CE/RW
\

B. Fernandez, D. Darvas, E. Blanco

Formal methods appliedto PLC code
verification

Automation seminar CERN — IFAC (CEA)
02/06/2014

Cw
\

N

=<
m
>
o
tn
~
>
pd
w
0
m
P
4

Outline

d Context

d Formal verification

d Methodology overview
d Some results

d Conclusions

Context

1 CERN: European Organization for Nuclear Research
The biggest particle physics research institute

ALICE LHCb
\ SPS
m | 1976 G km) |
— ATLAS CNC;\‘\‘
\, e
-—-—"/t/ AD
S
\ @ Lo o T
I >/ = -
—
. : |
m" > LINA / + P
INA Leir
d PLCs at CERN: s [) i

O Widely used in many different systems.

O E.g.: cryogenics, vacuum systems, gas systems, C&V.
0 Common structure (UNICOS framework).

c@
L
77

&

YEARS /ANS CERN

IEC 61508: Software design and develp. (table A.2)
Technique/Measure Ref SIL1 SIL2 SIL3 SIL4
1 Fault detection and diagnosis Ca -—- R HR HR
2 FError detecting and correcting codes C32 R R R HR
Ja Failure assertion programming C33 R R R HR
3b Safety bag technigues C34 - R R R
3c Diverse programming C35 R R R HR
3d Recovery block C36 R R R R
Je Backward recovery Cai R R R R
3f Forward recovery C38 R R R R
3g Re-try fault recovery mechanisms C39 R R R HR
3h Memorising executed cases C3.10 - R R HR
4 Graceful degradation C3.11 R R HR HR
5 Artificial intelligence - fault correction c312 - NR NR NR
6 Dynamic reconfiguration C3.13 - NR NR NR

Even for S| |_1 iS Ta Structured methods including for example, c21 HR HR HR HR

SO paccOT _SADT and Yourdon
recommended to 7b Semi-formal methods Table B.7 R R HR HR
I 7c Formal methods including for example, CCS, c24

use [Seml]-fOrmal CSP, HOL, LOTOS, DBJ,gtemporal I'r?)gi'c, VDM - R R HR

methods and Z
8 Computer-aided specification tools B.24 R R HR HR
a) Appropriate techniques/measures shall be selected according to the safety integrity level.
Alternate or equivalent techniques/measures are indicated by a letter following the number. Only one
of the alternate or equivalent techniques/measures has to be satisfied.
b) The measures in this table concerning fault tolerance (control of failures) should be considered
with the requirements for architecture and control of failures for the hardware of the programmable
electronics in part 2 of this standard.

/“
9| &

NS
YEARS /ANS CERN

Verification of CERN’s PLC programs

d Currently: manual and automated testing
Q Useful, but not efficient for every type of requirements
O Difficult to test safety requirements:
“if out1 is true, out2 should be false”

1 Model checking can complement testing
O Can check large amount of combinations.
O Formal method.

J But...

O Why Formal Verification is not widely used in industry yet?
O How can we fill the gap between the automation and formal
verification worlds?

N

N7
YYYYY /ANS CERN

About formal verification

Cw
\

N

=<
m
>
o
tn
~
b
pd
w
0
m
P
4

How to classify model checking?

Formal
methods

Verification

Formal
verification

Formal
specification
(B, Z, Alloy, ...)

Model
checking

Static

analysis Formalisms:
Verif. based on Automata, Petri

theorem proving Nets, Temporal

Logic

YEARS /ANS CERN

Model checking

Specifications

-~

(hardware, software)

Formal Formal
Model Requirement

\Y[eYo[=]
checker

satisfied not satisfied

Counter-
example

0

YEARS /ANS CERN

Testing vs. model checking

i :
!

EEmEmnmnanes

Io.o Io.1 oo.o
| | | | I |
[I L 1

f¥arl
fWarl
|
[|

i il

Q0.0 := (10.0 AND 10.1) OR Varl

Requirement
If 10.0 is FALSE and 10.1 is FALSE , then Q0.0 is FALSE

(Incomplete) testing Model checking will answer

may answer that this that this property is not correct

property is correct. and it will provide a
counterexample: Varl ==

X7
YYYYY /ANS CERN

Testing vs. model checking

. 10.0 ==

0.1 —— Q00

\ W2 — PLC program

W3 —— Q0
Safety Reguirement
If Q0.0 iIs TRUE, then Q0.1 is FALSE

Model checking will explore It's a extremely
all input combinations and complicated task for
will verify the safety property Testing.

Model checking

1. How to build the formal models?
Automata, Petri nets, Timed automata, ...

2. How to build the formal requirement?
Temporal Logic

Temporal logic

Boolean logic
operators

predicates
AND, OR, NOT input=TRUE, temp>100

+

Temporal operators

in the future ... once ...
always ...

until...

&

YEARS /ANS CERN

Cw
\

N

Model checking

aQ MC checks the specifications against a model instead of the
real system.

QO Allows to check properties that are almost impossible to
test (e.g. liveness properties)

A Checks all possible combinations
aQ Gives a counterexample when a discrepancy is found.

QO Possible to automatize (can be used by non-formal method
experts)

Q State space explosion

About our methodology

EEEEEEEEEEEEE

Why Is not model checking widely used iIn
automation?

s Specifications
How ¢ : % How to
g‘(’)"dglg’)e é formalize
' requirements?
_ Formal d -
Automated Requirement Patterns
generation
Which model) R
heck
checker should ! checker How to proceed
be used? m not satisfied with a
i counterexample?
(enl\glrjgllﬂeeth) ~oumer 7
g : L\ example Analysis &
How to make Demonstration
it efficient?
. J
Reductions

Cw
\

N

&

YEARS /ANS CERN

Our approach: methodology overview

d General method for applying formal verification:
O Generate formal models automatically out of PLC code.
a Includes several input PLC languages
(IEC 61131-3: SFC, ST, IL, Ladder, FBD).
O Easy integration of different formal verification tools.

"PLC world" Internal model External models Analysis

PLC knowledge e BIP model

nuXmyv model

Model checking
; + Analysis of
~"| counterexample

\

model

Mbstraﬁgtioﬁns /
- reductions

H /
i intermediate ; UPPAAL model
T

CE?W
\

X7
YEARS /ANS CERN

Model example

1 IF ia > 0 THEN -
- xa := TRUE; _IFIF .)
ELSE initialization
xa := FALSE; of inputs

aQ IF ib > 0 THEN
< xb 1= TRUE; —
E ELSE
xb := FALSE;
E END TF;
END IF;

c = c + 1;

W

init{lec) := initial;
next{logc) 1= case

CFG representation

loc = end : initial;
loc = initial @ s0;
loc = s0 & ((IA > 0sdlé 0)) : s2; —
loc = s0 & (! ((IA > Osdlé 0))) : sl;
loc = 51 & ((IB > 0Osdle 0)) : s2;
loc = s1 & (!'((IB > Osdlé 0))) : s2;
loc = 52 : end;
TRUOE: loc;
esacy

next {XA}) := case

NuSMV model

ase
lec = s0 & ((IA > Osdlé 0)) : TRUE;
loc = s0 & (! {(IA > Osdlé 0)}) : FALSE;
TERUE : XA;

esac;

/ﬂ-‘
S lle ™

NS
YEARS /ANS CERN

Automatic generation tool

B PLCverif =N [5
Settings Help
i
3 Project Explorer DemoSource.sc Ver Case (Demolll £mao eport
[Project Expl ¥ =8 DemoS “ase (Demol01 Demol01 R 52 =g =
4 15 DemoProject Qéh files/// Ci/temp/ pleverif_v2.0.1b21/PLCverif/workspace/DemoProject/generated/DemaoVerifCase. html - [H =
[» [generated |
& DemoSourcescl £ = g =
B DemovertCasene Verification report =
UNICQS_base bt
=
ID: Demo001 =
Name: If Ais false, C cannot be true. g | B=

Description: |If Ais false, C cannot be true. As this function block models an AND-gate, if any of the inputs (A or B) is false, the output should be false
too.

The requirement is based on the documentation of the function block and the following Jira case:
hitps:/ficecontrols.its.cern.ch/jira/browse/JCPC-1111

Source file: | DemoSource.scl

Requirement: 3. A =falze & C = true is impossible at the end of the PLC cycle.

Tool: nusmv
Total runtime (until getting the verification results): 328 ms
Total runtime (incl. visualization): 670 ms

m

Counterexample
. End of
Variable Cycle 1
Input |a FALSE
Input | b TRUE il |
Oufput | € TRUE

0

YEARS /ANS CERN

Some results

CERN ‘

=<
m
>
o
tn
~
b
pd
w
0
m
P
4

~7_7

Results with the UNICOS library

1 CERN PLC programs developed with the UNICOS

Framework:
Q Library of objects (representing the logic of real equipment)
Q Expressed in PLC code: ST language.

d Metrics of the PLC program

OnOff PLC code

Lines of code 600
Input variables 60
Output variables 62
Data types Booleans, integers, floats, time, etc.
Timers 3

Results with the UNICOS library

Metric Non-reduced Reduced Specific
model model Model *

Potential state

—_ 36
space 10
Variables 255 118 33
Generation 0.3s 11.3 s 12.6 s

NuSMYV Verification
withcex) (- D 1608s

* Based on a real requirement about the mode manager of the
OnOff object
Cone of Influence algorithm
(property preserving reduction techniques)

%

YEARS /ANS CERN

CE?W
\

~7_/

Results with an UNICOS control system

QSDN control system

HV400

% LN2
Q@ oo ool PLC code
|

% O 110 FBs and FCs
fy‘ O* %g;/l\ >Zwv:mg ‘ D 17,500 ||nes Of COde

s | =
DN2CT @im T— DN1CT ey
(1oom?) | (100m?) R
g ey
| 200 = Formal model
oo 3 1 302 automata

I I 0 PSS = ~1031985

2PV409 1PV409
To Precooler

Goal: Verify the specific logic of the application

0

CE?W
\

X7

YEARS /ANS CERN

Results with an UNICOS control system

Example of a variable
dependency graph

Reduced variable
dependency graph

Safety req.
If Seq.Stop.x — Valve1.AuOffR

! O
Metric Non-reduced | Reduced | Abstract
N J] model Model* | Model **
Lo gly,
/. PEE ~1031985 ~1(05048
O
O 5 A # Variables 31,402 3757 20
(O D .|1
-) .';5::'
=S S Generation 42s 15.3s 5.4s
) i
DR o NuSMV
s ;) ' 0 Verification - - @

E@ ‘ \/-M * Using property preserving reduction techniques

YEARS /ANS CERN ** Using non-property preserving reduction techniques

Conclusion and summary

1 Model checking can be applied to PLC programs.

O Difficulty can be hidden from the control engineers:
O Automated model generation, requirement patterns, automatic
reduction techniques and counterexample analysis.
1 We have found discrepancies in our systems.
Sources of problems:

Q Incomplete or incorrect specification.

O Mistake in the implementation.

1 Bugs can be proved and “help” is provided to find the source
of the bug.

O Future work: Concurrency + formal specifications +

Improvement of reduction techniques.
™

N7
YYYYY /ANS CERN

i

www.cern.ch

