

High precision current control of the LHC Power Converters

CERN 2 June 2014

Hugues Thiesen CERN TE-EPC

- LHC challenges
- RST Digital control
- Application for the current control of the LHC power converters
- Conclusions

LHC Challenges

In the circular accelerator the main magnets (dipole and quadrupoles) have to generate the same magnetic field

The classical solution is to put the magnets in series (LEP, SPS)

• 3 main circuits (RB, RQD and RQF)

Example of SPS main quadrupole circuits:

- All the QD (and QF) magnets are connected in series
- The currents circulate in opposite direction to avoid making dipole loops.

For the LHC this solution was not possible due to the huge energy stored in the superconducting dipoles magnets

• Total energy stored in the main dipole:

with
$$\int L = 123.2 \text{ H} (8*15.4 \text{ H})$$

I = 12 kA

8 powering Sectors:

- RB: 154 dipoles in series (15.4 H)
- RQD/RQF: 47 quads in series (0.25 H)

Tracking between sectors

LHC challenges

LHC Power converter performances

Circuit	Nominal	Current	One Year	One day	1/2 hour	Resolution
Туре	Current	Polarity	Accuracy	Reproducibility	Stability	
	(A)		(ppm of Inominal)	(ppm of Inominal)	(ppm of Inominal)	(ppm of Inominal)
Main Bends, Main Quads	13000	Unipolar	± 50	± 5	± 3	1
			± 20 with calibration			
Inner triplet	8000/ 6000	Unipolar	± 70	± 10	± 5	1
			± 20 with calibration			
Dispersion suppressor	6000	Unipolar	± 70	± 10	± 5	15
		•				
Insertion quadrupoles	6000	Unipolar	± 70	± 10	± 5	15
Separators (D1.D2.D3.D4)	6000	Unipolar	± 70	± 10	± 5	15
			-	-	-	-
Trim quadrupoles	600	Bipolar	± 200	± 50	± 10	30
SSS correctors	600	Bipolar	± 200	± 50	± 10	30
Spool pieces	600	Bipolar	± 200	± 50	± 10	30
Orbit correctors	120/60	Bipolar	± 1000	± 100	± 50	30

Linear control with constant parameters

To define the control law we have:

- The model of the system:
- The reference and its history:
- The measurement and its history:
- The history of the command:
- Two mathematic operators:

B(s) and A(s) (or B*(z^{-1}) and A*(z^{-1})) ref*($k.T_e$), ref((k-1). T_e), etc... meas*($k.T_e$), meas((k-1). T_e), etc... Cde*($k.T_e$), Cde((k-1). T_e), etc + (or -) and xCte

RST representation

 $Cde^{*}(k) = t_{0}.ref^{*}(k) + t_{1}.ref^{*}(k-1) + t_{2}.ref^{*}(k-2) + \dots$ - $r_{0}.meas^{*}(k) - r_{1}.meas^{*}(k-1) - r_{2}.meas(k-2) + \dots$ - $s_{1}.Cde^{*}(k-1) - s_{2}.Cde^{*}(k-2) - \dots$

 $S(z^{1}).Cde^{*}(k) = T(z^{1}).ref^{*}(k) - R(z^{1}).meas^{*}(k)$

$$\begin{cases} \mathsf{R}(\mathsf{z}^{\text{-1}}) = \mathsf{r}_0 + \mathsf{r}_1.\mathsf{z}^{\text{-1}} + \mathsf{r}_2.\mathsf{z}^{\text{-2}} + \dots \\ \mathsf{S}(\mathsf{z}^{\text{-1}}) = \mathsf{s}_0 + \mathsf{s}_1.\mathsf{z}^{\text{-1}} + \mathsf{s}_2.\mathsf{z}^{\text{-2}} + \dots \\ \mathsf{T}(\mathsf{z}^{\text{-1}}) = \mathsf{t}_0 + \mathsf{t}_1.\mathsf{z}^{\text{-1}} + \mathsf{t}_2.\mathsf{z}^{\text{-2}} + \dots \end{cases}$$

PID regulator

Classical representation

PID in "s" domain

PID in "z" domain

PID regulator

RST representation

2 important transfer functions:

The poles (stability) are defined by the denominator:

 $A(z^{-1}) \cdot S(z^{-1}) + B(z^{-1}) \cdot R(z^{-1}) = P_{des}(z^{-1})$ independent of T

Application for the control of the LHC power converters

Application for the LHC power converters

LHC requirements:

- Perfect tracking between the 8 sectors
- The load is a "ideal" R-L load (without saturation and thermal effect)
- The power converter (bandwidth = 1 kHz) is considered as a gain: $G_{pc} = 1$
- PLEP reference with 20 mn for ramping

Model of the system:

$$\frac{I(s)}{V(s)} = \frac{1}{Rs} \cdot \frac{1 + \frac{L}{Rp} \cdot s}{1 + \frac{Rp + Rs}{Rp \cdot Rs} \cdot L \cdot s} = G1 + \frac{G2}{1 + \tau 2 \cdot s}$$

$$\begin{cases} G1 = \frac{1}{Rp + Rs} \\ G2 = \left(\frac{1}{Rs} - \frac{1}{Rp + Rs}\right) \\ \tau 2 = L / \left(\frac{Rp \cdot Rs}{Rp + Rs}\right) \end{cases}$$

$$\frac{i(z^{-1})}{v(z^{-1})} = Gz \cdot z^{-1} \cdot \frac{1 + b_1 \cdot z^{-1}}{1 + a_1 \cdot z^{-1}} = \frac{z^{-1} \cdot B^*(z^{-1})}{A(z^{-1})}$$

$$\begin{cases} Gz = G1 + G2 \cdot \left(1 - e^{-te/\tau^2}\right) \\ b1 = \frac{-G1 \cdot e^{-te/\tau^2}}{G1 + G2 \cdot \left(1 - e^{-te/\tau^2}\right)} \\ a1 = -e^{-te/\tau^2} \end{cases}$$

Identification of R, S and T:

$$S = B^* \cdot (1 - z^{-1})^2 \quad \text{!! Only if B* is "stable" !!}$$

$$\frac{y}{d} = \frac{A \cdot S}{A \cdot S + B \cdot R} = \frac{A \cdot B^* \cdot (1 - z^{-1})^2}{A \cdot B^* \cdot (1 - z^{-1})^2 + z^{-1} \cdot B^* \cdot R} = \frac{A \cdot (1 - z^{-1})^2}{A \cdot (1 - z^{-1})^2 + z^{-1} \cdot R} = \frac{A \cdot (1 - z^{-1})^2}{P_{des}}$$

$$\frac{y}{r} = \frac{T \cdot B}{A \cdot S + B \cdot R} = \frac{T \cdot z^{-1} \cdot B^*}{A \cdot B^* \cdot (1 - z^{-1})^2 + z^{-1} \cdot B^* \cdot R} = \frac{T \cdot z^{-1}}{A \cdot (1 - z^{-1})^2 + z^{-1} \cdot R} = z^{-1}$$

Identification of R, S and T:

Equivalent structure

- The LHC requests a very high precision concerning the control of the power converter current
- Digital regulation has been developed based on RST theory
- All the linear regulator can be converted in RST
 - Same implementation on the DSP
- Today the RST control is used for all the new power converters and also for the voltage loop

- "Digital Control Systems": Ioan D. Landau; Gianluca Zito
- "Computer Controlled Systems. Theory and Design": Karl J. Astrom; Bjorn Wittenmark
- "Advanced PID Control": Karl J. Astrom; Tore Hagglund;
- "Elementi di automatica": Paolo Bolzern