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Motivation 
Develop a dynamic simulator for CERN cryogenic systems 

 Model Large-Scale helium refrigerators 

 

 CERN cryogenic systems: large scale complex systems 

 Similar to other large industrial systems (Petroleum refineries, food industry...) 

 LHC cryogenics : 42 000 I/O & 5 000 control loops 

 

 Non-linearity of helium properties (wide operation ranges) 

 Temperature : 1.8 K to 300 K  

 Pressure : 14 mbar to 20 bar 

 

 Unique systems 

 Built to be operated at nominal conditions 

 Poor insight about transients and out of operation points predefined  

 

 Dynamic simulation is a great tool for : 

 Train operators safely and in degraded conditions 

 Test new control strategies without disturbing real operation 

 Validate control and supervision systems in simulation : « Virtual Commissioning » 

4 



Contents 
 Introduction 

 Motivations 

 

 Dynamic simulator for cryogenic systems 
 Control and simulation architecture for cryogenics 

 Cryogenic Modeling 

 

 Advanced control applications in the LHC cryogenics 
 Beam screens cooling: PID tuning 

 1.8 K refrigeration units: Cold compressors control 

 Warm compressor stations: High Pressure control  

 Warm compressor stations: Energy optimization 

 

 

 Conclusion & Perspectives 

5 



Field 

Layer 

Control 

Layer 

Supervision 

Layer 

Control and simulation architecture for cryogenics 

Data Server 

SCADA 

(PVSS) 

PLC 

Schneider 
PLC 

Siemens 

I/O (Field bus) 

Real process 

I/O (Field bus) 

Réseau technique Ethernet / MOD ou S7 

 

Supervision 

controles 

 (PVSS) 

 
 

 

Unity 

 (PLC simulator) 
 

Simatic WinLC 

 (PLC simulator) 

Cryogenic Process Simulator (CPS) 

OPC client 

EcosimPro 

algorithm 

C++ 

application 

Process model (EcosimPro) 

C++  class 

EcosimPro 

model 

I/O (OPC) I/O (OPC) 

6 



Cryogenic modelling 

 Macroscopic modelling in 0D/1D 
 Knowledge model based on physics 

 Thermodynamic 

 Fluid mechanics 

 ... 

 

 Use of a commercial software: EcosimPro 
 Object oriented modelling approach (1 component= 1 process equipment) 

 Modelling of fluids (water, helium…) 

 Modelling of actuators (valves, pumps, compressors…) 

 Modelling of passive equipment (pipes, vessels,…) 

 Modelling of sensors (temperature, pressure, massflow…) 

 Non-causal modelling 

 Differential Algebraic Equations (DAE) 

 Manual spatial discretisation for 1D components 

 Nice Graphical User Interface 

 

 Use of a cryogenic library (CRYOLIB) 
 Developed at CERN 

 Technology transferred and commercialized by EcosimPro 
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Beam screens cooling: PID tuning 

9 

 Output temperature of beam screens must be below 20 K to ensure ultra high vacuum in LHC 

 Heat peak is induced during the beam injection in LHC. Temperature was sometimes rising up to 20 K 

 Reproduction in simulation and tuning of controller to reduce the peak 

 

Simulation with new PID including 

some data filtering 
Model validation with experimental data 



Cold compressor control (1/2) 
 Cold compressors are complex hydrodynamic machines  

 Allow to pump helium at 16 mbar at 3 K to reach 1.8 K in LHC magnets 

 A narrow pressure field has to be respected 

 Original control was too slow or too “brutal” during pumping sequence  
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 Modeling and identification of pressure fields using optimization techniques 

 Design of a new control approach to drive the compressor along a known and safe trajectory 

 Pumping between 100 mbar and 16 mbar with a new set-point calculation: 

 No need manual intervention anymore 

 Smoother pumping without “stair” 

 Ensure safety of machines and appropriate pumping speed 
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Cold compressor control (2/2) 



Warm Compression Station Control (1/3) 
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 Compress 1.6 kg/s of warm helium from 1 bar to 18 bar 

 Electrical consumption : 4.5 MW  x8 = 36 MW 

 5 compressors + 6 valves + buffer tank + piping 

 Objective = maintain constant pressures  

 High Pressure, Low Pressure, Medium Pressure 

 Usually controlled by 8 PID controllers 



Warm Compression Station Control (2/3) 

IMC Control:  Internal Model Control 

 
 Linear Model Synthesis from physics 

 
 
 

 Model uncertainties evaluations 
 
 
 

 Synthesis of the controller Q using a robust tuning 

 
 
 
 

 
 Guarantee stability for the worst case 
 Adapt model in real-time (according to current state) 
 Take into account saturation of valves (« anti-

windup ») 
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Optimal LQ Control: Linear Quadratic Control 

 

 Linear Model Synthesis from physics 

 

 

 Calculation of the error regarding set-point 

 

 Integrate the error 

 

 Compute the virtual control effort 

 

 Project on the admissible space 

 

 Transformation from flowrate to actual control effort 

 

 



Warm Compression Station Control (3/3) 
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 Comparison of different regulation techniques (sim + real) 

 Original PI controllers 

 Aggressive PI controllers + Feed-Forward 

 IMC + Feed-Forward 

 Optimal Multivariable LQ controller 

 

 

LQ Controller 



Energy Optimization (1/2) 
 Include a new control loop to optimize energy consumption (cascade) 

 User Heater control to avoid to empty the phase separator or to have an overflow 
Heater level 

Heater 1 = 1kW 

Level set-point 
80% 

Level set-point +10 
90% 

Level set-point -20 
60% 
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Simulations: 

Energy Optimization (2/2) 
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Conclusion & Perspectives 

 Cryogenics are very complex processes 
 Large-Scale 

 Multivariable 

 Non-Linear 

 

 

 Dynamic simulation is an adequate tool to validate new control 
schemes 

 

 

 Cryogenics (as other processes) is using mainly PI controllers 

 

 

 Cryogenics begins to use advanced control to optimize controls 
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