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Emittances: ( ) yxyxyxyx ,
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In the centre of the middle bending magnet we measure:

( ) yyyy ,,,, δ

g g
Horizontal and vertical rms beam sizes,       , and beam tilt angle.
Horizontal and vertical dispersions η

yx,σ

Horizontal and vertical dispersions,       .yx,η

We perform an entire measurement of the (average) horizontal 
and vertical beta functions in all 177 quadrupoles (1%, 0.5% rms 
precision) and use these to fit the model beta functions Theprecision), and use these to fit the model beta functions. The 
model gives the beta functions,      , in the centre of the dipole.
The natural rms energy spread is assumed to within 10%

yx,β

σThe natural rms energy spread,      , is assumed to within 10%, 
since the beam shows longitudinal stability. Verified by streak 
camera measurement.

δσ
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camera measurement.



Beam size measurement
The π-polarization method(*): 
An image of the beam is formed from 
vertically polarized visible-UV 
synchrotron radiation.

A π phase shift between the two 
radiation lobes ==> Iy=0=0 in ”FBSF”

Vertical SR 
opening angle 
~ ±4.5 mradV

“Filament-Beam-
Spread-Function”

λ=400nm

Lense- beam
Image 
plane

Finite vert. beam size ==>

Non-zero central intensity
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p y

*) Old idea springing from MAX-lab, see EPAC’96 Andersson, Eriksson, Chubar



Beam size measurement: beamline components

CRUCIAL! the ”finger” absorber
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Beam size measurement: precision
Vertical: Predicted profiles (SRW*)  
for beam height values 0, 6.4, 9.0
µm and measuredµm, and measured.
Statistical rms error = 0.1µm
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Horizontal: Predicted profiles 
(SRW)  for beam width values 54, 
57, 60 µm, and measured.
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Statistical rms error = 0.3µm
*) Synchrotron Radiation Workshop, see EPAC’98 Chubar, Ellaume

Horizontal position



Dispersion 
measurementsmeasurements

Dispersions are measured 
in the same source pointin the same source point, 
by tracking the image 
”centre of gravity”-g y
movement for small RF 
changes.  
±500 Hz  (α known) 
∆E/E=±0.165% ==> 
∆x~±40μm ; ∆y~±4μm∆x~±40μm ; ∆y~±4μm 
Rms precision = 0.4 μm Camera angular 

alignment better
Rms precision in dispersion 

determination ~ 0.25 mm

alignment  better 
than10 mrad, using 
horizontal correctors.

8/18 Å A, CLIC Workshop16 Oct. 2008



40

20

30

Betatron coupling

10

20 Betatron coupling 
suppresion using 8 
skew quadrupoles in 

0

Y
[
m
]

q p
non-dispersive 
regions. 

-10

Integrated strengths 
all below 0.006/m.

-30

-20
all below 0.006/m.

-40

9/18 Å A, CLIC Workshop16 Oct. 2008

-60 -40 -20 0 20 40 60
X[m]



εy reduction in user top-up operation, I=400mA

( )m14.055.13 ±=yβ
m10μσ ≈yi

y

( )mm55.03.2 ±=yη

( ) pm7.02.3 ±=yε

Last skew tuning

( ) py

( )%020050 ±yε
ID gap changes ( )%02.005.0 ±=

x

y

ε

( )m009.0431.0 ±=xβ
( )mm0.13.27 ±=xη
( ) nm9.07.03.6 −+=xε4 days
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Which are the contributing factors for acheiving 
the low emittance ratio in SLS?the low emittance ratio in SLS?
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Contr. 1

Magnet Alignments and BPM/Corrector scheme

Beam Position Monitors

Dipole H/V correctorsDipole H/V correctors
Skew quad correctors

Alignment tolerances (rms) 
I di id l l i d

Average phase advance 
Individual elem. on girders:

X,Y Quad, Sext 50 μm
Rolls 100μrad

between BPMs:

Y 43 deg
X 102 deg
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Rolls 100μrad X 102 deg



Contr. 2: Frequent beam-based BPM check-ups 
• In each sector the reference orbit is nailed to the centres of the 

six quadrupoles adjacent to the BPMs, by help of frequently 
t d b b d BPM ff t h krepeated beam-based BPM offset check-ups.

Changes beyond g y
the Gaussian ( rms 
~10 μm) indicate a 
machine 

difi ti
BPM offset 

modification measurement 
errors, a few μm
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Contr. 3: User facility! 
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Contr 3: User facility! 

User demands

• Orbit stability, short term and long term ==>The orbit position is y g p
extremely well probed by the numerous beamlines. In 
principle, all orbit changes are carefully tracked down.

• Constant beam current (Top-up) ==> Thermal stability, 
possibility for careful fine tuning of skew correctors .

• User orbit bumps? No major problem if less than 300-400 μm. 
The smallest emittance ratio is reached with user bumps. 
Former when being in the mm range they caused 20Former,  when being in the mm range, they caused                  .

• IDs? As seen most ID changes have minor influence, and 
i th ll t itt ti i h d i

pm20≈yε

again, the smallest emittance ratio is reach during user 
operation with most ID gaps closed.
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Outlook for coupling suppression in SLS:

• There is still a factor 6 to be gained in vertical emittance before g
the intrinsic limit 0.55 pmrad (due to the fundamental quantum 
nature of SR emission) in SLS is reached.

• The whole ring was eqipped with 24 instead of the 8 skews in the 
non-dispersive regions. An SVD based correction scheme was 
applied to minimize the coupling ==> Marginal effect on εapplied, to minimize the coupling ==> Marginal effect on εy.

• Simulations show that residual vertical dispersion (rms ~3mm), 
induced by beam passages off mid plane in sextupoles is theinduced by beam passages off mid-plane in sextupoles, is the 
major contribution to εy.
6 k i di i i t tt k th id l ti l• 6 new skews in dispersive regions to attack the residual vertical 
dispersion.
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Outlook for damping rings: Sextupoles

• For a dedicated damping ring, one could contemplate adding p g g p g
shunts (and maybe even remote levelling) to each sextupole and 
do a proper Beam-Based Alignment of them (tedious, but 
maybe most effective?)maybe most effective?)

Sextu
pole
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Outlook for damping rings: the π-polariz. metod?
E E = 3 GeVEx: 
Light 
source
MAX IV

E = 3 GeV
C = 528 m
I = 500mA 
εx = 250 pmradMAX IV x p
εy = 1 pmrad

βy = 14 m  ==> σy=3.7μm  OK!y y
βx = 1.8 m ==> σx=21μm
Large hor. acc. angle  ==> OK!
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