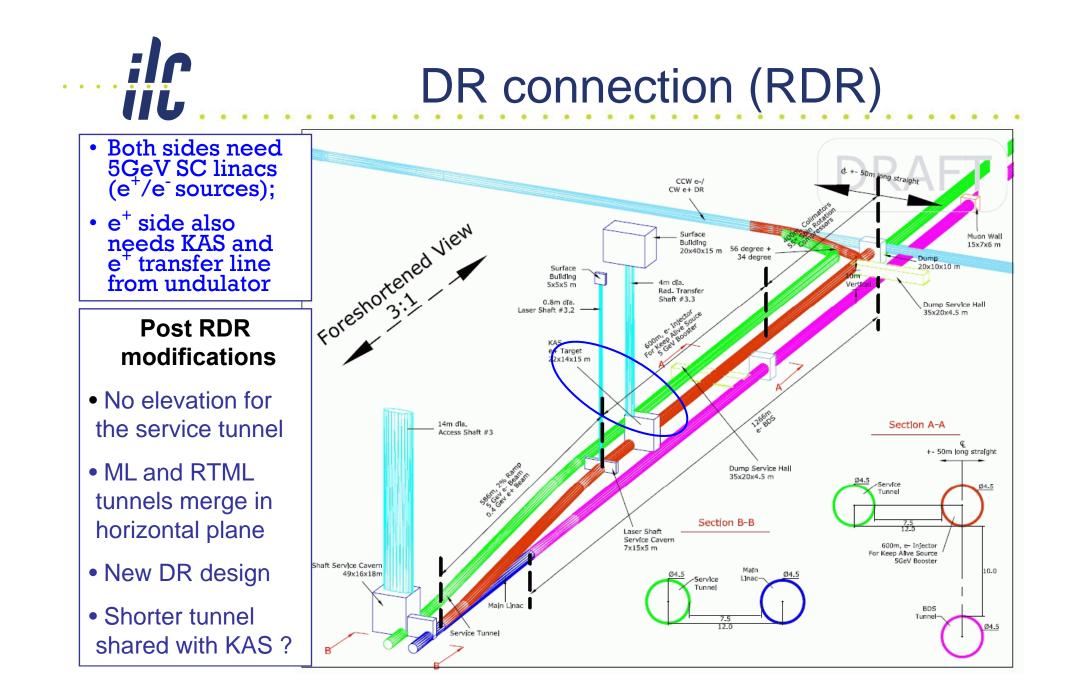
- Transport Beam from DR to ML
  - Match Geometry/Optics
- Collimate Halo
- Rotate Spin
- Compress Bunch (6mm→0.3mm)
- Preserve Emittance
  - Budget for Vert.norm. emittance < 4nm
- Protect Machine
  - 3 Tune-up / MPS abort dumps
- Additional constraints:
  - Share the tunnel with e-/e+ injectors
  - Need to keep geometries synchronized



## **RTML Schematic (RDR)**



Note: e- and e+ RTMLs have minor differences in Return line (undulator in e- linac side) and Escalator (DR's at different elevations); they are otherwise identical.


N.Solyak, RTML



### **Optics Design (RDR)**

 Horizontal Arc out of DR ~km 60 Horizontal plane 40 straight 20 - In injector tunnel Π -20 L -200 2000 4000 6000 8000 10000 12000 16000 • "Escalator" ~0.6 km vertical dogleg down to linac tunnel 10 Vertical plane Return line, weak FODO lattice 5 In linac tunnel Π 2000 4000 6000 8000 10000 12000 14000 -206 16000 Vertically curved 4 Beamlines 20 LTR Vertical and horizontal doglegs DRI Ο DRX DRX+ arc RTM -20 Turnaround -40 -60 • 8° arc in spin rotators -80 BCs are net straight -100 120 -140 L -70 -40 -30 z position [m] -60 -50 -20 -10 DR-RTML hand-off point defined Twiss Functions of DRX Arc extraction point where  $\eta, \eta' \rightarrow 0$ ┓╹┏<sup>┉</sup> 100 RTML mostly defined by need to follow LTR geometry 0 E Stay in same tunnel **DRX** connection Design is OK at conceptual level 140 S Position [m]

N.Solyak, RTML



N.Solyak, RTML

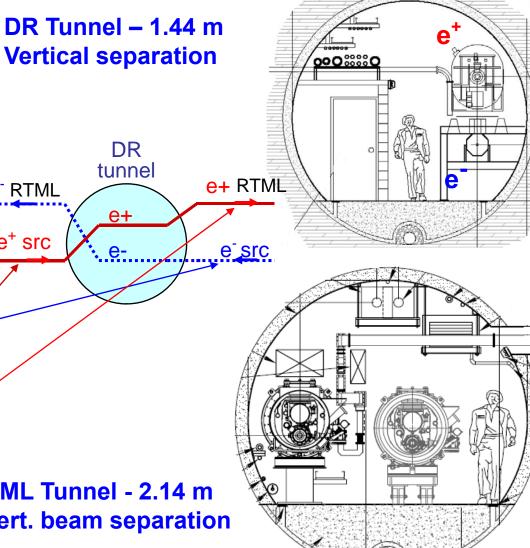
## DRX Connection (2)

DR

tunnel

e-

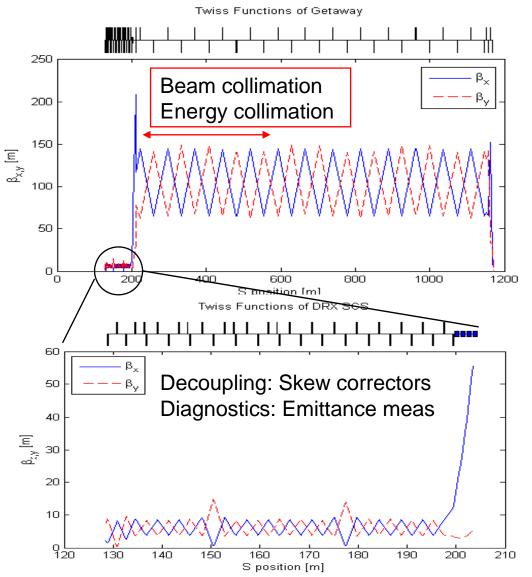
e<sup>-</sup> RTML


e<sup>+</sup> src

 Current design is entirely planar (horizontal plane)

ir iit

- DRs are in different planes
- Sources need cryomodules and SC solenoids
  - Big heavy objects which want to sit on the floor
- Working agreement between sources, DR, RTML, CFS:
  - CMs and SC solenoids always sit on floor
  - RTML hangs from source tunnel ceiling at same location as in linac tunnel


**ML Tunnel - 2.14 m** Vert. beam separation

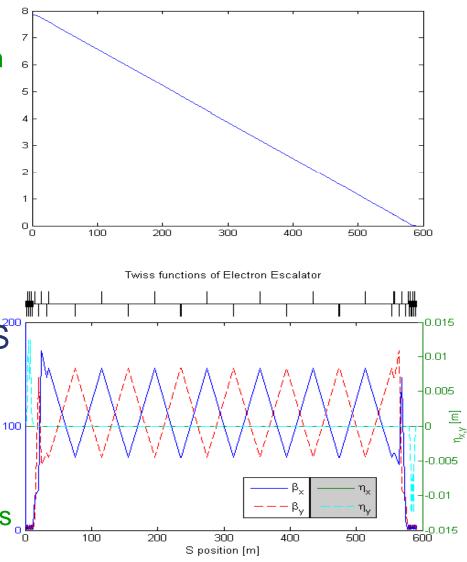


N.Solyak, RTML

# "Getaway" Straight (or "DR Stretch")

- About 1.1 km long
- Has two parts
  - "Low-beta" region with decoupling and emittance measurement
  - "High-beta" region with collimation system
- Includes PPS stoppers
  - For segmentation
- Good conceptual design
  - Need to match exact required system lengths
  - Beta match between lowand high-beta optics not great
- Length of "Getaway" can be minimized to ~ 500m




N.Solyak, RTML

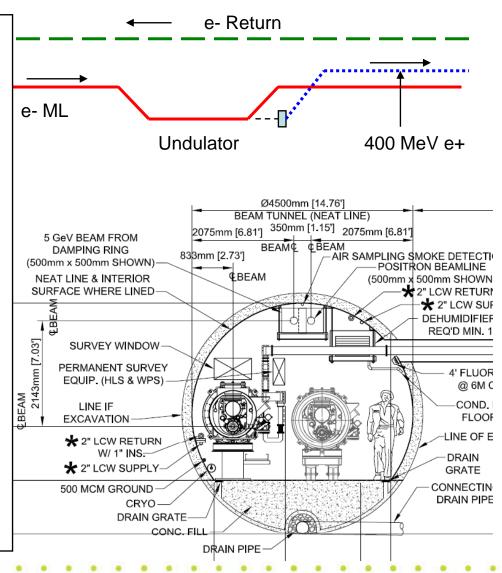


## **Escalator**



- -Descends 7.85 meters over ~590 m
- Uses 2 vertical arcs separated by weak FODO lattice
- Good conceptual design
  - Uses Keil-style eta matching
  - Beta match between "strong" and "weak" lattices not great
- Escalator-linac tunnel connection does not match CFS<sup>®</sup> design
- Need to make match according CFS design
  - Shorter length for smaller vertical separation of the DR and ML tunnels and larger slope, min ~200-300 m



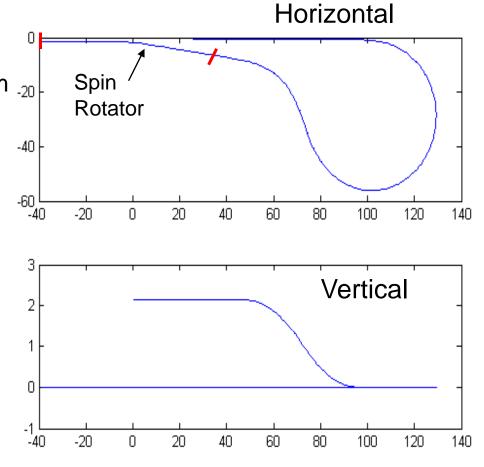



### **Return Line**

- Weak FODO lattice at ML ceiling elevation (1Q/~36m), XY<sub>corr</sub>+BPM
- Vertically curved tunnel thru ML area
  - Dispersion matching via dipole correctors
- □ Laser-straight tunnel thru BC area
- Electron line ~1.2 km longer than positron

Goes thru undulator area

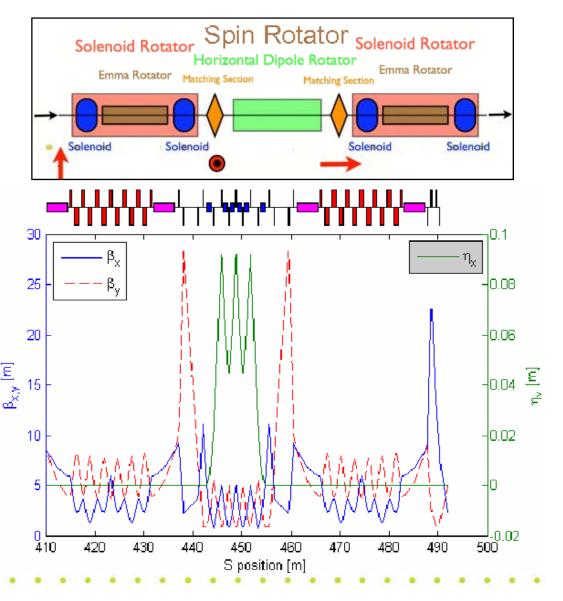
Electron Return line and positron transfer line need to be exchanged






Actually does 3 jobs

lİİ,


- Turns the beam around
  - Note: need to bend away from .20 service tunnel
- Brings beam down from ceiling to linac elevation (near floor)
  - Vertical dogleg
- Adjusts x position to meet linac line
  - Horizontal dogleg
- Order: H dogleg, V dogleg, turnaround
- Risk high packing area ~90% magnets. Tunnel length is already min.



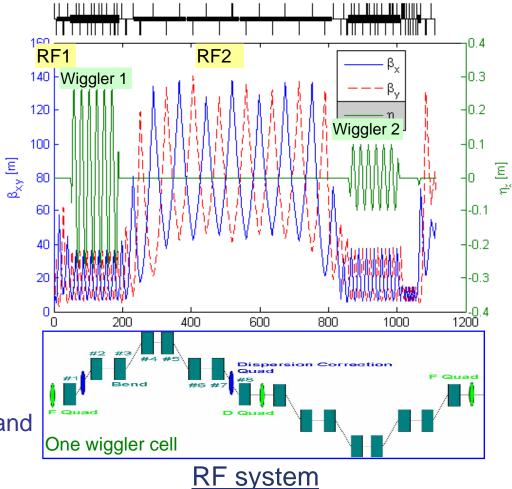


## Spin Rotation

- Design based on Emma's from NLC ZDR. Arbitrary spin orientation in IP
  - 2 solenoids with Emma rotator between them
    - Rotate spin 90° in xy plane while cancelling coupling
  - -8° arc
  - Rotate spin so Another 2 solenoids + Emma E
- Basic design seems sound
  - Very small loss in polarization from vertical bending in linac tunnel



N.Solyak, RTML

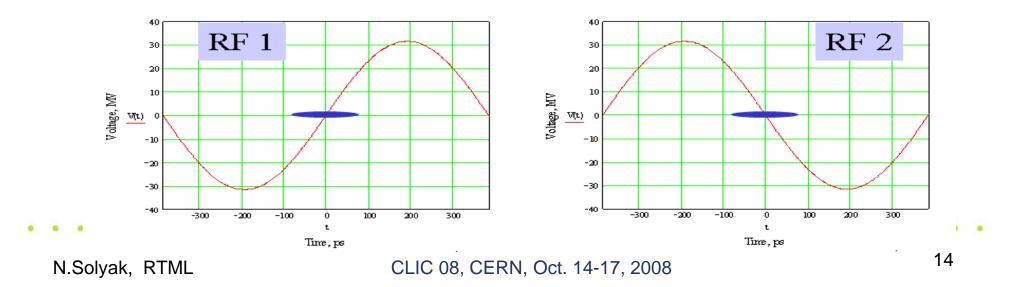

## ILC Baseline Bunch Compressor

- Longitudinal emittance out of DR:
  - 6mm (or 9 mm) RMS length
  - 0.15% RMS energy spread
- Want to go down to 0.2-0.3 mm
- Need some adjustability
- Use 2-stage BC to limit max energy spread
  - 1<sup>st</sup>: Compress to 1 mm at 5 GeV
  - 2<sup>nd</sup>: Accelerate to 15 GeV and

#### Compress to final bunch length

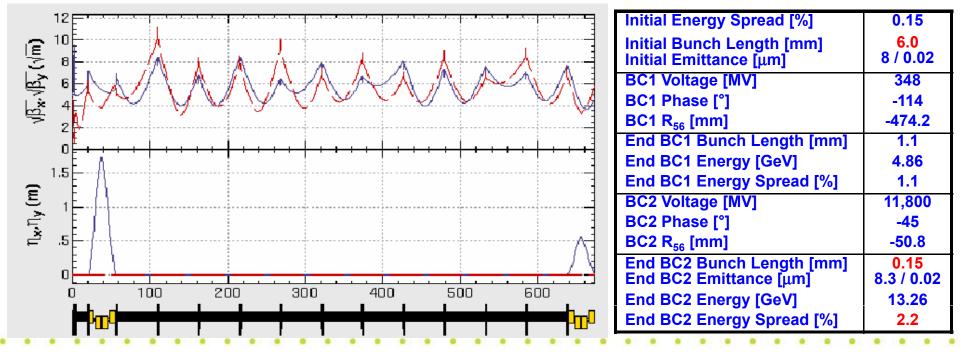
- Both stages use 6-cell lattice with qua and bends to achieve momentum compaction (wiggler)
  - Magnet aperture ~ 40cm
- Total Length ~1100 m (incl. matching and beam extraction lines)
- Minimum design is possible if assume compression 6→0.3 mm only
  - Shorter 2-stage BC
  - Or short single-stage BC
  - •• Cheaper magnets

N.Solyak, RTML




- BC1: 3 CMs with quads (+spare kly)
- BC2: 14 RFunits (3CM's each)+1spare
- Total 48 CM's per side




The required tolerances for amplitude and phase stability in BC are very tough:

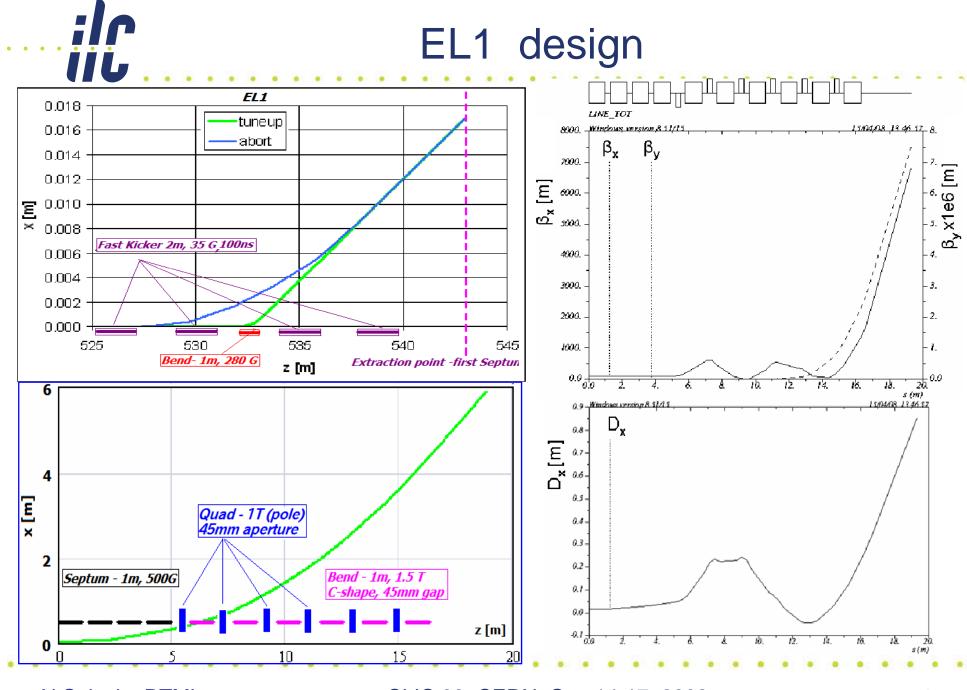
- Phase stability tolerance: 0.25°/0.16° long/short bunch
- Amplitude stability tolerance: 0.5%/0.35% rms long/short bunch
- Bunch compressor RF cavities operate close to zero-crossing:
  - Phase 105° off-crest (BC1)
  - Phase 27.6° off-crest (BC2)
- The gradient in the RF system ~30 MeV/m. Zero crossing regime complication for LLRF system.
- Study of the phase and amplitude stability of the RF system @ FLASH (2009).



## Alternative Bunch Compressor

- An alternate bunch compressor design exists (~700m)
  - 6-cell wigglers (~150 m each, 102 bend magnets) replaced by chicanes (~40 m each, 4 bend magnets)
  - Advantages: Shorter, Simpler, Cheaper (less magnets)
  - Disadvantages: Big x offset from straight line (~1.8 m)
    - » Doesn't have natural locations for dispersion tuning quads
  - Length Saving: ~ (200 ÷ 300 m)




N.Solyak, RTML

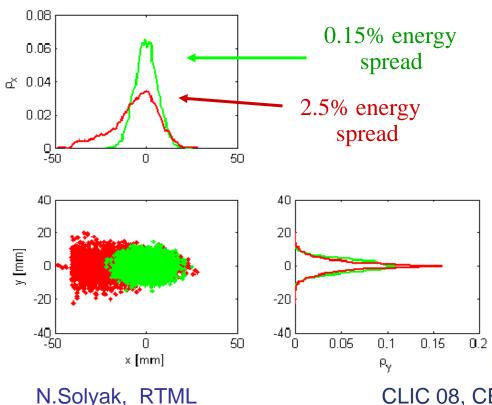
## **Pulsed Extraction Lines**

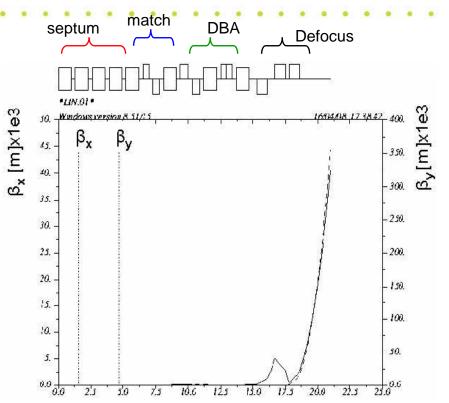
- 3 Extraction Lines in each RTML side for emergency beam abort (MPS) and tune-up
  - EL1 after DR exit, diagnostics, global correction
  - 5 GeV,  $\sigma_{E}$  = 0.15%
    - Keep DRs running @ full power during access
    - Keep DRs and extraction tuned during access
    - MPS abort (~100ns)
  - ELBC1 after BC1
  - 5 or 4.88 GeV,  $\sigma_{\text{E}}$  = 0.15% and 2.5%
    - Tune up BC1 without beam in BC2
    - MPS abort
  - ELBC2 after BC2
  - 15 GeV,  $\sigma_{\text{E}}$  = 0.15% and 1.8%
    - Tune up BC2 without beam in linac
    - MPS abort
- All have 220 kW beam handling power
  - Full power for DRX, BC1
  - 1/3 power for BC2

ĪĪĻ





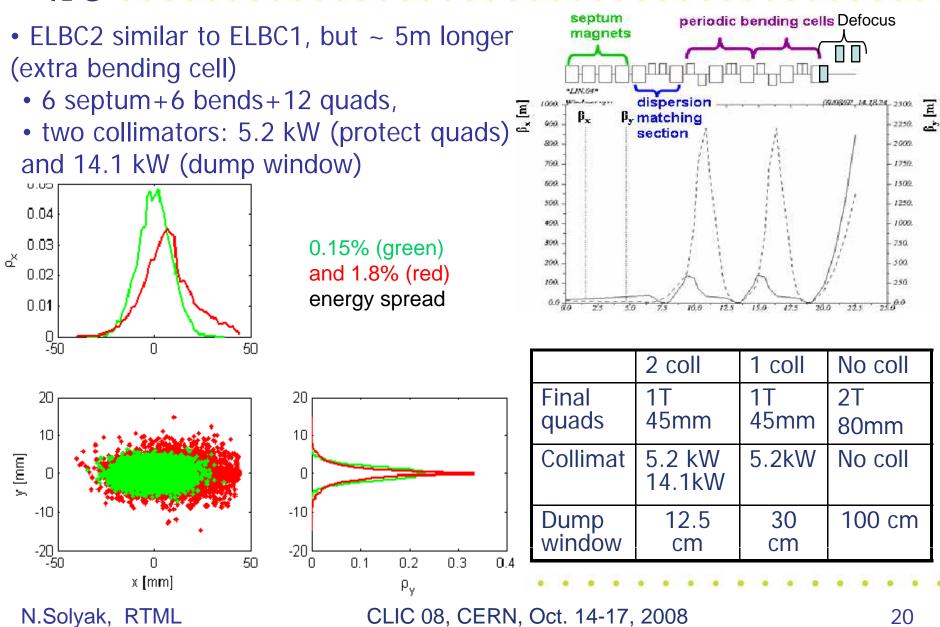

N.Solyak, RTML


CLIC 08, CERN, Oct. 14-17, 2008



## **ELBC1** Line Design

- Separation of the two lines at CM location (14m down) - 2m;
- Separation of the dump and the ML  $\sim$ 5 m;
- DBA to decouple dispersion and beam size issues
- Beam size on the dump window  $\sim\!15\ mm^2$
- Length = 20.7 m






- Two collimators to protect downstream triplet
- intercepts 3.9 kW/train and 18.8 kW/train

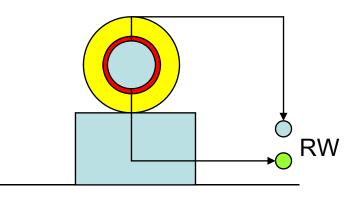


## **ELBC2** Design



# Halo and Energy Collimation

- ILC specification:
  - Needs to limit halo at end linac to ~10<sup>-5</sup> of total beam power
- Halo Collimation after DR
  - BDS specification as requirement
    - Halo power ~ 220 W
    - Provide machine protection
      - Collimators stop out-of-control beam from DR
      - Need to keep out-of-control beam from frying collimators, too!
- Energy collimators after betatron collimation system
  - Scattered particles
  - Off-momentum particles / bunches from DR
- Additional energy collimators
  - In BC1 wiggler
  - In BC2 wiggler
- Collimators in Extraction Lines ELBC1 and ELBC2
- Need to understand machine protection issues for these collimators

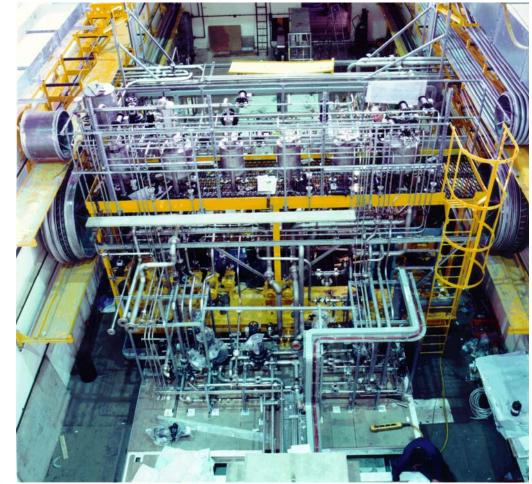

N.Solyak, RTML



- Magnets and power supplies (~4600 Magnets)
  - SC quads/correctors/solenoids (36/54/8),
  - RT quad, correctors, septa
  - Pulsed magnets, kickers, bends, FB/FF correctors
- Vacuum system
  - Current baseline
    - 2 cm OD stainless chambers
      - Exceptions: BC bends, extraction lines, CMs
    - 20 nTorr in long line from DR to turnaround
      - Passivated to reduce outgassing rate
    - 100 nTorr in balance of system (turnaround to linac)
- Dumps and Collimators
  - 3 dumps per side with 220 kW capacity
  - Betatron and energy spoilers / absorbers with ~200 W capacity (20 adjustable aperture (5W) +28 fixed-aperture collimators)/side
  - Few collimators with ~10 kW capacity

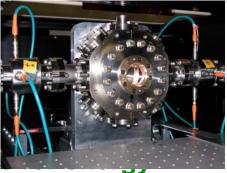


50cm Diameter x 2m long Aluminum Ball Dump with Local Shielding




Cost (\$1M each) is dominated by:

- 3-loop radioactive water processing system
- The CFS infrastructure, shielding, etc.


Similar dumps in use at SLAC

### 50kW 3-loop 2006 Rad Water Cooling for ISIS Neutron Spallation Targets





- Instrumentation
  - BPM's at every quad, plus high dispersion points in wigglers
    - Serve a number of functions: feedback, feed-forward, beam-based alignment and steering, energy diagnostic
    - room-temp C- or L-band (BC2 upstream) cavity BPM's
  - 3 suites of Laser Wires (LW) in each RTML
    - 4 wires per suite, set up for 2D emittance measurement
  - Bunch length measurement
    - LOLA (3.9 GHz) + screens in each BC
    - Possibly EO monitors (not in RDR baseline)
  - SLMO's (Synchrotron Light monitor) in BC wiggler spread measurement (4)
  - 3 dedicated phase monitors per side
  - Toroids, 4 ion chambers and 150 photomultipliers (MPS)



## Technical Systems (3)

- 1.3 GHz SC RF system plus supporting utilities
  - 48 CMs per side (1 RF source per 3 CMs, as in ML)
    - 3 CM x "8Q" in BC1
    - 15 RFunits x "9-8Q-9" in BC2
    - BC1: 2<sup>nd</sup> source with RF switch for redundancy

### – LLRF issues

- Phase stability
- Beam loading compensation
  - Beam loads RF at decelerating phase
  - Unlike ML, need to "jump" both amplitude and phase of RF source @ beam time

### Cryo system (~6.5% cost of ML Cryo system)

- Part of ML cryogenic system
  - Also supports SC solenoids in spin rotator
- BC's are laser-straight
  - Probably OK only ~1 km long

N.Solyak, RTML

### Sources of emittance degradation

#### - Synchrotron radiation

- From DRX arc, turnaround, BC wigglers
- Beam-ion instabilities
- Beam jitter
  - From DR
  - From stray fields
- **Dispersion** 
  - DR extraction
  - Misaligned quads
  - Rolled bends

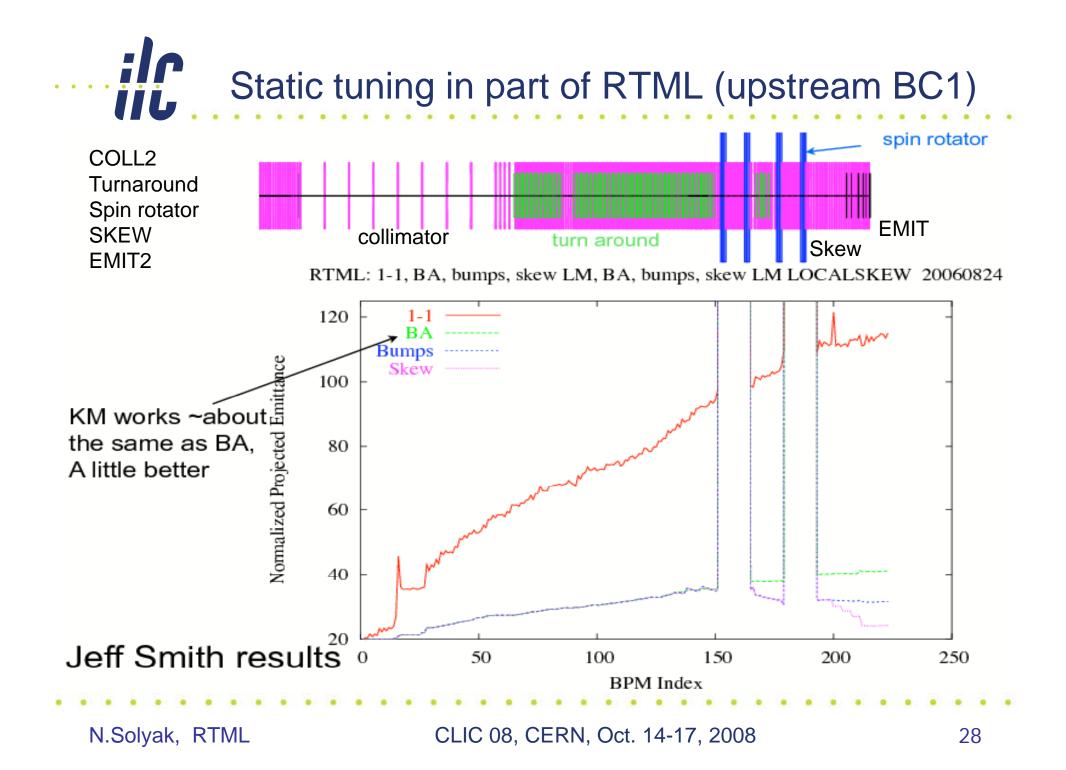
#### - Coupling

- DR extraction septum
- Rolled quads
- Misaligned bends
- Quad strength errors in spin rotator
- Pitched RF cavities
  - Produce time-varying vertical kick
- RF phase jitter
  - Varies IP arrival time of beams
- Beam halo formation
- Collimator and cavity Wakefields
- Space charge
- Resistive wall wakes in vac. chamber

### LET BBA @ ILC RTML

### Several BBA used:

- Ballistic Alignment (BA)
- Kick minimization (KM)
- Dispersion Free Steering
- Dispersion Bumps
- 4D Coupling Correction
- Adaptive alignment
- Wakefield Bumps


### Feed-Back and Feed Forward system



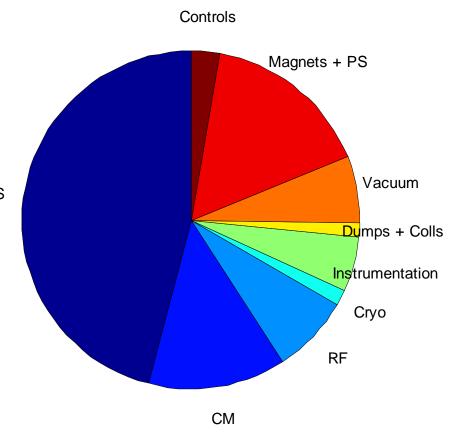
Our old canonical set, should consider more realistic misalignments... Survey people would prefer we use cold specs for all components.

| Error             | Cold Sections | Warm Sections | With Respect To |
|-------------------|---------------|---------------|-----------------|
| Quad Offset       | 300 µm        | 150 µm        | Cryostat        |
| Quad Tilt         | 300 µrad      | 300 µrad      | Cryostat        |
| Quad strength     | 0.25%         | 0.25%         | Design Value    |
| BPM Offset        | 300 µm        | 200 µm        | Cryostat/Survey |
| BPM-Quad Shunting | 20 µm?        | 7 µm          | Quadrupole      |
| BPM Resolution    | 1 µm          | 1 µm          | True Orbit      |
| Bend tilt         | 300 µm        | 300 µm        | Survey Line     |
| Bend Strength     | 0.5%          | 0.5%          |                 |
| RF Cavity Offset  | 300 µm        | n/a           | Cryostat        |
| RF Cavity Pitch   | 200 µrad      | n/a           | Cryostat        |
| Cryostat Offset   | 200 µm        | n/a           | Survey Line     |
| Cryostatic Pitch  | 20 µrad       | n/a           | Survey Line     |

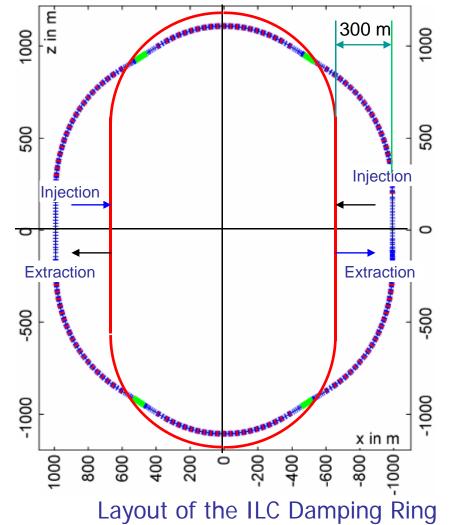
N.Solyak, RTML






### • Not there yet... Budget just 4 nm (factor ~2 larger)

| Region                      | BBA method                                                     | Dispersive or Chromatic<br>mean Emittance Growth               | Coupling mean<br>emittance<br>Growth     |
|-----------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|
| Return Line                 | Kick Minimization<br>and feed-forward to<br>remove beam jitter | 0.15 nm                                                        | 2 nm (without correction)                |
| Turnaround and spin rotator | Kick Minimization<br>and Skew Coupling<br>Correction           | 1.52 nm (mostly chromatic)                                     | 0.4 nm (after correction)                |
| Bunch<br>Compressor         | KM or DFS and<br>Dispersion bumps                              | greater than 4.9 nm (KM +<br>bumps)<br>2.68 nm (DFS and bumps) | 0.6 nm (without<br>correction)           |
| Total                       |                                                                | ~5 nm almost all from BC                                       | 3 nm (without<br>complete<br>correction) |


N.Solyak, RTML

# Cost and its Distribution

- CFS + BC RF system = 68% of costs
  - Correlated much of CFS cost is housing for BC cryomodules
- Remainder dominated by RT <sub>CFS</sub> beam transport
  - Quads, correctors, BPMs, vacuum system
- Small amount of "exotica"
  - Non-BPM instrumentation, controls, dumps, collimators



## ILC Damping Ring – New Design



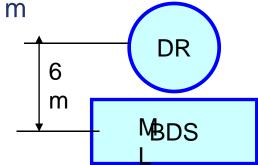
New ILC DR lattice is shorter.
Punch length – 6 mm

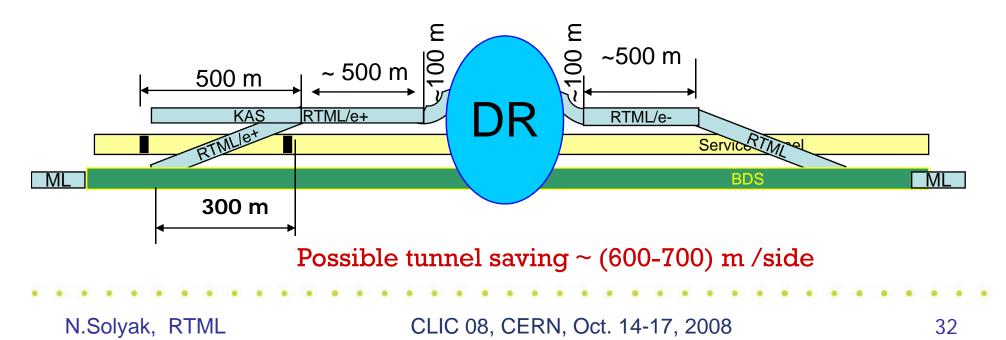
- Bunch length = 6 mm In old RDR design:
  - 9 mm (easy)
  - 6 mm (moré challenge)
- Energy spread = 0.15%
- New DR increases the length of the RTML linac in each side (e<sup>+</sup> and e<sup>-)</sup> of ~300 m, but not CFS
- Need redesign/adjust DRX lattice to accommodate changes in DR

N.Solyak, RTML

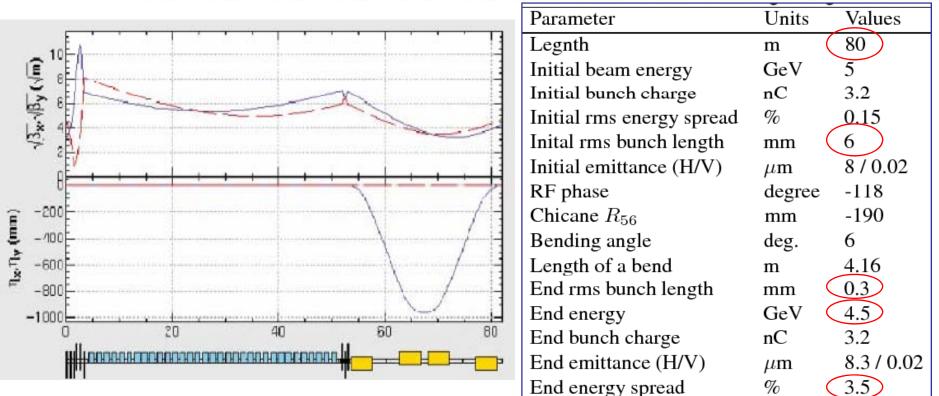
blue - old RDR (2007); red - new DCO (Feb.2008)

Possible configuration of the RTML/source tunnels

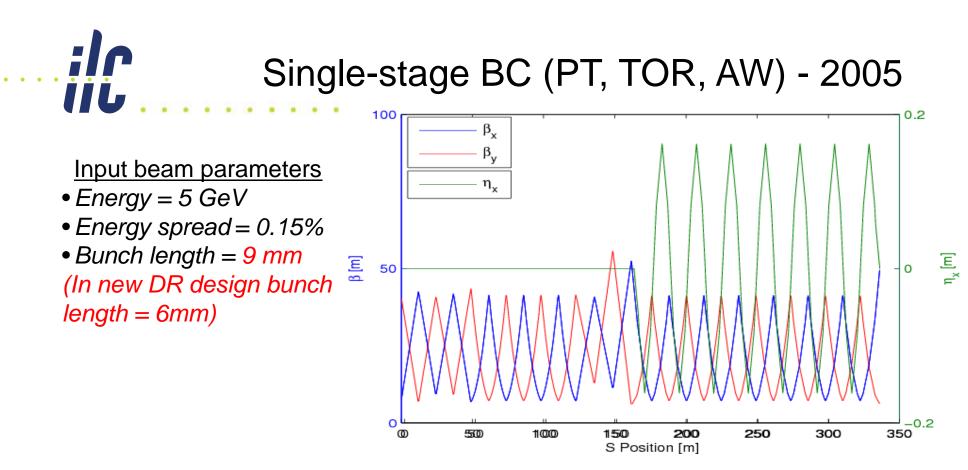

Discussion at Dubna ILC workshop, June, 2008


Minimum length of separate RTML/source tunnel

- Smaller vertical separation DR/BDS tunnel: 10m  $\rightarrow$  6 m
- Length constrains:


ĪİĹ

- •Electron source side (straight) ~ 500 m
- Positron source: 950m=500(KAS)+450m(SCL/TRL)
- •RTML tunnel length ~ 900 m (now ~1250 m)






# Short Single stage BC (Eun-San Kim)-2006



- Compress 6mm  $\rightarrow$  0.3mm only
- Acceleration  $4.5 \rightarrow 15$  GeV will require 15 RFunits (incl. 1 spare) ~ 600 m
- Energy spread @ 15 GeV 3.5%\*(4.5/15) ~ 1%
- BC length ~700m. Saving ~ 1100-700 = ~ 400m
- No ELBC2 extraction line
- Disadvantages: No flexibility, tunability, larger emittance growth ???



#### Single -stage BC:

- In case  $6 \rightarrow 0.3$  mm energy spread ~ 4 %
- Acceleration from 4.6 $\rightarrow$ 15 GeV will reduce energy spread by factor of ~3
- BC length  $\sim$  340m, post-acceleration  $\sim$  600m, Saving 1100-940 =  $\sim$  160m
- Disadvantages (compare to 2-stage BC):
  - Low flexibility and tunability, emittance growth ???

N.Solyak, RTML



Further RTML work

- Study Possible Cost saving options:
  - Minimize length of RTML/source tunnel
  - Alternative 2-stage or 1-stage bunch compressor
  - Reduce pulsed extraction Lines from 3 per side to 2 per side
- Lattice design aand emittance studies
  - Re-evaluate/match geometry and optics to accommodate DR changes, CFS req's and cost saving options
  - Demonstrate require emittance budget for Static tuning
  - Dynamic tuning (ground motion, jitter, AC magnetic fields, etc)
  - Design FB/FF system
- Design/prototyping critical components



### RTML team:

## SLAC, FNAL, ANL, LBL, Cornell Univ., KEK, DESY, INFN, CERN, KNU/Korea, UBC, IHEP/China

Design and Performance: *P. Tenenbaum, J. Smith, S. Molloy, M. Woodley, S. Seletskyi, E.-S. Kim, D.Schulte, A. Latina, K. Kubo, M. Church, L. Wang, P. Spenzouris, M. Venturini, I. Reichel, J.Gao...* 

Engineering and Civil: <u>V. Kashikhin, P.Bellomo, T.Mattison</u>, <u>Y.Suetsugu, J. Noonan, X.Qiong,</u> <u>P.Michelato</u>, <u>T.Markiewicz</u>, <u>R.Larsen</u>, <u>M.Wendt</u>, <u>John Carwardine</u>, <u>C.Saunders</u>, <u>T.Peterson</u>, <u>F.Asiri</u>, <u>J.-L Baldy</u>, <u>G.Aarons</u>, <u>T.Lackowski</u>, ...

N.Solyak, RTML