

CLIC workshop
"Technical Issues, Integration & Cost "
working group

Supporting System

Risto Nousiainen

16.10.2008

Outlook

- Supporting system
 - Module components and accessories
 - Requirements
- Current configurations
- Supporting / Alignment strategy
- Subsystems
- Installation requirements
- Integration requirements
- · Thermo-mechanical model
- Conclusions

Supporting scheme

Supporting system

PA = pre-alignment, BBA= beam-based alignment

Current Configurations

TANK

SEALED

NB. Thanks to A. Samoshkin for his contribution

5

Risto Nousiainen, 16.10.2008

Alignment/supporting strategy

Risto Nousiainen, 16.10.2008

NB. Thanks to H. Mainaud-Durand for her contribution

16.10.2008

Subsystems

 MB quad support MB support &DB Fixed

Mech. Adjustment support Developed in collaboration with Act. alignment TS-MME Coarse alignment Final alignment Stabilization system **T**position +time Risto Nousiainen, HELSINKI INSTITUTE OF PHYSICS Courtesy of F. Lackner

Assembly, Transport and Installation requirement

Alignment accuracy should not be directly a function of module installation precision

Non sequential installation required

Do what you can at surface!!

Development of detailed concept for installation

Strategy of assembly / transportation / installation developed with TS

Integration requirement

- Alignment system
- Stabilization system
- Interconnections
- Vacuum system
- Cooling system
- Tunnel integration

System interactions need to be assessed coeffing circuits external to PETS

Main beam girder - standard module

- Definitions
- Input
- Girder & Material
- Moment of inertia
- Loading
- Calculation step1
- Deflection curves for subloads
- Superposition
- Deformation step1 max values for each subsection
- Deformation step2 Plot for the deflection curve
- Moment step1 max values for each subsection
- Moment step2 Plot for the deflection curve
- Shear Stress step1 max values for each subsection
- Shear Stress step2 Plot for the deflection curve
- Summary of results
- Plots
- Analytic results for the optimization

Conclusions and future work

- Conceptual design of the supporting system is well advanced
- Module supporting system consist of extensive amount of R&D word in the near future
- Different subsystems and procedures such as alignment, stabilization, cooling, assembly, transportation and installation need to be developed as parts of supporting system.
- Organization of the work between collaborators is essential
 - Organization of work is on going
- Current work
 - Interconnection specification finalization -> soon to development iteration
 - Module assembly, transportation and installation sequence
 - Creek collaboration for the girder material studies
- Future work
 - Study mechanical model of the module
 - Next iterations for the specification for the supporting and alignment systems
 Increase the amount of collaborators
 - Increase the amount of collaborators

