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Outline 

 Introduction to MPC 
– Motivation 
– Basic controllers 
– Constraints  
– Multivariable  MPC 
– Implementation methodology, MHE, Identification 
– Software and industrial tools 
– Economic optimization 

 Non linear MPC 
 Industrial examples 
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Why MPC? 
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 Increasing pressure on the control systems 
to fulfil new and stronger specifications. 

 Increasing needs to rationalise upper level 
decisions linked to plant economy, and to 
integrate and improve all different 
operating levels. 

Increasing demands on 
product quality, costs 
optimisation, productivity, 
flexibility to adapt to a 
wide range of operating 
conditions, security, care 
of the environment,.. 

Larger and more complex 
plants 



Economic optimization and Control 

Set Point 

Set Point 

Upper Constraint 

l Better control means smaller changes around the prescribed 
set points       better product quality 

l Reduced variance allows to move set points respecting the 
constraints, giving room for optimization 
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Economic optimization and Control 
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What is the situation of process 
control? 

Mature technology 
Basic architectures and 

functions have not 
changed very much 

How is it able to deal 
with the problems at 
plant-wide scale? 
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Conventional control 

Most of the loops 
implement PID controllers 
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Signal based 
 
Not very efficient 
with:  
process delays 
Non-minimum phase 
or unstable processes 
Large disturbances 
Loop interaction… 
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Conventional control 

Control structures difficult 
to maintain 
Interactions 
Saturations 
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What is required…. 

Model based 
– Predicts the future  process behaviour, taking into account 

complex dynamics and measurable disturbances 
Multivariable 

– Able to deal with multiple manipulated and controlled 
variables simultaneously 

 Constraints 
– On manipulated and controlled variables 

 Economic optimization 
– The process can be driven with an economic target 
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Multivariable Predictive Control 
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manipulated and 
controlled variables 
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process model in an 
optimal way, improving 
control performance. 
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Model Predictive Control 
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Model Predictive Control (MPC) 
MBPC 

l Control strategy based in the on-line use of a model to predict the 
future behaviour of the process output over a certain temporal 
horizon, as a function of the future control actions 

l The best control action is selected using an optimization procedure 
l Many methods sharing some common principles (DMC, GPC, 

EPSAC, PFC, PPC, RMPC,..) 

Process Optimizer u w y 
v 

Predictor y(t+j) 

MPC 
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MPC 

MBPC 
PID 
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MPC, control implementation 

u(t) 
u(t+j) 

y(t+j|t) ^ 

t t+1 t+2 ... 

time 

past future 

time 

Set point 

Output prediction CV 

MV 

SP 

At time t, u(t) is applied to the process, but… 

…at time t +1, the whole process is 
repeated with the information available Moving horizon policy 
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How to obtain models? 
The model can be formulated using 
physical laws, but normally is 
computed from input output data 
obtained with experiments 
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t 

u 

y(p) 

Model parameters  p can be 
selected in order to minimize an 
error function: 
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DMC Dynamic Matrix Control 

Model: step response (linear) + disturbance 
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DMC, Dynamic Matrix Control 
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DMC, Dynamic Matrix Control 
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Notice that, in steady state, ∆u = 0 and pj = yp, so, the predictions 
correspond to the real process output, eliminating a possible offset 22 



DMC, optimal choice of u 
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DMC offset 
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So, the predictions in steady state are unbiased and, if the optimization 
drives the predictions to w, then the process output yp will be equal to the 
set point w, providing offset free control. 
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Measurable disturbances: incorporates 
feedforward compensation 
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The effect of measurable disturbances is incorporated in the free response pj 



Constraints 
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Mm U)jt(uU ≤+≤Range of  control 
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Rate of change of u: 

Range of controlled 
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Should be added to the 
computation of the 
optimal decisions 

30 



Constrained 
DMC  
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x

Efficient 
numerical 
software 

A QP problem 
has to be 
solved on-line 
every sampling 
period 

Feasibility 

Nu = 2 
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Multivariable formulation 

A model relating the 
controlled variables with 
the manipulated ones 
and the measurable 
disturbances is needed 
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Multivariable MPC  
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Predictions: 

Min  Cost 
function: 

γ  Equal concern errors    β  move suppression factors 

With constraints: QP problem solved every sampling time 
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Time and efforts 

Without model Process 
analysis 

Controller 
tuning 

With model Control 
especifications 

Modeling 
 

Identification 

Able to deal with complex dynamical systems, with interaction, constraints, different 
number of MV and CV, disturbances, ….   and basic ideas easy to understand 
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Where is MPC placed in the 
control hierarchy? 

In order to implement properly  
the actions taken in one level,   
the lower levels must work correctly. 

Level 0 
Field Instrumentation 

Level 1 
Conventional Control 

PID, DCS 

Level 2 
MPC 

Level 3 
Optimization 

Economic interest 
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MPC – Optimal control 
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y(t+j|t)ŷ(t+j|t)^

t t+1 t+2 ...

time

past future

time

Set point

Output predictionCV

PV

MV

OP

SP

Model
u y
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control 

An open loop 
optimization problem is 
solved every sampling 
time, starting in the 
current state 

u(t), u(t+1), u(t+2) are 
considered independent 
variables in the 
optimization problem 

ProcesoController
uw y

SP

u(t)=kx(t) 

In optimal control u(t+j) are 
not independent and the 
target is the control law (k)  37 



Is MPC always stable en closed 
loop? 

With finite horizon N2, there is no 
guarantee that, even with a perfect 
model, the application of the 
“optimally computed” control 
signals u(t) of MPC leads to a stable 
closed loop system  
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time 
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Nu Control  
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time 
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Infinite horizon (or equivalent 
formulations)  si required to 
provide nominal stability 
guarantee 



Can MPC be applied to fast 
processes? 

Multi-
parametric 
quadratic 
programming 
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State 
space 
model 

The solution of the MPC 
problem depends on the 
current process state 
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Multiparametric MPC 

It is possible to obtain a 
closed loop expression 
for the control action as 
a function of the current 
state 

 

Regions at which an 
explicit control formula 
applies, that can be 
computed off-line 

 

Problems with the 
number of regions 
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Example: BB converter 
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BB converter 
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Can MPC replace PID? 
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Design equation 
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Economic optimization 
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Economic optimization 

MPC 

w 

y 
SP 

DCS    Process 

Economic 
Optimization 

Most of commercial MPC 
incorporate an economic 
optimization layer The economic 

optimization 
takes advantage 
of the MPC 
model and 
constraints, using 
them quite often 
to compute the 
local optimal 
targets 
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Economic optimization 
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DMC Plus (Aspen) 

u(t) 

t t+1 t+2 ... 

time 

past future 

time 

Set point 

Output prediction CV 
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LP, local optimizer 

Set optimal MVs 

Set target 

Unconstraint DMC 

Computes MVs 
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Operating with constraints 

Valve opening 

Temperature 

Turbine speed 

∆ P in the column 
Pressure 

Composition 

Operator’s  
prefered region 

Final region 

New region of  
operation 

Less variance 
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Key to success… 

 Easy to understand by the users 
 Can be applied to multivariable processes with 

different number of manipulated and controlled 
variables 

 Compensates measurable disturbances and delays 
 Takes into account constraints on MV and CV 
 Can be applied to processes with difficult dynamics: 

delays, inverse response, unstable systems, slow 
processes,… 

 Opens the door to economic optimization of the 
process operation 
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Industrial MPC problems 

 Found often in practice 
 Hybrid: 

– On/off 
– Logic 
– Continuous - batch 

 Batch units 
 Distributed parameter  
 Population balance 
 Start-up / Shut down 
 Main problems:  

– Large scale  
– Variability 
– Model reduction 

TT TT TT 
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Non-linear MPC  (NMPC) 

Dynamic 
optimization 
problem solved 
every sampling 
time 

How to solve the 
dynamic 
optimization 
problem? 

How to estimate 
the state? 
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Different types of models 
(first principles, Volterra 
series, NN, Wiener, 
Hammerstein ….) and cost 
functions 
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NMPC 

Process 
u(t) y(t) 

Internal model implemented in a 
continuous simulation 
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NLP optimizer of J(u) with 
respect to u 

Dinamic simulator that 
computes values of 

J(x,u), g(x,u) 

u, x0 
J(u), g(u)  
∇pJ , ∇pg 



Moving Horizon Estimation (MHE) 

t-N t 

Which initial state at time t-N and minimal disturbances vt-i) 
would drive the process in the closest way to the actual output 
trayectory if the control actions were the ones actually applied ? 
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Example: Optimal transient 
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Process-Model gap 
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MPC optimize the model 
responses 
 
What happens if the model 
is not correct? 
 
 

Solutions: 
 
 Update the model 

 
 Modify the optimization 

problem acording to the 
process data 
 

 Robust / Stochastic MPC 



MPC is possible because of 
recent technological changes 

Better hardware 
Communication networks and information 
Better Instrumentation 
Better numerical algorithms 
New theories 
Open systems 
… 

ERP 
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NMPC 

 Depends critically on the models and reliable optimization 
 Mature theory on performance and stability 
 Robustness: Key factor for industrial application. Most of the 

approaches are worst case, but this is conservative and not 
takes advantage of the plant measurements. Computation time. 

 Many of the practical industrial problems do not fit into the 
academic continuous formulation. 

 There are not many tools that facilitate the development, 
testing  and implementation of NMPC 

 Applications in the process industry are often unique and the 
development costs cannot be spread among many applications, 
unless software tools facilitate re-use 
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Thank you for your atention 

prada@autom.uva.es 
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