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“A	
  picture	
  is	
  worth	
  a	
  thousand	
  words”

Fred R. Barnard
Printers' Ink. December 
8, 1921
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Napoleon Bonaparte 

"Un	
  bon	
  croquis	
  vaut	
  mieux	
  qu'un	
  long	
  discours"

"A	
  picture	
  shows	
  me	
  at	
  a	
  glance	
  
what	
  it	
  takes	
  dozens	
  of	
  pages	
  of	
  a	
  book	
  to	
  expound."

Russian	
  writer	
  Ivan	
  Turgenev
(in	
  Fathers	
  and	
  Sons	
  in	
  1862)

4



Universidad	
  de	
  Oviedo

Why	
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I	
  see	
  it...
It	
  is	
  very	
  clear

This	
  sheds	
  some	
  light	
  
to	
  the	
  problem

Their	
  explana2on	
  
was	
  rather	
  obscure

She	
  unveiled	
  
the	
  mystery

He	
  always	
  says	
  the	
  truth:	
  
he	
  is	
  very	
  transparent	
  kid

This	
  author	
  is	
  a	
  
visionary

Show	
  me	
  why...
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of	
  the	
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dedicated	
  to	
  visual	
  tasks40+	
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1093840192384901834093281481083459830985560984095809456894
0680946804986049860458094802943209385029348509898690285096
7890956890456809348560394563956034560584560935050358609358
6904690586034870909289091001012948019238401983401923109234
0480923489043859023850923896508309683098670395860394586039
4860934869034586093860938093468093458038034680934568039458
6034560386034563945839586358568039539568309458038505609568
0349568345809358045860958603758609458603583405684305680349
5680395680395840958034860394680938609348609685309456039465
0439580349758603496093458620943580281039803481894104391092

How	
  many	
  “sevens”	
  do	
  you	
  find?

Please,	
  count...
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How	
  many	
  “sevens”	
  do	
  you	
  find?

Visualiza2on	
  provides	
  “context”
loca9on,	
  cadence,	
  pa=erns,	
  propor9on,	
  ...	
  
subtle	
  forms	
  of	
  knowledge	
  are	
  combined
connected	
  knowledge	
  =	
  more	
  knowledge	
  !!
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what	
  are	
  the	
  most	
  repeated	
  “xy”	
  paYerns?
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  histogram	
  of	
  “xy”	
  paYerns?
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Ancombe’s	
  quartet
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5
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Conjunto 2
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Conjunto 3
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5
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Conjunto 4

clear;
close all; 
 
% Datos del cuarteto Anscombe (http://en.wikipedia.org/wiki/Anscombe's_quartet)
p  = [10.0  8.04    10.0    9.14    10.0    7.46    8.0 6.58
8.0 6.95    8.0 8.14    8.0 6.77    8.0 5.76
13.0    7.58    13.0    8.74    13.0    12.74   8.0 7.71
9.0 8.81    9.0 8.77    9.0 7.11    8.0 8.84
11.0    8.33    11.0    9.26    11.0    7.81    8.0 8.47
14.0    9.96    14.0    8.10    14.0    8.84    8.0 7.04
6.0 7.24    6.0 6.13    6.0 6.08    8.0 5.25
4.0 4.26    4.0 3.10    4.0 5.39    19.0    12.50
12.0    10.84   12.0    9.13    12.0    8.15    8.0 5.56
7.0 4.82    7.0 7.26    7.0 6.42    8.0 7.91
5.0 5.68    5.0 4.74    5.0 5.73    8.0 6.89];
 
% Separamos los cuatro conjuntos
x{1} = p(:,1:2); 
x{2} = p(:,3:4); 
x{3} = p(:,5:6); 
x{4} = p(:,7:8);
 
figure(1);
clf;
 
for k = 1:4,
    subplot(2,2,k);
    scatter(x{k}(:,1),x{k}(:,2),50,'filled');
    axis equal;
    axis([3 20 1 18]);
    grid on;
    C{k} = cov(x{k}),
    M{k} = mean(x{k}),
    R{k} = corrcoef(x{k}),
    title(sprintf('Conjunto %d',k));
end

¡The	
  4	
  sets	
  have
the	
  same	
  sta2s2c
descriptors!

Covariance	
  Matrices

Mean	
  vectors
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• Huge	
  amounts	
  of	
  data
• Many	
  sensors
• Ubiquitous	
  informa2on
• Heterogeneous	
  informa2on

• Complex	
  systems
• Dynamic	
  behavior
• Connected,	
  interac2ng,	
  coupled…
• Many	
  variables,	
  mul2way	
  problems
• Human	
  factors
• Interac2on	
  with	
  other	
  factories

Problem:

Get	
  insight
from	
  an	
  ocean	
  of	
  data

Detect	
  structure	
  in	
  data
and	
  model	
  it

References:
Big	
  data:	
  The	
  next	
  fron=er	
  for	
  innova=on,	
  compe==on,	
  and	
  produc=vity.	
  
hYp://www.mckinsey.com/insights/business_technology/big_data_the_next_fron2er_for_innova2on.

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
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In the rising tide of business 
transaction data, these tools help
distinguish which are strategic
assets and which are not worth 
collecting in the first place.

Data is often recorded, captured, and stored auto-
matically via sensors and monitoring systems. Many of
the simple transactions now part of our everyday lives,
such as paying for food and clothes by credit card or
using the telephone, are typically recorded for future
reference by computers. Many parameters of each
transaction are routinely captured, resulting in highly
dimensional data. The data is collected because com-
panies, including those engaged in some kind of 
e-commerce, view it as a source of potentially valuable
information that, as a strategic asset, could provide a
competitive advantage. But actually finding this valu-
able information is difficult. Today’s data management
systems make it possible to view only small portions of
it. If the data is presented in text form, the amount
that can be displayed amounts to only about 100 data
items—a drop in the ocean when dealing with data
sets containing millions of data items. Lacking the
ability to adequately explore the large amounts being
collected, and despite its potential usefulness, the data

becomes useless and the databases data dumps. Visual
data exploration, which aims to provide insight by
visualizing the data, and information visualization
techniques (such as distorted overview displays and
dense pixel displays) can help solve this problem.

Effective data mining depends on having a human
in the data exploration process while combining this
person’s flexibility, creativity, and general knowledge
with the enormous storage capacity and computa-
tional power of today’s computers. Visual data explo-
ration seeks to integrate humans in the data
exploration process, applying their perceptual abilities
to the large data sets now available. The basic idea is to
present the data in some visual form, allowing data
analysts to gain insight into it and draw conclusions, as
well as interact with it. The visual representation of the
data reduces the cognitive work needed to perform
certain tasks. 

Visual data mining techniques have proved their
value in exploratory data analysis; they also have great

Computer systems today store vast
amounts of data. Researchers, including
those working on the “How Much
Information?” project at the University
of California, Berkeley, recently esti-
mated, about 1 exabyte (1 million ter-
abytes) of data is generated annually
worldwide, including 99.997% avail-
able only in digital form. This world-
wide data deluge means that in the next
three years, more data will be generated
than during all previous human history. 

Visual Exploration 
of Large 

Data Sets

Daniel A. Keim
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600 $ cost of a hard disk having space to store
all the music composed ever

40% projected growth in global data 
generated per year

5% estimated growth of 
IT spending

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. Big data: The
next frontier for innovation, competition, and productivity. Technical report, McKinsey Global Institute,
May 2011.

hYp://www.mckinsey.com/insights/business_technology/big_data_the_next_fron2er_for_innova2on

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
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250	
  G€ es2mated	
  value	
  of	
  big	
  data
from	
  EU	
  public	
  administra2on
(more	
  than	
  the	
  greek	
  GDP)

300	
  G$ poten2al	
  annual	
  value	
  to	
  USA	
  health	
  care
(more	
  than	
  double	
  
the	
  total	
  annual	
  health	
  care	
  spending	
  in	
  Spain)

60% poten2al	
  increase	
  of	
  benefits	
  in	
  retailers’
opera2ng	
  margins	
  possible	
  with	
  big	
  data

1.5Mes2ma2on	
  of	
  data-­‐savvy	
  managers	
  
needed	
  in	
  USA	
  to	
  fully	
  harness	
  big	
  data.

190k es2ma2on	
  of	
  highly	
  qualified	
  data	
  analysis	
  experts	
  needed	
  in	
  USA

+
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Data
acquisi2on
Advanced	
  sensors
Ar2ficial	
  vision
Exploita2on	
  data
Web	
  data	
  (XML,	
  CSV,	
  	
  	
  	
  	
  	
  	
  	
  
	
  GeoJSON,	
  etc.)

Feature
extrac2on
Frequency	
  analysis	
  (FFT,	
  etc)
System	
  Iden2fica2on
Sta2s2cal	
  descriptors
Geometrical	
  descriptors

Intelligent
Data	
  Analysis	
  
(IDA)
Modeling
Predic2on
Clustering	
  and	
  classifica2on
Dimensionality	
  reduc2on
Change/Novelty	
  detec2on

Visualiza2on
Data	
  visualiza2on
Interac2on	
  mechanisms
Interface	
  design
Visualiza2on	
  of	
  IDA	
  
algorithms

Process

Informa2onData Knowledge
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Por otro lado los retrasos negativos o adelantos, utilizan una codificación de azules. 

En la imagen 3.9, se observa la aplicación funcionando. En ella se puede ver como los retrasos 

están codificados tal y como se ha explicado en este apartado. 

 

 

Figura 3.9 Aplicación funcionando, con detalle en cuadrado azul donde aparecen la leyenda de 

los retrasos y los adelantos 

 

Calendario donde se proyectan los retrasos medios horarios de Gijón: 

Codificación espacial: 

En el calendario, el espacio se usa para situar en orden cronológico los días del mes (Figura 

3.10). Sobre cada día se proyecta el valor medio de los retrasos en Gijón a la hora 

seleccionada. 

 

Figura 3.13 Diagrama de barras en el que se muestran los perfiles de retrasos de la marquesina 

La peñuca el 17/07/13 

Codificación de color: 

En este caso, lo que se pretende codificar es el día al que corresponden los retrasos o 

adelantos, y cómo el usuario puede seleccionar hasta 7 días distintos. Lo que se ha decidido es 

utilizar una escala de colores categórica.   

              

 

Figura 3.14 Codificación categórica en función del día que representa 

 

Figura 3.15 Diagrama de barras mostrando el perfil de retrasos de 7 días distintos 
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost
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Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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A Global Geometric Framework
for Nonlinear Dimensionality

Reduction
Joshua B. Tenenbaum,1* Vin de Silva,2 John C. Langford3

Scientists working with large volumes of high-dimensional data, such as global
climate patterns, stellar spectra, or human gene distributions, regularly con-
front the problem of dimensionality reduction: finding meaningful low-dimen-
sional structures hidden in their high-dimensional observations. The human
brain confronts the same problem in everyday perception, extracting from its
high-dimensional sensory inputs—30,000 auditory nerve fibers or 106 optic
nerve fibers—a manageably small number of perceptually relevant features.
Here we describe an approach to solving dimensionality reduction problems
that uses easily measured local metric information to learn the underlying
global geometry of a data set. Unlike classical techniques such as principal
component analysis (PCA) and multidimensional scaling (MDS), our approach
is capable of discovering the nonlinear degrees of freedom that underlie com-
plex natural observations, such as human handwriting or images of a face under
different viewing conditions. In contrast to previous algorithms for nonlinear
dimensionality reduction, ours efficiently computes a globally optimal solution,
and, for an important class of data manifolds, is guaranteed to converge
asymptotically to the true structure.

A canonical problem in dimensionality re-
duction from the domain of visual perception
is illustrated in Fig. 1A. The input consists of
many images of a person’s face observed
under different pose and lighting conditions,
in no particular order. These images can be
thought of as points in a high-dimensional
vector space, with each input dimension cor-
responding to the brightness of one pixel in
the image or the firing rate of one retinal
ganglion cell. Although the input dimension-

ality may be quite high (e.g., 4096 for these
64 pixel by 64 pixel images), the perceptually
meaningful structure of these images has
many fewer independent degrees of freedom.
Within the 4096-dimensional input space, all
of the images lie on an intrinsically three-
dimensional manifold, or constraint surface,
that can be parameterized by two pose vari-
ables plus an azimuthal lighting angle. Our
goal is to discover, given only the unordered
high-dimensional inputs, low-dimensional
representations such as Fig. 1A with coordi-
nates that capture the intrinsic degrees of
freedom of a data set. This problem is of
central importance not only in studies of vi-
sion (1–5), but also in speech (6, 7), motor
control (8, 9), and a range of other physical
and biological sciences (10–12).

The classical techniques for dimensional-
ity reduction, PCA and MDS, are simple to
implement, efficiently computable, and guar-
anteed to discover the true structure of data
lying on or near a linear subspace of the
high-dimensional input space (13). PCA
finds a low-dimensional embedding of the
data points that best preserves their variance
as measured in the high-dimensional input
space. Classical MDS finds an embedding
that preserves the interpoint distances, equiv-
alent to PCA when those distances are Eu-
clidean. However, many data sets contain
essential nonlinear structures that are invisi-
ble to PCA and MDS (4, 5, 11, 14). For
example, both methods fail to detect the true
degrees of freedom of the face data set (Fig.
1A), or even its intrinsic three-dimensionality
(Fig. 2A).

Here we describe an approach that com-
bines the major algorithmic features of PCA
and MDS—computational efficiency, global
optimality, and asymptotic convergence guar-
antees—with the flexibility to learn a broad
class of nonlinear manifolds. Figure 3A illus-
trates the challenge of nonlinearity with data
lying on a two-dimensional “Swiss roll”: points
far apart on the underlying manifold, as mea-
sured by their geodesic, or shortest path, dis-
tances, may appear deceptively close in the
high-dimensional input space, as measured by
their straight-line Euclidean distance. Only the
geodesic distances reflect the true low-dimen-
sional geometry of the manifold, but PCA and
MDS effectively see just the Euclidean struc-
ture; thus, they fail to detect the intrinsic two-
dimensionality (Fig. 2B).

Our approach builds on classical MDS but
seeks to preserve the intrinsic geometry of the
data, as captured in the geodesic manifold
distances between all pairs of data points. The
crux is estimating the geodesic distance be-
tween faraway points, given only input-space
distances. For neighboring points, input-
space distance provides a good approxima-
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function subject to two constraints: first, that
each data point !Xi is reconstructed only from
its neighbors (5), enforcing Wij ! 0 if !Xj does

not belong to the set of neighbors of !Xi;
second, that the rows of the weight matrix
sum to one: "jWij ! 1. The optimal weights

Wij subject to these constraints (6) are found
by solving a least-squares problem (7).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
## D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation !Xi is mapped to a low-dimensional
vector !Yi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates !Yi to minimize the
embedding cost function

$%Y & ! !
i

" !Yi " "jWij
!Yj" 2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates !Yi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors !Yi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N ' N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates !Yi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point !Xi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct !Xi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors !Yi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

R E P O R T S
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Figura 6.23: Conjuntos de datos correspondientes a diversas condiciones
de funcionamiento del motor.

En la figura 6.24(a) se muestran los mapas de activación correspon-
dientes a diversos periodos de laminación, detallados en la figura 6.23.
Comparando los mapas de activación con los tramos correspondientes en
la figura 6.12 y con los mapas de caracteŕısticas pueden apreciarse las di-
ferencias sutiles existentes entre las diferentes regiones. Lógicamente, se
verifica todo lo deducido a partir del mapa de distancias y de los mapas
de caracteŕısticas. Las diferencias entre las regiones obedecen a diferen-
cias más concretas en algunas de las variables, lo que puede comprobarse
tras un examen minucioso de todos los gráficos. Del mismo modo, en
la figura 6.24(b) se muestran los mapas de activación correspondientes a
diversos periodos de funcionamiento en vaćıo. Puede comprobarse cómo
las regiones están en la parte izquierda.

La información que aportan los mapas de activación permite etiquetar
las regiones del mapa como se muestra en la figura 6.25. Desde un punto

Real Data Example: Analysis of Variables of a large DC
motor in Hot Rolling Mill

Description

Power: 6000 kW

Rated armature voltage: 700 V

Rated armature current: 9000 A

Rated field current: 150 A

Rated speed: 180 rpm

Max speed 360 rpm

Location: Hot finishing mill

Stand: F2
Variables Analyzed

i
a
= Armature current

V
a
= Armature voltage

i
f
= Field current

� = Angular speed
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Figura 6.26: Las regiones de activación situadas sobre mapas de carac-
teŕısticas permiten extraer información útil sobre las caracteŕısticas del
proceso en cada condición de funcionamiento.
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Figura 6.23: Conjuntos de datos correspondientes a diversas condiciones
de funcionamiento del motor.

En la figura 6.24(a) se muestran los mapas de activación correspon-
dientes a diversos periodos de laminación, detallados en la figura 6.23.
Comparando los mapas de activación con los tramos correspondientes en
la figura 6.12 y con los mapas de caracteŕısticas pueden apreciarse las di-
ferencias sutiles existentes entre las diferentes regiones. Lógicamente, se
verifica todo lo deducido a partir del mapa de distancias y de los mapas
de caracteŕısticas. Las diferencias entre las regiones obedecen a diferen-
cias más concretas en algunas de las variables, lo que puede comprobarse
tras un examen minucioso de todos los gráficos. Del mismo modo, en
la figura 6.24(b) se muestran los mapas de activación correspondientes a
diversos periodos de funcionamiento en vaćıo. Puede comprobarse cómo
las regiones están en la parte izquierda.

La información que aportan los mapas de activación permite etiquetar
las regiones del mapa como se muestra en la figura 6.25. Desde un punto
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Figura 6.25: Etiquetado de regiones en el espacio de visualización. Como
fondo figura el mapa de distancias interneuronales.

Real Data Example: Analysis of Variables of a large DC
motor in Hot Rolling Mill

Description

Power: 6000 kW

Rated armature voltage: 700 V

Rated armature current: 9000 A

Rated field current: 150 A

Rated speed: 180 rpm

Max speed 360 rpm

Location: Hot finishing mill

Stand: F2
Variables Analyzed

i
a
= Armature current

V
a
= Armature voltage

i
f
= Field current

� = Angular speed
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p(1)

p(N)

p(j)

input space
(parameter set P)

pi y(k) = f(�(k),pi)

visualization space
The SOM stores a dynamic model
(e.g. transfer function) on each node.
This is a map of the process dynamics.

Basic idea...
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widths, etc.) and u(k) is a vector with the delayed inputs
and outputs.

However, while this case is much more general, many
concepts related to linear systems, such as transfer function
and frequency response, used in this paper, are not directly
applicable.

3.2. Identification stage

Once a specific model structure (5) has been defined
through a proper selection of the type of function f(Æ, Æ),
as well as the structure of the parameter and data vectors,
the data may be subdivided into N subsets containing the
output and the data vector at different values of k con-
tained in an index set Ij

fyðkÞ;uðkÞgk2Ij j ¼ 1; . . . ;N ð11Þ

Then, a system identification must be carried out on each
subset using a least squares parameter estimation in the
case of linear systems, or iterative optimization algorithms
(e.g. backpropagation, Levenberg–Marquardt, etc.) if non-
linear parametric models such as neural networks are used.

This will produce a parameter set P = {p(1), . . . ,p(N)}
with N points in a parameter space Rp, each of which
defines a single dynamical model according to (5).

3.3. SOM projection stage

The following stage consists in training a SOM to define
a mapping between the parameter space and a low-dimen-
sional space, where every point gi is associated to a proto-
type vector mi in the parameter space, that univocally
defines a parameter set pi, and hence, a parametric model
y(k) = f(u(k),pi), literally constituting a map of dynamic
models (e.g. maps of transfer functions) that allows its visu-
alization and interpretation. The idea is shown graphically
in Fig. 1.

This idea can be extended to find relationships between
the process dynamic behavior and its operating point
defined by a set of process variables x1, . . . ,xn. This can
be done by augmenting the parameter space using extended
vectors q constituted by the vector of parameters p and a

vector of the process variables x, being also possible to
include time t, to analyze non-stationary behaviors:

q ¼ ½pT; xT; t%T ð12Þ
¼ ½p1; p2; . . . ; ppjx1; x2; . . . ; xnjt%

T ð13Þ

Once a SOM mapping has been established between the
parameter space and the 2D visualization space, each point
gi refers to a dynamic model whose parameters can be re-
trieved from the prototype vector mi

mi ¼ ½mi
p1
;mi

p2
; . . . ;mi

pp
jmi

x1
; . . . ;mi

xn jm
i
t%
T

This extension gives rise to a mapping that merges the pro-
cess dynamics defined by the parameters p and the process
working point defined by x into a single manifold in the
augmented space, resulting in a consistent joint representa-
tion of the process working point and its dynamics.

3.4. Representation of dynamic features

From the parameter vector associated to a given point gi
it is possible to obtain specific dynamic features or descrip-
tors that have physical sense and qualitatively inform
about different aspects of the process dynamics.

3.4.1. Component planes of the process variables
Component planes are well known visual representa-

tions in the SOM visualization literature (Kohonen,
1995). Particularly, component planes for each of the pro-
cess variables can be defined. Each component plane is
obtained by assigning to each node gi in the grid a gray
or color level proportional to the scalar value of the repre-
sented component mi

xj of the corresponding prototype unit
mi. This leads to n component planes

mi
x1
; . . . ;mi

xn

The component planes describe in an ordered fashion the
distribution of the values of the process variables across
the different process states and have been successfully used
by many authors as a standard visualization technique for
process analysis in a wide variety of fields (Abonyi et al.,
2003; Dı́az et al., 2003; Laine, 1998; Postolache et al.,
2005).

Fig. 1. Construction of maps of dynamics by means of projection of the parameter space.

2956 I. Dı́az et al. / Expert Systems with Applications 34 (2008) 2953–2965

... a bit more detailed approach
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widths, etc.) and u(k) is a vector with the delayed inputs
and outputs.

However, while this case is much more general, many
concepts related to linear systems, such as transfer function
and frequency response, used in this paper, are not directly
applicable.

3.2. Identification stage

Once a specific model structure (5) has been defined
through a proper selection of the type of function f(Æ, Æ),
as well as the structure of the parameter and data vectors,
the data may be subdivided into N subsets containing the
output and the data vector at different values of k con-
tained in an index set Ij

fyðkÞ;uðkÞgk2Ij j ¼ 1; . . . ;N ð11Þ

Then, a system identification must be carried out on each
subset using a least squares parameter estimation in the
case of linear systems, or iterative optimization algorithms
(e.g. backpropagation, Levenberg–Marquardt, etc.) if non-
linear parametric models such as neural networks are used.

This will produce a parameter set P = {p(1), . . . ,p(N)}
with N points in a parameter space Rp, each of which
defines a single dynamical model according to (5).

3.3. SOM projection stage

The following stage consists in training a SOM to define
a mapping between the parameter space and a low-dimen-
sional space, where every point gi is associated to a proto-
type vector mi in the parameter space, that univocally
defines a parameter set pi, and hence, a parametric model
y(k) = f(u(k),pi), literally constituting a map of dynamic
models (e.g. maps of transfer functions) that allows its visu-
alization and interpretation. The idea is shown graphically
in Fig. 1.

This idea can be extended to find relationships between
the process dynamic behavior and its operating point
defined by a set of process variables x1, . . . ,xn. This can
be done by augmenting the parameter space using extended
vectors q constituted by the vector of parameters p and a

vector of the process variables x, being also possible to
include time t, to analyze non-stationary behaviors:

q ¼ ½pT; xT; t%T ð12Þ
¼ ½p1; p2; . . . ; ppjx1; x2; . . . ; xnjt%

T ð13Þ

Once a SOM mapping has been established between the
parameter space and the 2D visualization space, each point
gi refers to a dynamic model whose parameters can be re-
trieved from the prototype vector mi

mi ¼ ½mi
p1
;mi

p2
; . . . ;mi

pp
jmi

x1
; . . . ;mi

xn jm
i
t%
T

This extension gives rise to a mapping that merges the pro-
cess dynamics defined by the parameters p and the process
working point defined by x into a single manifold in the
augmented space, resulting in a consistent joint representa-
tion of the process working point and its dynamics.

3.4. Representation of dynamic features

From the parameter vector associated to a given point gi
it is possible to obtain specific dynamic features or descrip-
tors that have physical sense and qualitatively inform
about different aspects of the process dynamics.

3.4.1. Component planes of the process variables
Component planes are well known visual representa-

tions in the SOM visualization literature (Kohonen,
1995). Particularly, component planes for each of the pro-
cess variables can be defined. Each component plane is
obtained by assigning to each node gi in the grid a gray
or color level proportional to the scalar value of the repre-
sented component mi

xj of the corresponding prototype unit
mi. This leads to n component planes

mi
x1
; . . . ;mi

xn

The component planes describe in an ordered fashion the
distribution of the values of the process variables across
the different process states and have been successfully used
by many authors as a standard visualization technique for
process analysis in a wide variety of fields (Abonyi et al.,
2003; Dı́az et al., 2003; Laine, 1998; Postolache et al.,
2005).

Fig. 1. Construction of maps of dynamics by means of projection of the parameter space.

2956 I. Dı́az et al. / Expert Systems with Applications 34 (2008) 2953–2965
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• Bandwidth maps describing the maximum frequency at
which the system’s gain is larger than 0.707 (!3 dB)
times its static gain

hi ¼ max
h

such that
Gðejh; piÞ
Gð1; piÞ

!!!!

!!!! > 0:707 8h ð20Þ

4. Examples

4.1. Liquid level control

The proposed method was applied to model the dynam-
ics of the liquid level control in one of the tanks of a 4-tank
plant (Domı́nguez, Fuertes, Reguera, González, & Ramón,
2004) (see Fig. 2).

This process has been subject of active study since its
definition (Johansson, 2000). The scale model was made
using common instrumentation of industrial environments.
Table 1 shows the variables that can be accessed. The plant
is composed of 4 tanks, each one with a volume of 8 l, con-
nected to Endress &Hauser PCM 731 pressure transmitters
which measure their level. There is a Grundfos UPE 25-40
flow pump and a Samson 3326 three-way pneumatic flow
valve, with the Samson 3760 complement, in both principal
branches. The position of the three-way valve determines
the flow distribution between the tanks of the correspond-
ing diagonal.

The analyzed control system implements a PID control
using a pressure sensor to measure the actual liquid level
(LT01) and acting on the input valve aperture (FV01) to
modify the flow inlet. The actual flow inlet depends not
only on the valve position but also on the pump (P01)
power, which was also modified.

In this experiment, the reference value for the liquid
level was periodically changed between two values: 30%

and 70% of the tank height. In the middle of the experi-
ment (at time t = 1140 s), the pump power was changed,
originating a change in the level dynamics. In Fig. 3, the
evolution of the liquid level of the tank, the reference level
and the pump power along the experiment are shown. Data
of the experiment were acquired using OPTO-22 SNAP-
Ultimate IO systems at a sample rate of 20 Hz and were
decimated a ratio 1:20 down to a final 1 Hz sample rate.

A second order LTI model was chosen to describe the
data

yðkÞ ¼ a1yðk ! 1Þ þ a2yðk ! 2Þ þ b0uðkÞ þ b1uðk ! 1Þ
þ b2uðk ! 2Þ ð21Þ

taking, according to 3.1.1

yðkÞ ¼ ½yðkÞ' ð22Þ
uðkÞ ¼ ½yðk ! 1Þ; yðk ! 2Þ; uðkÞ; uðk ! 1Þ; uðk ! 2Þ'T ð23Þ
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The parameters of model (9) were estimated for overlapped
windows of length 500 displaced by one sample and exclud-
ing those containing the step instant of the pump power to
avoid border effect, using a standard LS parameter estima-
tion within each window, obtaining a different parameter
vector p(j) for each window.

A 20 · 20 SOM was trained on the augmented parame-
ter vector

q ¼ ½a1; a2; b0; b1; b2; ju; y; b'

using the batch algorithm along 10 epochs and a Gaussian
neighborhood (3) with a monotonically decreasing width r
from 10 to 1. The resulting parameter planes along with the
component planes of the reference level, the liquid level and
pump power, are shown in Fig. 4.

Fig. 2. 4-Tank plant.
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In Figs. 4 and 5, it can be seen that the pump power pro-
duces a clear change in the process dynamics. As seen, the
component plane for the pump power divides the visualiza-
tion space in two regions that also arise in the dynamic
maps (parameter planes and frequency response maps),
revealing that the dynamical behavior of the system for
high pump power levels is different from that for low levels.

4.2. Analysis of steel rolling mill behavior

The rolling process has very complex dynamics where
many physical phenomena are involved, including plastic

deformations, thermal effects, tribological phenomena,
modal vibrations, etc. for which simple and accurate first
principles models do not exist. Moreover, every rolling mill
has its own characteristics and in practice requires data dri-
ven approaches to adjust analytical models with a large
number of parameters.

One of the main concerns for the output quality in cold
rolling mills is the uniformity of the output thickness of
coils (Enguita et al., 2006). Coils presenting large relative
variations in their thickness are rejected to fulfill quality
requirements. Therefore, a major issue in cold rolling tech-
nology consists in finding relationships between the process

Table 1
4-Tank process variables

Tag Description Type Signal Range I/O

LT01 LEVEL TRANSMITTER TANK 1 ANALOG 4 . . . 20 mA 0–100% IN
LT02 LEVEL TRANSMITTER TANK 2 ANALOG 4 . . . 20 mA 0–100% IN
LT03 LEVEL TRANSMITTER TANK 3 ANALOG 4 . . . 20 mA 0–100% IN
LT04 LEVEL TRANSMITTER TANK 4 ANALOG 4 . . . 20 mA 0–100% IN
FV01 FLOW VALVE TANK 1-TANK 4 ANALOG 4 . . . 20 mA 0–100% OUT
FV02 FLOW VALVE TANK 2-TANK 3 ANALOG 4 . . . 20 mA 0–100% OUT
SZ01 PUMP P01 CONVERTER ANALOG 0 . . . 10 V 0–100% OUT
SZ02 PUMP P02 CONVERTER ANALOG 0 . . . 10 V 0–100% OUT
P01 PUMP P01 DIGITAL 24 V OUT
P02 PUMP P02 DIGITAL 24 V OUT
FY01 ELECTROVALVE 1 DIGITAL 24 V OUT
FY02 ELECTROVALVE 2 DIGITAL 24 V OUT
FY03 ELECTROVALVE 3 DIGITAL 24 V OUT
FY04 ELECTROVALVE 4 DIGITAL 24 V OUT
ES01 VOLTAGE PRESENCE 24 V DC DIGITAL 24 V IN
ES02 VOLTAGE PRESENCE 220 V AC DIGITAL 24 V IN
ES03 PUMP P01 FAILURE DIGITAL 24 V IN
ES04 PUMP P02 FAILURE DIGITAL 24 V IN
ES05 PUMP P01 CONFIRMATION DIGITAL 24 V IN
ES06 PUMP P02 CONFIRMATION DIGITAL 24 V IN
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parameters and the quality parameters such as the varia-
tion of thickness. Among other causes, variations of the

thickness are known to be related to the presence of vibra-
tion harmonics in the mill, and particularly on the vertical
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Fig. 5. Frequency response maps for different frequencies. The gray scale expresses the gains in dB.
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parameters and the quality parameters such as the varia-
tion of thickness. Among other causes, variations of the

thickness are known to be related to the presence of vibra-
tion harmonics in the mill, and particularly on the vertical

f=0.005 Hz

0 5 10 15
0

5

10

15

f=0.01 Hz

0 5 10 15
0

5

10

15

f=0.015 Hz

0 5 10 15
0

5

10

15

f=0.02 Hz

0 5 10 15
0

5

10

15

f=0.025 Hz

0 5 10 15
0

5

10

15

f=0.03 Hz

0 5 10 15
0

5

10

15

f=0.035 Hz

0 5 10 15
0

5

10

15

f=0.04 Hz

0 5 10 15
0

5

10

15

f=0.045 Hz

0 5 10 15
0

5

10

15

f=0.05 Hz

0 5 10 15
0

5

10

15

f=0.055 Hz

0 5 10 15
0

5

10

15

f=0.06 Hz

0 5 10 15
0

5

10

15

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2

0

Fig. 5. Frequency response maps for different frequencies. The gray scale expresses the gains in dB.

b0

0 5 10 15
0

5

10

15

b1

0 5 10 15
0

5

10

15

b2

0 5 10 15
0

5

10

15

a0

0 5 10 15
0

5

10

15

a1

0 5 10 15
0

5

10

15

a2

0 5 10 15
0

5

10

15

u

0 5 10 15
0

5

10

15

y

0 5 10 15
0

5

10

15

b

0 5 10 15
0

5

10

15

—10

—8

—6

—4

x 103

0.005

0.01

0.015

0.02

0.025

0.01

0.02

0.03

1

1

1

1

—1.78

—1.76

—1.74

—1.72

—1.7

0.74

0.76

0.78

0.8

48

50

52

54

46

47

48

49

50

60

70

80

90

Fig. 4. Parameter planes of the tank liquid level control process plus the component planes of the reference level, the liquid level and pump power.

2960 I. Dı́az et al. / Expert Systems with Applications 34 (2008) 2953–2965

Author's personal copy

• Bandwidth maps describing the maximum frequency at
which the system’s gain is larger than 0.707 (!3 dB)
times its static gain

hi ¼ max
h

such that
Gðejh; piÞ
Gð1; piÞ

!!!!

!!!! > 0:707 8h ð20Þ

4. Examples

4.1. Liquid level control

The proposed method was applied to model the dynam-
ics of the liquid level control in one of the tanks of a 4-tank
plant (Domı́nguez, Fuertes, Reguera, González, & Ramón,
2004) (see Fig. 2).

This process has been subject of active study since its
definition (Johansson, 2000). The scale model was made
using common instrumentation of industrial environments.
Table 1 shows the variables that can be accessed. The plant
is composed of 4 tanks, each one with a volume of 8 l, con-
nected to Endress &Hauser PCM 731 pressure transmitters
which measure their level. There is a Grundfos UPE 25-40
flow pump and a Samson 3326 three-way pneumatic flow
valve, with the Samson 3760 complement, in both principal
branches. The position of the three-way valve determines
the flow distribution between the tanks of the correspond-
ing diagonal.

The analyzed control system implements a PID control
using a pressure sensor to measure the actual liquid level
(LT01) and acting on the input valve aperture (FV01) to
modify the flow inlet. The actual flow inlet depends not
only on the valve position but also on the pump (P01)
power, which was also modified.

In this experiment, the reference value for the liquid
level was periodically changed between two values: 30%

and 70% of the tank height. In the middle of the experi-
ment (at time t = 1140 s), the pump power was changed,
originating a change in the level dynamics. In Fig. 3, the
evolution of the liquid level of the tank, the reference level
and the pump power along the experiment are shown. Data
of the experiment were acquired using OPTO-22 SNAP-
Ultimate IO systems at a sample rate of 20 Hz and were
decimated a ratio 1:20 down to a final 1 Hz sample rate.

A second order LTI model was chosen to describe the
data

yðkÞ ¼ a1yðk ! 1Þ þ a2yðk ! 2Þ þ b0uðkÞ þ b1uðk ! 1Þ
þ b2uðk ! 2Þ ð21Þ

taking, according to 3.1.1

yðkÞ ¼ ½yðkÞ' ð22Þ
uðkÞ ¼ ½yðk ! 1Þ; yðk ! 2Þ; uðkÞ; uðk ! 1Þ; uðk ! 2Þ'T ð23Þ
p ¼ ½a1; a2; b0; b1; b2'T ð24Þ

The parameters of model (9) were estimated for overlapped
windows of length 500 displaced by one sample and exclud-
ing those containing the step instant of the pump power to
avoid border effect, using a standard LS parameter estima-
tion within each window, obtaining a different parameter
vector p(j) for each window.

A 20 · 20 SOM was trained on the augmented parame-
ter vector

q ¼ ½a1; a2; b0; b1; b2; ju; y; b'

using the batch algorithm along 10 epochs and a Gaussian
neighborhood (3) with a monotonically decreasing width r
from 10 to 1. The resulting parameter planes along with the
component planes of the reference level, the liquid level and
pump power, are shown in Fig. 4.

Fig. 2. 4-Tank plant.
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power, which was also modified.

In this experiment, the reference value for the liquid
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ment (at time t = 1140 s), the pump power was changed,
originating a change in the level dynamics. In Fig. 3, the
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the spectrum of the vertical roll force F5(t) at this stand.
Data of the experiment were acquired using a data acquisi-
tion board at a sample rate of 5000 Hz and were decimated
a ratio 1:10 down to a final 500 Hz sample rate. Data were
divided into overlapped windows wj of length 500 displaced
by 30 samples. As a measure of the thickness variation, the
RMS value of the output thickness was computed for each
data window wj

de5ðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj

X

i2wj

ke5ðiÞ $ !e5k2
s

ð25Þ

An AR(29) model was chosen on the basis of problem do-
main knowledge about the number of relevant harmonics2

to describe the spectral content of the roll force

F 5ðkÞ ¼ a1F 5ðk $ 1Þ þ & & & þ a29F 5ðk $ 29Þ þ ! ð26Þ

choosing according to Section 3.1.1

yðkÞ ¼ ½F 5ðkÞ( ð27Þ
uðkÞ ¼ ½F 5ðk $ 1Þ; F 5ðk $ 2Þ; . . . ; F 5ðk $ 29Þ(T ð28Þ
p ¼ ½a1; a2; . . . ; a29(T ð29Þ

The AR(29) model was estimated for each window wj,
using a standard LS parameter estimation within each win-
dow, to obtain a different parameter vector p(j).

To associate the dynamics of the roll force with the pro-
cess variables de5 and v5, the following augmented param-
eter vector is defined:

q ¼ ½a1; a2; . . . ; a29; jde5; v5(T

A 50 · 50 SOM was trained for all the vectors p(j), using
the batch algorithm along 10 epochs with a Gaussian
neighborhood (3) with monotonically decreasing width r
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Fig. 8. Coil speed in meters per minute (mpm), thickness variation de5 (expressed in RMS values) and the spectrogram of roll force F5 at stand 5. The
crosses show the theoretical path of variable harmonics 10· and 30· the speed of rotation of the backup roll, fr(t). Enclosed by a circle, an increment of the
30· variable harmonic coinciding with a large thickness variation is shown.

2 Other approaches, such as the Akaike’s FPE criterion, can be used in
other applications.
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the spectrum of the vertical roll force F5(t) at this stand.
Data of the experiment were acquired using a data acquisi-
tion board at a sample rate of 5000 Hz and were decimated
a ratio 1:10 down to a final 500 Hz sample rate. Data were
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uðkÞ ¼ ½F 5ðk $ 1Þ; F 5ðk $ 2Þ; . . . ; F 5ðk $ 29Þ(T ð28Þ
p ¼ ½a1; a2; . . . ; a29(T ð29Þ

The AR(29) model was estimated for each window wj,
using a standard LS parameter estimation within each win-
dow, to obtain a different parameter vector p(j).

To associate the dynamics of the roll force with the pro-
cess variables de5 and v5, the following augmented param-
eter vector is defined:

q ¼ ½a1; a2; . . . ; a29; jde5; v5(T

A 50 · 50 SOM was trained for all the vectors p(j), using
the batch algorithm along 10 epochs with a Gaussian
neighborhood (3) with monotonically decreasing width r

10 20 30 40 50 60 70 80 90

900

1000

1100

1200

1300

time (sec.)

sp
ee

d 
(m

pm
)

Coil speed at stand 5 (v5)

10 20 30 40 50 60 70 80 90

0.5

1

1.5

time (sec.)

va
ria

tio
n 

(R
M

S)

Thickness variation (δ5)

time (sec.)

fre
qu

en
cy

 (H
z)

Spectrogram of rolling forces (F5)

10 x

30 x

10 20 30 40 50 60 70 80 90

0

50

100

150

200

Fig. 8. Coil speed in meters per minute (mpm), thickness variation de5 (expressed in RMS values) and the spectrogram of roll force F5 at stand 5. The
crosses show the theoretical path of variable harmonics 10· and 30· the speed of rotation of the backup roll, fr(t). Enclosed by a circle, an increment of the
30· variable harmonic coinciding with a large thickness variation is shown.

2 Other approaches, such as the Akaike’s FPE criterion, can be used in
other applications.
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the spectrum of the vertical roll force F5(t) at this stand.
Data of the experiment were acquired using a data acquisi-
tion board at a sample rate of 5000 Hz and were decimated
a ratio 1:10 down to a final 500 Hz sample rate. Data were
divided into overlapped windows wj of length 500 displaced
by 30 samples. As a measure of the thickness variation, the
RMS value of the output thickness was computed for each
data window wj
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main knowledge about the number of relevant harmonics2

to describe the spectral content of the roll force

F 5ðkÞ ¼ a1F 5ðk $ 1Þ þ & & & þ a29F 5ðk $ 29Þ þ ! ð26Þ

choosing according to Section 3.1.1

yðkÞ ¼ ½F 5ðkÞ( ð27Þ
uðkÞ ¼ ½F 5ðk $ 1Þ; F 5ðk $ 2Þ; . . . ; F 5ðk $ 29Þ(T ð28Þ
p ¼ ½a1; a2; . . . ; a29(T ð29Þ

The AR(29) model was estimated for each window wj,
using a standard LS parameter estimation within each win-
dow, to obtain a different parameter vector p(j).

To associate the dynamics of the roll force with the pro-
cess variables de5 and v5, the following augmented param-
eter vector is defined:

q ¼ ½a1; a2; . . . ; a29; jde5; v5(T

A 50 · 50 SOM was trained for all the vectors p(j), using
the batch algorithm along 10 epochs with a Gaussian
neighborhood (3) with monotonically decreasing width r
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2 Other approaches, such as the Akaike’s FPE criterion, can be used in
other applications.
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2.4 Visualization of Changes in Dynamic Behaviour

Let’s consider a set of process data {y(k), �(k)}k�Wk obtained in a window
Wk = {k � n + 1, · · · , k}. Using the same identification technique as in the
identification stage on this data set, a vector of model parameters p(k) can be
estimated. From this vector, the best matching unit mc(k) of the SOM can be
obtained, such that c(k) = arg mini{⇧p(k)�mi⇧}.

Since the current and estimated models of the process dynamics are avail-
able, a residual model can be defined by comparing both models in a proper
way, looking forward to maximize insightfulness. A powerful way to visualize
di�erences between both models is to use the frequency domain

R(ej�, k) =
G(ej�,p(k))
G(ej�,mc(k))

(6)

where R(ej�, k) is the residual frequency response for window Wk. Since residual
models can be typically obtained in a sequential way for overlapping windows
Wk, a residual spectrogram can be defined in a straightforward way, providing a
time-frequency description of process changes by making a color image represen-
tation of a matrix whose columns contain the frequency response of the residual
model. Using a logarithmic representation in decibels (dB) –usually more conve-
nient in typical engineering applications– at sample k during the execution with
test data, k-th column would be,

20 log10

����
G(ej�,p(k))
G(ej�,mc(k))

���� = 20 log10

��R(ej�, k)
��

3 Results

3.1 Tank Level Control Dynamics

The proposed method was applied to real data from an industrial scale plant
composed of 4 tanks, two pumps and three-way valves that allow to derive fluid
to any of the tanks. A liquid level control system in one of the tanks was subject
to di�erent dynamic conditions by changing the base area of the tank. The liquid
level dynamics can be described by the following ordinary di�erential equation
(ODE),

Ab
dh(t)

dt
= qin(t)�Ac

⇥
2gh(t) (7)

where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using a proportional-
integral (PI) control law, where the error signal e(t) = r(t)�h(t) is the di�erence
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since it allows to exploit the wealth of analysis tools and descriptors available
for linear systems commonly used in engineering.

2.2 Identification Stage

The available process data can be subdivided into N subsets containing the
output and the data vector at di�erent values of k contained in an index set Ij

{y(k), ⇥(k)}k�Ij , j = 1, · · ·N (3)

Each subset should ideally include process data with similar dynamics. For
instance a kmeans or another SOM with N units can be trained to cluster the
space of variables that define the dynamic state –typically, the operating point–
and choose

Ij = {all k such that ⇧xk �mj⇧ < �}

where x is the the process operating point at sample k and mj is the j-th
codebook vector of the SOM or kmeans algorithm.

When the process dynamics change slowly, however, a simpler and practical
way to build subsets is to use overlapped windows of length n of the data Ij =
{kj � n + 1, kj � n + 2, · · · , kj}.

Once the subsets are defined, a system identification can be carried out on
each subset using any optimization technique –e.g. a least squares– to produce
a parameter set P = {p(1), · · · ,p(N)} with N points in a parameter space Rp,
such that the cost function

J =
�

k�Ij

⇧y(k)� f(⇥(k),p(k))⇧2 (4)

is minimized.

2.3 SOM Projection Stage

In this stage, a SOM is trained in the parameter space, using the data set P
obtained in the previous stage. After training, the codebook vector mi of the
SOM unit i contains the parameters of a dynamic model whose behaviour can
be reproduced using

y(k) = f(⇥(k),mi) (5)

In consequence, the SOM stores all the dynamic behaviours of the process
identified in the previous stage, allowing for visualization of dynamic features,
as shown in [2] or, as it will be shown here, to compare the current dynamic
behaviour with the stored dynamic behaviours and yield a residual dynamic
model that can be visualized.

minimize:

SOM bmu
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Since the current and estimated models of the process dynamics are avail-
able, a residual model can be defined by comparing both models in a proper
way, looking forward to maximize insightfulness. A powerful way to visualize
di�erences between both models is to use the frequency domain

R(ej�, k) =
G(ej�,p(k))
G(ej�,mc(k))

(6)

where R(ej�, k) is the residual frequency response for window Wk. Since residual
models can be typically obtained in a sequential way for overlapping windows
Wk, a residual spectrogram can be defined in a straightforward way, providing a
time-frequency description of process changes by making a color image represen-
tation of a matrix whose columns contain the frequency response of the residual
model. Using a logarithmic representation in decibels (dB) –usually more conve-
nient in typical engineering applications– at sample k during the execution with
test data, k-th column would be,

20 log10

����
G(ej�,p(k))
G(ej�,mc(k))

���� = 20 log10

��R(ej�, k)
��

3 Results

3.1 Tank Level Control Dynamics

The proposed method was applied to real data from an industrial scale plant
composed of 4 tanks, two pumps and three-way valves that allow to derive fluid
to any of the tanks. A liquid level control system in one of the tanks was subject
to di�erent dynamic conditions by changing the base area of the tank. The liquid
level dynamics can be described by the following ordinary di�erential equation
(ODE),

Ab
dh(t)

dt
= qin(t)�Ac

⇥
2gh(t) (7)

where Ab is the base area of the prismatic tank, and Ac is the section of the
sink conduct. It can be easily shown that changes in Ab (due, for instance to the
presence of objects inside the tank) lead to changes in the tank dynamics. In
our experiment the liquid level in the tank was controlled using a proportional-
integral (PI) control law, where the error signal e(t) = r(t)�h(t) is the di�erence
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ing the user to perceive and track changes by morphing be-
tween views, resulting in an improved interaction and under-
standing, and being a natural way to represent changes and
cause-effect relationships. This was demonstrated by Heer
et al. [HR07], with the excellent application DynaVis. An-
other application for the analysis of household power con-
sumption of different appliances using animated transitions
between different types of views –clocks, flows, calendars– ,
was recently developed by General Electrics [Gen11]. How-
ever in these works, intermediate states do not have a specific
meaning and serve mainly to provide a connection between
views and provide perception of changes. The idea behind
animated transitions is powerful and can be further exploited
if intermediate states are crafted to serve as analysis tools
by themselves. In this paper we propose a design study that
exploits the core idea of animated transitions among basic
views consisting of specialized scatter plots. Blending scat-
ter plots with structures recognizable by the user –such as
calendar or clock like encodings–, results in interpretable
and intuitive intermediate states, allowing to combine dif-
ferent time granularities in a single view (e.g. a "clock of
clocks" showing the yearly demand for each weekday) or
showing up "clustered clouds of 24-hour clocks" organized
by similarity of the daily demand pattern.

2. Visual encoding

Rationales for spatial encodings. Data are represented
as dynamic 2D scatterplots p(i), with spatial coordinates
px(i, t), py(i, t) at sample i, to encode time or similarity
between day patterns and using color and size to encode
the attribute values. We used circular –“clock”– encodings
to reflect the periodic nature of daily and weekly time
granularities and specific calendar grids to account for so-
cial granularities. Clock and calendar encodings –see also
[OPP⇥94,GJ05,SM08,VWVS99]– are widely accepted con-
ventions for time representation and provide a natural way
to aggregate periodic events complying with the congruence
principle [TMB02].

Clock-like encoding. Let’s consider a set of N = 8760 sam-
ples of the electric demand for a whole year, obtained in
an hourly basis. Let h(i) and d(i) denote integer numbers
with the absolute hour and day of the i-th sample since the
beginning (consider i = 0 midnight). We considered daily,
weekly and yearly scatterplots, pD,pW ,pY , containing 2D
points distributed in a circular way –“clocks" on Fig. 1– with
a period of one day, one week and one year, respectively:

pD(i) =


cos
✓

2p h(i)
24

◆
,sin

✓
2p h(i)

24

◆�
(1)

pW (i) =
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cos
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2p d(i)
7

◆
,sin
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pY (i) =
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cos
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2p h(i)
365 · 24

◆
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2p h(i)

365 · 24
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(3)

Note that the daily pD and weekly pW basic views yield only

24 and 7 different locations, respectively. Each of the 24 lo-
cations of pD will contain all samples of a given day hour;
similarly the 7 locations of pW contain all samples of a given
weekday. Later, it will be seen that the user can immedi-
ately remove this ambiguity by blending with other views.
For instance, a blend p = lpD + (1� l)pW of both views,
will give a “clock of clocks” with 7⇥24 points, each with a
specific combination of day hour and weekday. Such inter-
mediate states can be obtained “on the fly" and unlike other
animated transition approaches –such as [HR07]– are mean-
ingful themselves, showing data organized by two criteria.

Calendar and 365x24 encodings. A specific calendar 2D
point set pC(i) was built by assigning to each sample its po-
sition on a classical calendar according to its day –see Fig. 1.
We also included a matrix-shaped encoding p365�24(i) com-
posed of 365 rows and 24 columns, that represent the hourly
demand profile for all the days of the year. Both kinds of
encodings specifically highlight different kinds of calendar
regularities in the daily demand profile.

Encoding the similarity of day patterns. Let x(i) be the
power demand at sample i, for i = 0, · · · ,N � 1. The k�th
day pattern can be defined as the 24-dim vector contain-
ing the demand of a whole day, x(k) = [x(24 · k),x(24 · k +
1), · · · ,x(24 ·k+23)]T . To provide the user with a method to
identify groups of similar day patterns of demand, we used
the tSNE manifold learning algorithm [vdMH08] to project
x(k) on a 2D space, resulting in a new 2D point set ptSNE(i).
The tSNE algorithm is able to retain the local structure of
the demand profiles in the 24-dim space, as well as to reveal
its global structure –such as clusters at multiple scales. The
rationale for this encoding is to get days grouped by similar-
ity, exploiting the strong association between proximity and
similarity.

Encoding of attributes. Color and size encodings were cho-
sen to describe the values of the attributes –hourly active and
reactive power demand. A multihue –blue/white/red– diver-
gent colorblind-safe and perceptually uniform color scale
was selected using the ColorBrewer tool [BHU11] to em-
phasize differences between low/high demands. The ratio-
nale for this choice is to favor good pop-out features for
quick detection of changes and large demands. To increase
the perception of change, size is encoded as an exponential
function of the attributes. Accurate numerical information of
attributes can be obtained from barcharts with a mouse right
click, as seen later. Manually tunable transparency allows to
display points that share a same location providing an aggre-
gate view, useful when the user is only interested in global
hourly or weekly distribution of data. Different sized trans-
parent points naturally result in glyphs composed of concen-
tric circles with different combinations of radii and colors,
allowing to distinguish between points with different over-
lapping data. For instance, the basic tSNE view results in
365 glyphs, each composed of 24 concentric circles, where

c� The Eurographics Association 2012.
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showing up "clustered clouds of 24-hour clocks" organized
by similarity of the daily demand pattern.

2. Visual encoding

Rationales for spatial encodings. Data are represented
as dynamic 2D scatterplots p(i), with spatial coordinates
px(i, t), py(i, t) at sample i, to encode time or similarity
between day patterns and using color and size to encode
the attribute values. We used circular –“clock”– encodings
to reflect the periodic nature of daily and weekly time
granularities and specific calendar grids to account for so-
cial granularities. Clock and calendar encodings –see also
[OPP⇥94,GJ05,SM08,VWVS99]– are widely accepted con-
ventions for time representation and provide a natural way
to aggregate periodic events complying with the congruence
principle [TMB02].

Clock-like encoding. Let’s consider a set of N = 8760 sam-
ples of the electric demand for a whole year, obtained in
an hourly basis. Let h(i) and d(i) denote integer numbers
with the absolute hour and day of the i-th sample since the
beginning (consider i = 0 midnight). We considered daily,
weekly and yearly scatterplots, pD,pW ,pY , containing 2D
points distributed in a circular way –“clocks" on Fig. 1– with
a period of one day, one week and one year, respectively:

pD(i) =


cos
✓

2p h(i)
24

◆
,sin

✓
2p h(i)

24

◆�
(1)

pW (i) =


cos
✓

2p d(i)
7

◆
,sin

✓
2p d(i)

7

◆�
(2)

pY (i) =


cos
✓

2p h(i)
365 · 24

◆
,sin

✓
2p h(i)

365 · 24

◆�
(3)
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24 and 7 different locations, respectively. Each of the 24 lo-
cations of pD will contain all samples of a given day hour;
similarly the 7 locations of pW contain all samples of a given
weekday. Later, it will be seen that the user can immedi-
ately remove this ambiguity by blending with other views.
For instance, a blend p = lpD + (1� l)pW of both views,
will give a “clock of clocks” with 7⇥24 points, each with a
specific combination of day hour and weekday. Such inter-
mediate states can be obtained “on the fly" and unlike other
animated transition approaches –such as [HR07]– are mean-
ingful themselves, showing data organized by two criteria.

Calendar and 365x24 encodings. A specific calendar 2D
point set pC(i) was built by assigning to each sample its po-
sition on a classical calendar according to its day –see Fig. 1.
We also included a matrix-shaped encoding p365�24(i) com-
posed of 365 rows and 24 columns, that represent the hourly
demand profile for all the days of the year. Both kinds of
encodings specifically highlight different kinds of calendar
regularities in the daily demand profile.

Encoding the similarity of day patterns. Let x(i) be the
power demand at sample i, for i = 0, · · · ,N � 1. The k�th
day pattern can be defined as the 24-dim vector contain-
ing the demand of a whole day, x(k) = [x(24 · k),x(24 · k +
1), · · · ,x(24 ·k+23)]T . To provide the user with a method to
identify groups of similar day patterns of demand, we used
the tSNE manifold learning algorithm [vdMH08] to project
x(k) on a 2D space, resulting in a new 2D point set ptSNE(i).
The tSNE algorithm is able to retain the local structure of
the demand profiles in the 24-dim space, as well as to reveal
its global structure –such as clusters at multiple scales. The
rationale for this encoding is to get days grouped by similar-
ity, exploiting the strong association between proximity and
similarity.

Encoding of attributes. Color and size encodings were cho-
sen to describe the values of the attributes –hourly active and
reactive power demand. A multihue –blue/white/red– diver-
gent colorblind-safe and perceptually uniform color scale
was selected using the ColorBrewer tool [BHU11] to em-
phasize differences between low/high demands. The ratio-
nale for this choice is to favor good pop-out features for
quick detection of changes and large demands. To increase
the perception of change, size is encoded as an exponential
function of the attributes. Accurate numerical information of
attributes can be obtained from barcharts with a mouse right
click, as seen later. Manually tunable transparency allows to
display points that share a same location providing an aggre-
gate view, useful when the user is only interested in global
hourly or weekly distribution of data. Different sized trans-
parent points naturally result in glyphs composed of concen-
tric circles with different combinations of radii and colors,
allowing to distinguish between points with different over-
lapping data. For instance, the basic tSNE view results in
365 glyphs, each composed of 24 concentric circles, where
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an hourly basis. Let h(i) and d(i) denote integer numbers
with the absolute hour and day of the i-th sample since the
beginning (consider i = 0 midnight). We considered daily,
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weekday. Later, it will be seen that the user can immedi-
ately remove this ambiguity by blending with other views.
For instance, a blend p = lpD + (1� l)pW of both views,
will give a “clock of clocks” with 7⇥24 points, each with a
specific combination of day hour and weekday. Such inter-
mediate states can be obtained “on the fly" and unlike other
animated transition approaches –such as [HR07]– are mean-
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day pattern can be defined as the 24-dim vector contain-
ing the demand of a whole day, x(k) = [x(24 · k),x(24 · k +
1), · · · ,x(24 ·k+23)]T . To provide the user with a method to
identify groups of similar day patterns of demand, we used
the tSNE manifold learning algorithm [vdMH08] to project
x(k) on a 2D space, resulting in a new 2D point set ptSNE(i).
The tSNE algorithm is able to retain the local structure of
the demand profiles in the 24-dim space, as well as to reveal
its global structure –such as clusters at multiple scales. The
rationale for this encoding is to get days grouped by similar-
ity, exploiting the strong association between proximity and
similarity.

Encoding of attributes. Color and size encodings were cho-
sen to describe the values of the attributes –hourly active and
reactive power demand. A multihue –blue/white/red– diver-
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function of the attributes. Accurate numerical information of
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The iDR approach
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Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space
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Using the metric induced by the previously defined weighted norm, the input dis-
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. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1, !2, . . . , !n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦

(k) the

iDR approach using the SNE algorithm
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2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space
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is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦

(k) the

input
metrics

output
metrics

probabilities

probabilities

optimization

{y
i

}(k)

{x
i

}(k)

{y
i

}(k+1)

p

(k)
ij

q

(k)
ij

{y
i

}(k)

�C

�y

i

y

(k+1)
i

= y

(k)
i

+
�C

�y

i

{�

i

}(k)

{�

�
i

}(k)

p

ij

=
exp(� d

2
ij

2�i
)

�
k �=i

exp(� d

2
ik

2�i
)

d

�2
ij

= ky
i

� y

j

k2
q

ij

=
exp(� d

�2
ij

2�i
)

�
k �=i

exp(� d

�2
ik

2�i
)

d

�(k)
ij

⌦

(k)

d

2
ij

= kx
i

� x

j

k2
⌦

d

(k)
ij

gradient of the 
cost function C:

Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
⌦

:=
X

r

X

s

x

r

!

rs

x

s

. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d

ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1, !2, . . . , !n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦

(k) the

algorithm converges smoothly to a new stable state –that is, the DR projection
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3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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1 Area de Ingenieŕıa de Sistemas y Automática, Edificio departamental 2, Campus de
Viesques s/n 33204, Gijón, Asturias ??

idiaz@isa.uniovi.es

2 Universidad de León. Instituto de Automática y Fabricación

Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-

The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N

iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.

batch mode interaction scheme iDR interaction scheme

set initial configuration
run until convergence (N steps)

visualize the results
fine-tune the DR algorithm

run 1step 
visualize the results

set initial configuration

fine-tune
the DR algorithm

quick!
~10-1s

slow!
~101s

enables a quick feedback to the user
and hence a much better user integration
in the exploration process

3.   Interactive incorporation of class knowledge

original space class space

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 , !q2 , . . . , !qK }. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), x

q2 = f

q2(t), . . . , x

qK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !

q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 , !q2 , . . . , !qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄

c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1 � �)x, �x̄

c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a

y

(t), a
z

(t)– and two phase currents i

R

(t), i
S

(t) were recorded

the lambda factor allows to balance between pure 
class info (a set of a few centroids) and the original 
data

c(x)

Extended data point
using class info

original data point in the input space

λ

xc(x) the centroid for class c(x)

class to which the point x belongs

x
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Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
⌦

:=
X

r

X

s

x

r

!

rs

x

s

. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d

ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1, !2, . . . , !n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦

(k) the

iDR approach using the SNE algorithm

1.   Analysis of time-varying input datasets
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Analysis of a fixed set of samples, each one characterized by a set of measurements that 
evolve with time (e.g., analysis of a batch of fruits, analysis of the evolution of a set of 
patients on an epidemics, time evolution of social networks, etc.)
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2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space
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(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
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3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
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(t)– and two phase currents i

R

(t), i
S

(t) were recorded

In the case of parametric dependency of this type

subspace of variables 1,5,6
(low weights for vars 2,3,4)

the resulting visualization
shows up mutual dependency
between vars 1, 5, 6

sample user-driven weight variation

User-driven modification of the distance metrics allows for detection of 
correlations in groups of variables

Example

DR methods yield an easily recognizable “snake shape” figure

Weighting variables can be exploited to select 
subsets of variables to “test” such type of 
dependency, more general than linear correlation

Interactive exploration of correlations

samples showing
large variations
of variable q

Abstract. In this work, we present a novel approach for data visualization based on interactive dimensionality 
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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section

⇤The authors would like to thank financial support from the Spanish Ministry of Economy
(MINECO) and FEDER funds from the EU.

Interactive Dimensionality Reduction for Visual

Analytics

Ignacio Dı́az1, Abel A. Cuadrado1, Daniel Pérez1,
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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q5

q6

wq1 wq2 wq3 wq4 wq5 wq6

Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N

iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.

batch mode interaction scheme iDR interaction scheme

set initial configuration
run until convergence (N steps)

visualize the results
fine-tune the DR algorithm

run 1step 
visualize the results

set initial configuration

fine-tune
the DR algorithm

quick!
~10-1s

slow!
~101s

enables a quick feedback to the user
and hence a much better user integration
in the exploration process

3.   Interactive incorporation of class knowledge

original space class space

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 , !q2 , . . . , !qK }. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), x

q2 = f

q2(t), . . . , x

qK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !

q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 , !q2 , . . . , !qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄

c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1 � �)x, �x̄

c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a

y

(t), a
z

(t)– and two phase currents i

R

(t), i
S

(t) were recorded

the lambda factor allows to balance between pure 
class info (a set of a few centroids) and the original 
data

c(x)

Extended data point
using class info

original data point in the input space

λ

xc(x) the centroid for class c(x)

class to which the point x belongs

x

plain	
  DR interacKve	
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Fig. 2: Block diagram of the SNE algorithm at the k-th iteration

2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
⌦

:=
X

r

X

s

x

r

!

rs

x

s

. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d

ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1, !2, . . . , !n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
can vary the contribution of any variable to the DR projection by changing the
values of the weights !

q

. Any variable q for which !

q

= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦

(k)

is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦

(k) the

iDR approach using the SNE algorithm

1.   Analysis of time-varying input datasets

item iitem i

item i

item i

item i

item i
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projection at time k-1 projection at time k projection at time k+1
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Analysis of a fixed set of samples, each one characterized by a set of measurements that 
evolve with time (e.g., analysis of a batch of fruits, analysis of the evolution of a set of 
patients on an epidemics, time evolution of social networks, etc.)
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2.1.1 Time-varying input datasets

Let the input dataset be {x
i

}, where x

i

is a vector with n features x

i1, xi2, . . . , xin

.
The Q elements of the input dataset may change over time, resulting in a time-
varying dataset {x

i

}(k) at time k. Using the DR algorithm to visualize time-
varying datasets allows the user to understand not only the main relationships
and structure of data but also how these relationships evolve along time.

2.1.2 Changes in the metric of the input space

A simple but powerful interaction feature can stem from user-driven change in
the input space metric ⌦. Let’s consider the following weighted norm in the
input data space

kxk2
⌦

:=
X

r

X

s

x

r

!

rs

x

s

. (1)

Using the metric induced by the previously defined weighted norm, the input dis-
tances between input points x

i

and x

j

would be d

ij

= kx
i

�x

j

k
⌦

. Let’s consider
the special case where the weight matrix ⌦ is diagonal ⌦ = diag(!1, !2, . . . , !n

),
where we have dropped the repeated index in !

qq

and used !

q

instead, to sim-
plify notation. With this choice and an appropriate visual interface, the user
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= 0 would not contribute
to the DR projection (resulting in a pseudonorm). If a new weight matrix ⌦
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is used by the DR algorithm at every iteration k, the DR algorithm will result
in a smooth transition (depending on the learning rate) to a new projection that
considers the relationships outlined by the new weight matrix. This mechanism
allows the user to quickly explore dependencies among the variables by selecting
subgroups in the interface. Moreover, since under changes in the metric ⌦
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algorithm converges smoothly to a new stable state –that is, the DR projection
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Interacting with the weights !
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linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!
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much more general than the one provided by a linear correlation coe�cient or
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3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a
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(t)– and two phase currents i
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Abstract. In this work, we present a novel approach for data visualiza-
tion based on interactive dimensionality reduction (iDR). The main idea of
the paper relies on considering for visualization the intermediate results of
non-convex DR algorithms under changes on the metric of the input data
space driven by the user. With an appropriate visualization interface, our
approach allows the user to focus on the relationships among dynamically
selected groups of variables, as well as to assess the impact of a single
variable or groups of variables in the structure of the data.

1 Introduction

Many problems today involve the analysis of large datasets, which also contain
a very large number of variables from which the user should be able to find
meaningful relationships to acquire knowledge. The mere fact of obeying laws,
rules or restrictions arising from the problem domain, leads to dependencies that
make the intrinsic dimensionality of the data to be much smaller. Dimensionality
reduction (DR) algorithms –see [1] for a review– are able to find low dimensional
latent structures hidden in high dimensional data and produce a mapping on a
low dimensional space that preserves the underlying structure of data. They
are extremely useful tools in the field of visual analytics, since they provide an
advanced way for spatialization of data, allowing to create visual representa-
tions where spatial proximity between two items y

i

and y

j

in the visualization
represents similarity between x

i

and x

j

in a high dimensional space.
Another key ingredient in visual analytics is interaction. Interaction tech-

niques –zoom, pan, brushing, etc.– allow the user to reconfigure the visualization
to focus on the interesting aspects of data or to discard information that is ir-
relevant to the available knowledge of the user. In this paper we present a novel
approach for data visualization that suggests a low level integration of user in-
teraction into the DR computation and visualization process, by means of the
so-called interactive dimensionality reduction (iDR). In section 2 we describe
the iDR approach as a user-driven visualization of intermediate results of DR
algorithms, highlighting some of its potential applications, such as the analysis
of time-varying datasets or sensitivity analysis of data dependencies. In section
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Application demo: fault analysis of AC motor

Application interface with iDR user-driven modification of the input metric space
Javascript application using processingjs (http://processingjs.org)
Analysis of three vibration signals ax(t) ay(t) az(t) and two phase currents iR(t), iS(t)
of a 4kW 2 pole-pair asynchronous motor http://isa.uniovi.es/~idiaz/demos/iDR-vibracionesMotor/
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1⇥, 2⇥, · · · , n⇥ multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2⇥– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Abstract. This paper describes a procedure based on the use of man-
ifold learning algorithms to visualize periodic –or nearly periodic– time
series produced by processes with di�erent underlying dynamics. The
proposed approach is done in two steps: a feature extraction stage, where
a set of descriptors in the frequency domain is extracted, and a mani-
fold learning stage that finds low dimensional structures in the feature
space and obtains projections on a low dimensional space for visualiza-
tion. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two
kinds of asymmetries, using four state-of-the-art manifold learning algo-
rithms for comparison purposes. In all cases, the methods yield consistent
results and produce insightful visualizations, suggesting future develop-
ments and application in engineering problems.

Keywords: manifold learning, dimensionality reduction, vibration anal-
ysis

1 Introduction

Many problems in machine learning involve a –sometimes very– large number of
variables. Examples of such problems can be found in image classification, text
mining, socioeconomic data analysis or process condition monitoring, just to
mention a few. In most cases, relationships –or constraints– among the observed
variables arise from physical laws, spatial or geometrical restrictions, redundancy
between two or more variables, etc. that make the problem depend on a reduced
set of factors that explain the observed behavior. The computation of a minimal
set of variables that describe these factors makes it possible to develop e�cient
data visualization methods with a large explanatory power.

The problem of finding a reduced set of latent variables that explain a large
dimensional set is closely related to dimensionality reduction (DR). DR Tech-
niques have been used for a long time. Maybe one of the first and most ever used
?? This work has been financed by the spanish Ministry of Science and Education and
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T

{f1, B1}

{f2, B2}

{fn, Bn}

Dimensionality
Reduction visualization

k-th signal buffer

Computation
of band 
energies

feature
vector
dk

d1k

d2k

dnk
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ing a larger set of features, resulting in spectrum representations. Since every
projected point is associated to a vector of energies at frequency bands, glyphs
at every projected position can be generated from energies of a whole frequency
range, resulting in a visualization like figure 4, that was obtained for projec-
tions of the LTSA method showing harmonics from 25 Hz to 200 Hz, in steps
of 25 Hz. Such representation gives a comprehensive view of the global behavior
of the signal frequency content. Also, it can be seen how the spectrum shape
changes continuously from the di�erent conditions, revealing the 1D nature of
the vibration conditions induced in the experiments.

Fig. 4. Map of projected spectra using LTSA. Note that the projections are spatially
distributed so that harmonics smoothly change across the vibration conditions.

5 Conclusions

In this paper we have proposed a procedure to explore the dynamic behavior of a
process composed of a feature extraction stage based on the frequency domain,
and a DR mapping using manifold learning algorithms for visualization. For
many kinds of engineering systems, the method is based on the assumption that
variations on their operating condition originated by a low number of factors
influence in nearly the same way all frequencies of the signal spectrum, lead-
ing to highly structured data in a properly chosen feature space. The proposed
method is applied to vibration analysis of a faulty induction motor. The results
show that vibration data produced under two di�erent kinds of faults (electrical
and mechanical asymmetries) produce low dimensional structures in the feature

Projections are spatially distributed
so that harmonics smoothly change 
across the vibration conditions.

Map of projected spectra (LTSA)
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Abstract. This paper describes a procedure based on the use of manifold learning algorithms
to visualize periodic –or nearly periodic– time series produced by processes with di�erent under-
lying dynamics. The proposed approach is done in two steps: a feature extraction stage, where a
set of descriptors in the frequency domain is extracted, and a manifold learning stage that finds
low dimensional structures in the feature space and obtains projections on a low dimensional
space for visualization. This approach is applied on vibration data of an electromechanical
rotating machine to visualize di�erent vibration conditions under two kinds of asymmetries,
using four state-of-the-art manifold learning algorithms for comparison purposes. In all cases,
the methods yield consistent results and produce insightful visualizations, suggesting future
developments and application in engineering problems.
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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1 Feature Extraction

A windowed DFT transform is used to
avoid Gibbs e�ect

Yi =
N�1X

k=0

w(k)yke�j2�ik/N

i = 0, · · · , N � 1

where w(k) is a windowing function –
Hanning in this paper.
For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
monics inside the bands, to obtain a p-
dimensional feature vector

dn = [d1n, d2n, · · · dpn]T

din =
vuut

X

k
NT 2[fi�

Bi
2 ,fi+

Bi
2 ]

⇥Yk⇥2

Feature vectors can be arranged into a
data matrix D = (din) = [d1,d2, · · ·],
where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
n.
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Conclusions.

Procedure to explore the dynamic be-
havior of a process composed of a fea-
ture extraction stage based on the fre-
quency domain, and a DR mapping us-
ing manifold learning algorithms for vi-
sualization.

The method is based on the assumption
that variations on their operating condi-
tion originated by a low number of fac-
tors influence in nearly the same way
all frequencies of the signal spectrum,
leading to highly structured data in a
properly chosen feature space.

Results show that vibration data pro-
duced under two di�erent kinds of faults
(electrical and mechanical asymmetries)
produce low dimensional structures in
the feature space that can be e⇥ciently
unfolded with state-of-the-art DR meth-
ods.

The resulting projections can be e⇥-
ciently represented using visualization
methods that provide an insightful view
of the changing dynamics, suggesting
the potential use of the proposed ap-
proach in many problems in which vi-
sualization of dynamics is required such
as fault detection or industrial process
data mining.

The method can be adapted for on-
line monitoring using nonlinear interpo-
lation between the input and projected
points to project new data.
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A more complete representation of the
process dynamics can be obtained in-
cluding a larger set of features, result-
ing in spectrum representations. Since
every projected point is associated to a
vector of energies at frequency bands,
glyphs at every projected position can
be generated from energies of a whole
frequency range, resulting in the visual-
ization shown in the left figure, that was
obtained for projections of the LTSA
method showing harmonics from 25 Hz
to 200 Hz, in steps of 25 Hz.
Such representation gives a comprehen-
sive view of the global behavior of the
signal frequency content. Also, it can be
seen how the spectrum shape changes
continuously from the di�erent condi-
tions, revealing the 1D nature of the vi-
bration conditions induced in the exper-
iments.
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process. In this work
four state-of-the-art methods, namely,
LTSA, LLE, L-Eig, and ISOMAP are
tested, showing that all produce insight-
ful results and lead to conceptually sim-
ilar conclusions.
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Color scale represents the values of two
dynamic features, namely, the energy in
the 25 ± 1 Hz band –which is specially
sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to elec-
trical imbalance. The four columns rep-
resent the four DR methods and the two
rows represent the features.
The results show that the four DR
methods yield similar conclusions. All
the methods show in separate regions
the four main conditions, namely,
Normal, Ecc, Imb-20 and Ecc+Imb. All
the projections also show, as expected,
smooth continuous transitions between
the normal and severe electrical im-
balance conditions –Imb-5, Imb-10,

Imb-15, Imb-var-1, Imb-var-2–,
showing up good consistency with the
nature of the fault.
Some minor di�erences can be observed
among the four methods. The com-
bined mechanical and electrical asym-
metry Ecc+Imb reveals a small 1D vari-
ation of its states in the LTSA, L-Eig
and ISOMAP methods, and is reflected
as a small cluster in LLE method.
Also, the continuous transition between
the di�erent degrees of electrical imbal-
ances is better described in the LTSA,
LLE and ISOMAP, while the L-Eig
method seems to show a dependency on
two factors.
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].

Fig. 3. Projections using the four methods.

ditions –Imb-5, Imb-10, Imb-15, Imb-var-1, Imb-var-2–, showing up good
consistency with the nature of the fault.

Some minor di�erences can be observed among the four methods. The com-
bined mechanical and electrical asymmetry Ecc+Imb reveals a small 1D variation
of its states in the LTSA, L-Eig and ISOMAP methods, and is reflected as a
small cluster in LLE method. Also, the continuous transition between the dif-
ferent degrees of electrical imbalances is better described in the LTSA, LLE and
ISOMAP, while the L-Eig method seems to show a dependency on two factors.
A more complete representation of the process dynamics can be obtained includ-
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Fig. 2. Schematic of the rig setup (top) and time plot of the accelerometer signal for
the 9 experiments (bottom). The details in the bottom figure show up the change in
time series dynamics

4 Results

The rotation speed of the 2 pole-pair induction machine with no mechanical
load is very close to 1500 rpm –25 Hz-. Frequencies associated to mechanical
asymmetries will typically be 1�, 2�, · · · , n� multiples of 25 Hz. Vibration com-
ponents produced by electrical imbalance are multiples –specially 2�– of the 50
Hz line frequency. For each of the 9 experiments, 35 dimensional feature vectors
containing energies in bands 25±1 Hz, 50±1 Hz, · · ·, 875±1 Hz, were computed
for 8192-point windows with an overlapping of 5%, by summing up the squared
modules of the FFT harmonics falling inside each band. To represent the process
behavior, four manifold learning –LTSA, LLE, laplacian eigenmaps (L-Eig) and
ISOMAP– methods were applied, with the parameters described in Table 2.

The projections obtained using the four methods are shown in Fig. 3, using
a color scale to represent the values of two dynamic features, namely, the energy
in the 25± 1 Hz band –which is specially sensitive to mechanical eccentricities–
and the 100 ±1 Hz –sensitive to electrical imbalance. The four columns represent
the four DR methods and the two rows represent the features.

The results show that the four DR methods yield similar conclusions. All
the methods show in separate regions the four main conditions, namely, Normal,
Ecc, Imb-20 and Ecc+Imb. All the projections also show, as expected, smooth
continuous transitions between the normal and severe electrical imbalance con-
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Table 1. Description of the 9 experiments.

Experiment No. Label Descripction

#1 Ecc Mechanical eccentricity
#2 ’Ecc+Imb’ Mechanical eccentricity + Electrical imbalance
#3 ’Normal’ No eccentricity, no electrical imbalance.
#4 ’Imb-10’ Electrical imbalance (fixed load, 10 �)
#5 ’Imb-15’ Electrical imbalance (fixed load, 15 �)
#6 ’Imb-20’ Electrical imbalance (fixed load, 20 �)
#7 ’Imb-5’ Electrical imbalance (fixed load, 5 �)
#8 ’Imb-var-1’ Electrical imbalance (variable load, low⇥high⇥low)
#9 ’Imb-var-2’ Electrical imbalance (variable load, low⇥high)

Table 2. Four DR methods and parameters.

Method Parameters description

LTSA K = 100 K = 100 neighbors –see [17].
LLE K = 100, ⇥ = 0.1 K = 100 neighbors and regularizing factor ⇥ = 0.1 –see [10].
L-Eig ⇤ = 0.5, � = 0.5 Distances ⇤xi � xj⇤ previously normalized to the range [0, 1], the heat

kernel parameter is ⇤ = 0.5 and �-neighborhood � = 0.5 –see [1].
ISOMAP K = 100 K = 100 neighbors –see [14].
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The test rig consists of one AC asyn-
chronous machine of 4kW and two pole
pairs, two accelerometers –only the hor-
izontal was used in this paper– with a
bandwidth of 13 KHz and a 100 mV/g
sensitivity, a multichannel low-pass fil-
tering box and a data acquisition card.
The accelerometer signal was previously
filtered using a 4th order Butterworth
filter to limit aliasing distortion and
later acquired with a 5000 Hz sample
rate.
The analyzed faults were induced by
two kinds of asymmetries: external vi-
brations produced by a mechanical ec-
centricity – a revolving mass bolted to
a disc causing an oscillating torque at
the rotating speed, near 25 Hz– and an
electrical imbalance caused by a vari-
able electrical load –a resistor– in one
of the phases. A total of nine exper-
iments were done, running the motor
under both kinds of faults and combi-
nations of these.
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where w(k) is a windowing function –
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For the nth window yn, the energies in
bands around p specified center frequen-
cies f1, f2, · · · , fp with predefined band-
widths B1, B2, · · · , Bp can be computed
by summing up the squares of the har-
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where din represents the energy in the
band {fi, Bi} –that is, with center fre-
quency fi and width Bi–, for window
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C. Simultaneous Vibrations Sources

In an actual system, the complex electromechanical interac-
tions involved, usually produce different condition scenarios
from those studied previously when the fault causes are
analyzed separately. In these new situations, the identification
of root causes of failure is sometimes elusive due to the
complexity in uncoupling the mechanical failure causes and
their direct electrical effects [14].

The objective when exploring the current spectrum under
these circumstances, is to obtain useful information about
reliable current-vibration relationships through the different
working conditions in order to be capable of identifying these
different states by means of sensorless diagnosis.

III. EXPERIMENTAL SETUP

The test rig consists of one AC asynchronous machine of
4kW and two pole pairs, two accelerometers with a bandwidth
of 13 KHz and a 100 mV/g output, three Hall effect current
transducers, one RTD Pt-100 temperature sensor, a multichan-
nel low-pass filtering box and a powerful data acquisition,
processing and visualization software application which was
developed for process condition monitoring and has two main
modules: one for data acquisition and another one for feature
extraction [15].

Both accelerometers are mounted on the motor housing,
as shown in Fig. 1, to acquire the global motor vibration
levels. The analyzed faults are unbalances produced in two
ways: external vibrations –in this case the external source of
vibration is a mechanical asymmetry located as an eccentric
mass at the motor fan which rotates at a frequency fv

ext

of
30Hz– and mechanical imbalance –an oscillating torque is
caused by a revolving mass bolted to a disc and obviously
rotating at the motor frequency n of 25 Hz. Both the vibration
and current signals are low-pass filtered at 300Hz through
a 4th order Butterworth type filter in order to limit aliasing
distortion. The data acquisition module performs the task re-
lated to acquisition, storage and displaying of data as temporal
signals and its corresponding spectra obtained by means of
Fast Fourier Transform. The sampling frequency is 1000Hz.

Tests were carried out under 8 different vibration conditions
(two tests were done for each condition) combining two types
of vibration sources: mechanical imbalance (MI) by changing
the weight of the asymmetric mass (0, 2, 8 and 12 mass units),
and external vibration (EV, with and without). The labels for
each condition are summarized in Table I.

Label MI (in mass units) EV
0s 0 without
0c 0 with
2s 2 without
2c 2 with
8s 8 without
8c 8 with

12s 12 without
12c 12 with

TABLE I
LABELS FOR THE 8 VIBRATION CONDITIONS TESTED ON THE MOTOR.
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Fig. 2. Typical feature extraction process to compose the data matrix D.

IV. CORRELATION MINING TECHNIQUES

In this section we describe a set of techniques –some of
them widely used in data mining applications and others new
in the field– for correlation mining and its application to the
problem exposed in section II.

A. Feature extraction
Let’s suppose we have measured a variable d(t) at regular

time intervals with a sample period T

{ d(T ), d(2T ), · · · , d(kT ), · · · }

and computed the FFT harmonics at frequencies f1, f2, · · · , fn

at overlapped windows to obtain, for the kth window, the
feature vector

dk =
⇤
Df1

k ,Df2
k , · · · Df

n

k

⌅T
.

Joining the feature vectors, we can build a data matrix

D = (dij) = [d1,d2, · · · ,dN ]

where dij ⇥ Df
i

j represents the energy at frequency fi

evaluated at window j. This feature extraction process is
sketched in Fig. 2

In order to analyze the joint behavior of currents and
vibrations, it is possible to define an augmented data matrix
as

X =
�

I
A

⇥

where I and A are data matrices containing the current and
vibration harmonics respectively.

In order to find correlations between currents and vibrations,
a matrix of feature vectors was built containing the energies at
frequencies 5, 10, · · · , 200 Hz for current in one phase iR(t)
as well as for horizontal and vertical accelerations ah(t) and
av(t) using 8192�point windows with an overlapping of 50%.
All this gives a feature vector containing 40 current harmonics
and 80 acceleration harmonics.

xk = [i5R, i10R , · · · , i200R⌥ ⌃⇧ �
currents

, a5
h, · · · a200

h , a5
v, · · · , a200

v⌥ ⌃⇧ �
vibrations

]T
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In many electromechanical systems, the
feature vector described above is invari-
ant for a given process condition. We
assume that the process condition de-
pends on a few factors. So, a rela-
tionship between the high dimensional
feature space and the low dimensional
space of factors that define the actual
process condition can be established.

Under this hypothesis, the problem is to
find latent low dimensional structures in
the feature space as, precisely, DR tech-
niques are aimed. Thus, DR techniques
can be applied to unfold the data on the
feature space. This yields a distribution
of the projections using a spatial distri-
bution that reflects the factors on which
the process conditions depend.

Combined with scatter plots using col-
ors and/or glyphs to represent features
or variables with a physical sense, this
provide insightful information on the
behavior of the process.

In this work four state-of-the-art meth-
ods, namely, LTSA, LLE, L-Eig, and
ISOMAP are tested, showing that all
produce insightful results and lead to
conceptually similar conclusions.
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Sensitivity analysis
Whenever the user increases a single weight “wq” the input 
distance pattern dij becomes more sensitive to variable q. Points 
(samples) showing significantly large deviations in variable q, will 
move apart upon changes in wq, thus revealing their dependency 
on variable q.

wq wq

3 we describe an application demo of the iDR idea for the visual analysis of fault
states in a rotating machine. Finally, section 4 concludes the paper.

2 The interactive Dimensionality Reduction approach

In the typical procedure to use DR algorithms for visual analytics, interaction
is often done after DR computation on the input dataset. The user sets up an
initial configuration for the DR algorithm, runs it until convergence and, after N

iterations, the output results are used to produce a visualization. The user may
later use interaction techniques to reconfigure this visualization or even decide to
run the DR algorithm again using another parameterization, starting the cycle
again –see for instance [2]. This approach can be thought of as a batch mode

interaction scheme for DR visual analytics.

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

DR algorithm

iteration

DR Code Output Visualization

Interaction

Interaction

Fig. 1: Batch mode interaction scheme (left) vs. the iDR approach (right)

However, interaction can go far beyond this approach, allowing the user to
take full control of the DR behavior by means of iterative reconfiguration of

computational algorithms [3]. The right picture in Fig. 1, shows the main idea
of this approach for DR analysis, where the intermediate results are used to
produce a visualization at each iteration. The result is a dynamically changing
visualization that allows the user to track changes in the resulting projection
under changes in the problem formulation, such as, for instance, user-driven
changes of the metric in the input space (e.g. by modifying the weights of the
input variables), or under time-varying input data (e.g. in dynamic processes
where the elements of the input dataset change with time). Despite this approach
is still rather unexplored, a few related works can be found, as an interactive
version of PCA [4] and an interactive learning of distance functions [5].

2.1 Applications of the iDR approach

To allow interaction, we shall consider iterative algorithms, such as Stochastic
Neighbor Embedding (SNE) [6] or the Neigborhood Retrieval Visualizer (NeRV)
[7]. For simplicity, let’s consider a block diagram of the SNE algorithm for the
k-th iteration –see Fig. 2. Some of the inputs –data or parameters– to the
algorithm can change or be changed by the user at each iteration.

batch mode interaction scheme iDR interaction scheme

set initial configuration
run until convergence (N steps)

visualize the results
fine-tune the DR algorithm

run 1step 
visualize the results

set initial configuration

fine-tune
the DR algorithm

quick!
~10-1s

slow!
~101s

enables a quick feedback to the user
and hence a much better user integration
in the exploration process

3.   Interactive incorporation of class knowledge

original space class space

algorithm converges smoothly to a new stable state –that is, the DR projection
under the new metric–, changes can be tracked by the user, allowing to establish
links and find di↵erences between the new projection and the former one.

Interacting with the weights !

q

, the user can explore several kinds of non-
linear correlations between the variables. Suppose that the user has chosen
a set of K nonzero weights {!

q1 , !q2 , . . . , !qK }. If a 1-dimensional structure
–i.e. a snake-shaped figure– emerges after convergence in the projection, it re-
veals a mutual nonlinear dependency on an independent parameter t of the type
x

q1 = f

q1(t), x

q2 = f

q2(t), . . . , x

qK = f

qK (t). Note that this information is
much more general than the one provided by a linear correlation coe�cient or
the more general nonlinear correlations observable in scatter plots, which can
only be visualized for two variables in a single scatter plot.

A further collateral benefit of this kind of DR interaction is sensitivity anal-

ysis. Whenever the user modifies a single weight !

q

, the input distance pattern
d

ij

becomes more sensitive to variable q. This will be reflected as large dis-
placements in the projections of all elements that have significant di↵erences
in variable q with respect to the other ones. This sensitivity analysis is not
restricted to a single variable. Eventually, if the interface allows it, the user
could change the weights {!

q1 , !q2 , . . . , !qM } of a group of M variables at the
same time to discover elements that di↵er significantly in any of the variables
x

q1 , xq2 , . . . , xqM . Moreover, the displacement trajectories should be di↵erent for
elements with di↵erent patterns of variation within the group.

2.1.3 Interactive feature space transformations

Feature space transformations [8] allow improving the quality of an existing
embedding in terms of both structural preservation and class separation. One
simple feature extension scheme, for instance, is to augment each element x with
an extended feature set x̄

c(x) equal to the centroid of the class c(x) it belongs
to, thus forming an extended vector x

e

= [x, x̄

c(x)]. The DR projection of x

e

,
therefore contains class information, resulting in a more meaningful projection.
A user-driven variant of this approach, suitable for interaction, could involve a
weight factor �

x

e

(�) = [(1 � �)x, �x̄

c(x)]

letting the user modify �

(k) and projecting x

e

(�(k)) at iteration level, the user
can control the balance between class separation and structural preservation. As
a result the user can set the optimum point or even move it to gain insight and
find connections between data structure and class knowledge.

3 Application demo: fault analysis of AC motor

A javascript application using the iDR approach was developed using process-

ing.js (http://processingjs.org), for the analysis of vibration data in a 4kW,
2 pole-pair asynchronous motor, where three vibration signals –measured in the
three axes a

x

(t), a

y

(t), a
z

(t)– and two phase currents i

R

(t), i
S

(t) were recorded

the lambda factor allows to balance between pure 
class info (a set of a few centroids) and the original 
data

c(x)

Extended data point
using class info

original data point in the input space

λ

xc(x) the centroid for class c(x)

class to which the point x belongs

x



Universidad	
  de	
  Oviedo

Thank	
  you	
  for	
  your	
  aYen2on!

55


