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P1/PID controller, ..., very well known !!
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The major concern is how to choose appropriate values for the
three parameters.

it seems an easy problem, but has attracted control engineers
for more than 70 years.
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In the last O'Dwyer, A. (T) compilation, a total of 1731 tuning rules
are collected:

@ On the basis of controller structure
PI (33%),

PID ideal (23%),

PID 'real’ (14%),

2DoF PI/PID (21%),

other... (9%)

@ On the basis of process model

stable first order (37%),
stable second order (17%),
integral (19%),

unstable (11%),

other (6 %).

(") O'Dwyer, A. (2009) - " Handbook of Pl and PID Controller Tuning Rules’,
3rd Edition, Imperial College Press, London, UK.
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Tuning rules, some important milestones

| Rivera, Morari, Skogestad (IMC)) |

Callender, Portree

| Chien, Hrones, Reswick |

l Rovira, Murrill, Smith |

N
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Past, Present and Future of PID Control,
Terrassa, Spain, 2000

~ 100 presentations

DIGITAL CONTROL:
PAST, P D FUTURE
rROL

State of the art on tuning / applications

| @ Some initial works on

Robustness

Fractional PID control

PID 2-DoF

Data-driven (iterative control)
Optimisation

Edied by
1.QUEVEDO and T. ESCOBET
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Tuning rules, some important milestones

| Rivera, Morari, Skogestad (IMC)) |

Callender, Portree Dahlip Kappa-Tau []“ @esvT

PID"12
I Chien, Hrones, Reswick ‘ AMIGO Book of Abstracts
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Rovira, Murrill, Smith
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1]

PID’12
Book of Abstracts

@eCcsmT

o |FAC Conference on PID Control, Brescia,
Italy, 2012
@ ~ 130 presentations
@ State of the art on tuning / applications
@ Some incipient approaches from PID00
consolidate as full sessions
o Robustness
e Tuning Rules
e Fractonal PID COntrol
o Data-driven
o Optimisation
e Multivariable
o .

@ Not so much interest on approaches such
as fuzzy, adaptive, self-tuning,...
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Even there is the possibility to tackle the PI/PID controller design
problem from practically any of the existing design approaches

H..and H,/H., Optimisation

Genetic Algoritms Neural Netwroks

»., LMI Optimisation
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What has been a characteristic feature of PI/PID controllers that
has distinguished these controllers from the rest has been the
formulation and generation of Tuning Rules.
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When referring to PI/PID tuning it is unavoidable to mention the
(most?) widely applied tuning choice

Trans. ASME, 64, 759-768 (Nov. 1942).

Optimum Settings for Automatic Controllers

By J.G. ZIEGLER' and N. B. NICHOLS? « ROCHESTER, N. Y

In this paper, the three principle control ¢
in present controllers amined and pr
and units of measurement are proposed for

ts output air pressure, reposi
The controller e meast

are7 ped ~ Reset-Rate Determination From Reaction Curve. Since the
period of oscillation at the ultimate sensitivity proves to be 4 times
the lag. A substitution of 4 Z for P, in previous equations for
o / optimum reset rate gives an equation expressing this reset rate in
terms of lag. For a controller with proportional and auto-matic-
g L siiiss reset responses, the optimum settings bec
o. = &’”‘”i\'”,\'=zi psi peri|| P controller I oo 0
3 PT controller 7 33L 1|0
Reset Rate = %3 permin L
PID controller | 2L [050="
-1 e e At these settings the period will be about =

©® pworee ° creased, by both the lowering of sensitivity and the addition of

automatic reset.
FiG.8 REACTION CURVE

@ Quite aggressive tuning
@ Poor stability robustness
@ Load disturbance attenuation was the main concern

e No tuning parameter (automatic tuning)
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Following ZN, we could probably agree that the major success in
P1/PID has been the one provided by the IMC formulation

252 Ind. Eng. Chem. Process Des. Dev. 1988, 25, 252-265

Internal Model Control. 4. PID Controller Design

Danlel E. Rivera, Manfred Morarl,* and Sigurd Skogestad
Chemical Engineering, 206-41, Caiifornia Institute of Technology, Pasadena, California 91125

Fovahrgenum«olshglahpm singe output (S1S0) madslstypicaly used i the proaess indusie, the Interal

Modei Control (IMC) design procedure is PID controllers, occaslonally augmented with a first-order
lag. These PID controllers have as mob only mnlng plramtier the closed-loop time constant or, equivalently, the
al PID controllers. As a
e we § 1 dead time are derived
- et i wstness is demonstrated.
.« . -
" ain "+ P Table II. IMC-Based PID Parameters for g(s) = ke ™/(rs
. . + 1) and Practical Recommendations for ¢/
‘ “ * recom-
mended
® = /8 (>
. 0.1r/8
" controller kk, bt D always)
o v PID (27 + 6) /(2 + a) T+ (8/2) }6/(21 +8) >0.8
. B e PI 8/r =01 1.54 >17
o o B improved (27 +6)/2¢ \ T+ (/2 | >17
N PI
@

@ Too many different tuning rules

@ Poor disturbance rejection (set-point is the main concern)
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The controller finally gets the expression

C(S) _ (7’15 + 1)/((7’25 + 1) (TC —11_ 9)5

That corresponds to a series PID with parameters

1 T|

Ke=>—"1_
T k(e 1 0)

T| =T1 TD = T2

or a Pl if the initial process model is of first order (72 = 0)

Tl

1
Ke=-— T _
T ket 0)

TI=T1
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Effect of changing the integral time for Pl control on slow process.

7, = 14=30

o 0 2 .!l] m 5 60
Setpoint change (y,=1) at t=0 Inpuf"a?smrbance (d=1) at t=20

Should find a compromise value. -> The S-IMC tuning
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It is on 2003 that S. Skogestad proposes the S-IMC method.
Specially good for Pl control of FOPDT processes.

S-IMC Tuning rule

K=Ay(=)/Au Kc — l Tl

. k~ (7c+0)
| — 1|71 = min(71, 4(7. +0))
fOp op step response 0s

H | G(s) = ko

Default choice 7. = 6. However
@ S-IMC =~ IMC for processes with small time 7/ (7 = 1)

o S-IMC =~ Ziegler-Nichols for large 71 if 7. = 0 (aggressive
tuning)
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IAE = Integrated absolute error = [ |y — ys|dt, for step change in ys or d
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Pareto-Optimal tradeoff for Robustness and Performance

g = expl-a 23 g o expl -

7,/6=0 ; : 7,06 = 1

" 15 =
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Pure time delay: 7 =0 =0

22 9 = exp(-s) 22 9= exp(—s)

24

z 2
Robustness, M,

o. T = 00
1

22 SIMC g=1texp(-s

71 =80 Integratin

9 = g=exp(—s)

pareto optimal

2 22
Robustues
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It is on 2003 that S. Skogestad proposes the S-IMC method.
Specially good for Pl control of FOPDT processes.

S-IMC Tuning rule

K(: = -

K=Ay(=)/Au

. k- (Tc+9)
of g 71 = min(7y,4(7. + 0))
EOp op step response —6s

A G(s) = ko

Simple and "good enough"

e Varying 7. gives (almost) Pareto-optimal tradeoff between
performance (IAE) and robustness (Ms)

e 7. =0 is a good "default" choice

@ Not possible to do much better with any other Pl controller!!

4
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With S-IMC a change in the way tuning is though was introduced.
There has been a revival of PID but with an increasing
requirements setup:

@ Moderate usage of control action

Servo/Regulation Performance

Robustness
Simple and clear formulations
Include derivative term

Measurement noise attenuation

tradeoff

(smoothness/robustness/reactivity)

Global setup

There arises the need to rethink how to conjugate all these
considerations, possible interactions among them and to express
this in a simple way.
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From a standard control loop block diagram

C(s) P(s) )=

What we should do is to look after the performance regarding the

three external signals (r, d y n) as well as guaranteeing a minimum
level of robustness to process variations.

It is a great advantage if this compromise can be decided by the
user by a tuning parameter. (1) }

() K.J. Astrom, T.Hagglund, The future of PID control, Control Engineering
Practice, 9 (2001) 1163-1175
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It is easy to find design formulations giving primary importance to
one of such aspects, therefore driving the design (tuning) approach:
@ Robustness:

e Specific indexes: MG, MF, Parametric stability, ...
o Aggregated indexes: Ms, M, || - [|oo, -

> > —
MG_MS—I MF > 2sin <M5>

@ Performance:
e Optimizing some index of performance (ISE, IAE, ITAE,...)

/:/ £7)e(t)|mdt
0

o Parametrisation of the closed-loop (IMC, A-tuning, etc)

@ Do they really reflect the desired closed-loop?

@ Does it make sense to focus the design in just one of them?

Recent advances in PI/PID controller tuning 11l Jornada CEA Conexién Industria-Universidad, CERN



As an example, we take a tuning proposal that considers exclusively
to minimize performance on the IAE sense :

) . i er—Os
o First order process models: P(s) = 22—+
Proposed tuning relations for FOPTD process
Tuning parameter Set point change Load change

Kc

0.4967( 0 )-'-22‘”
Kp \6+7

6 -1317
0.67396( ——
* (6 +u )

1138( 0 )2 0]992( 9 )
™ T . m +0. e,

0.5249 ¢ 6\~
Ky (9+T|)

o
-1 — 2.135
H( ]9167(H+r|)+ 1 6)

11?21(70 )2 0.1788 o )
o (M) T F

B erfgs
_ (T15+1)(7'25+1)

Second order process models: P(s)

Proposed tuning relations for SOPTD process

Tuning parameter Set point change

05723 [ —Looo
Kp (€+ o+ rz)

0 ~1.6501
— 0.2476(6 —_—
o (+ﬂ+Q](9+t|+r2)

9 —14636
0.0943(7)
f+u+n

Load change

0.6202 [ —09931
% (rorm)
©+m) (13.31 (#)2 — 14.906 (é) + 4.566)
Otntn b+n+n

] —1.4849
0.0921 (7)
Otn+tn

™7l
(n+6)8

() C. R. Madhuranthakam, A. Elkamel, and H. Budman. " Optimal tuning of
PID controllers for FOPDT, SOPDT and SOPDT with lead processes.
Chemical Engineering and Processing, 47:251-264, 2008

Recent advances in PI/PID controller tuning

11l Jornada CEA Conexién Industria-Universidad, CERN



For a comparative basis, the uSORT tuning provides simultaneously
tuning for P1/PID on the basis of FOPTD/SOPTD process models,
also ensuring certain levels of robustness and minimizing IAE
criteria.

e—Ls
Process: P(S) = m ac (0, 1) TL = L/T J

Controller: u(s) = K, (ﬁ + %) r(s) — K, (1 4= ﬁ) y(s) J

Performance: Je = [~ |e(t)|dt = [5° |y (t) — r(t)|dt J

Performance degradation: F, = J , Fp <1

JO
Jp, = J(0c, FL) = J(G)—Ft

e FL t.q. Ms =M% € {2,1.8,1.6,1.4}
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What is provided is a unique set of equations for the different
combinations of process model and controller.

Set-Point

. a
K, = K,K = ap+ a2,

T b3+ 1L

LTy .
T = ? :C()—I—lezz.

. T bo+bit+brtf

v

Regulation

- — az
Ky = KpK =ap+a17;°,
T;

. T b
T = — =by+b77,
T
. Ty
T4 = ?( :CO+CIT£2~

@ Tuning relations for PI/PID are the same

o Constants a;, b;, ¢; are determined by the process model

parameters.

@ Robustness just imposes changes on the proportional gain(a;
therefore determined by the desired robustness level).

@ For the regulator case, they are also available equations for 3.
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If we compare performance in terms of time responses of uSORT
tuning and the optimal MEB

t
% 100- ——USORT, PI (M=2.0)
-
| ——USORT, PID (M=2.0)
n -~ -USORT, PID (M=16)
% /
} - = =MEB PID IAE Opt.

y(®), r(t) (%)

65 . . . . . . . ) 65 . . . . . . . .
0 5 10 15 20 25 30 35 40 0
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If we compare performance in terms of time responses of uSORT

tuning and the optimal MEB

uSORT, MZ MEB
0. 20 18 16 14 TAE L usonT pI(M-20)
PI Controller
0838 0.740 0613 0461 ——— [—USORT, PID (M{=2.0)
85 3.743 - - USORT, PID (M=16)
100 118 144 18 -
£ 0 203 183 162 142 - |7 ~MEBPIDIAEOpt
< 4466 5059 6102 8098 -
5 4359 4236 4115 4052 -
§ 75 PID Controller
1037 0951 0801 0620 1539
2454 2971 hamSam——
7 1.108 0883
068 076 089 116 (110>
65 193 179 160 141 @OAD|——
5 10 1520 25 30|y /Ad|2848 3094 3605 4456 2141 p 0 B 40
Jor/Ar | 4325 4396 4534 4702 4289
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It is easy to find design formulations giving primary importance to
one of such aspects, therefore driving the design (tuning) approach:

@ Robustness:
e Specific indexes: MG, MF, Parametric stability, ...
o Aggregated indexes: Ms, M1, || - [|co, ---

@ Performance:

o Optimising some index of performance (ISE, IAE, ITAE,...)
o Parametrisation of the closed-loop (IMC, A-tuning, etc)

+ Robustness - Robustness
g - Reactivity + Reactivity
@ They are not independent aspects. | +smooth g — ~Tight

@ Tuning strategy should combine
them on the most appropriate way

@ Attention should be focused on
methods that do integrate them on
a more qualitative way.

CAUTIOUS AGRESSIVE
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CAUTIOUS 3 AGRESSIVE

K,K = at™ + ¢
T; b
T = a7 * + C2
T,
Td = a3t + 3
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Just a short consideration regarding the PID implementation in use:

@ Do we have freedom to choose the particular implementation
for the PID or are we constrained by the vendor/deployed
algorithm?

@ If we use a Pl there is no problem, all Pl are identical. But this
is not the same for a PID

@ A tuning rule may be developed by assuming a particular
formulation for a PID that may be different from the one
implemented.

PID configuration

What are the implications of using a particular PID
implementation?
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PID 2DoF Standard

1 1 TdS
=K — K1+ — + —M—
W) & (5 + T,-s) r(s)+ Ky ( + Tis + aTys + 1) y(s)
PID 2DoF Paralel

u(s) = (BoKot ) )= (Koot 5 e ) 5(6)

S apde—l- 1

PID 2DoF Series (or Industrial PID)

1 1 Tls+1
o) =15 (174 ) o1 (14 ) (s o

PID 2Dof Ideal with filter

(s = 5 (B + 755 ) ) = K5 (14 755 + Tas) (g ) 9

Recent advances in PI/PID controller tuning 11l Jornada CEA Conexién Industria-Universidad, CERN



PID 2DoF Ideal with Filter
(K .T0.T,.T,.8°7)

| A
|
Fc : F;'/
[
¥
PID 2DoF Standard PID 2DoF Paralel
(K,.T,,T,,a,p,7) K,.K.K.a,.B,.7,)
T
|
F, | F’
[
|
¥

PID 2DoF Series or Industrial
K,.T,T,a'8.7)
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@ This is just a snapshot of a new family of tuning rules that address
the problem in a more qualitative and global way.

@ New approaches attempt to extend the presented ideas by
considering the use of more elaborated models (therefore opening
the door to better performance)

@ One of the latest approaches integrates signal filtering (r and y) as
an integral part of te PID tuning. Therefore helping the PID and
getting superior performance (measurement noise !!).

@ All tuning methods provide an initial tuning that usually has to be
manually adjusted: fine tuning: the fragility issue enters into play

Think of Advanced Control also as Advanced PID Control

Help the PID with appropriate filtering and suitable, analytical,
model based, tuning.
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