

The Fate of Missing p_T in PbPb Collisions

Lisbon Jet Workshop, 2014 On Behalf of CMS Collaboration

Christopher McGinn

- Motivation
- Event Selection
- Jet Reconstruction
- Tracking Corrections
- Observables/Results
 - Hemisphere Multiplicity Difference
 - Missing p_T v. A_J
 - Missing $p_T v. \Delta R$
- Summary and Plans

Motivation (I)

- Dijet imbalance observed in PbPb collisions as part of first LHC heavy ions run
 - Enhanced relative to pp, marked centrality dependance
- Can ask:
 - Can we recover missing momentum by looking at ΔR outside of the jet cone?
 - What is the momentum characterizing particles in leading and subleading jet hemispheres? Relative to pp?

Phys.Rev.C84:024906,2011

Motivation (II)

- Momentum not fully recovered out to $\Delta R = 0.8$
- Out-of-cone momentum preferentially towards subleading hemisphere
- Can still ask (and to be presented):
 - What is the distribution as a function of ΔR ?
 - How does this compare to pp?

Phys.Rev.C84:024906,2011

1

Samples and Selection

- PbPb data at 2.76 TeV with integrated luminosity of 150 μb^{-1}
 - Tracks reconstructed over 3 iterations
 - Calo jets, reconstructed with anti- $k_T R = 0.3$, Voronoi subtraction
- pp data at 2.76 TeV with integrated luminosity of 5.3 pb⁻¹
 - Tracks reconstructed over 7 iterations
 - Calo jets, reconstructed with anti- $k_T R = 0.3$
- High p_T trigger in PbPb and pp, require jet with $p_T > 80$ Gev/c
- Dijet Selection
 - $p_{T,1} > 120 \text{ GeV/c}$
 - $p_{T,2} > 50 \text{ GeV/c}$
 - $|\eta_1|, |\eta_2| < 1.6 (0.5)$
 - $\Delta \phi > 5\pi/6$
- Track Selection
 - $p_T > 0.5 \text{ GeV/c}$
 - *|η|* < 2.4

Christopher McGinr

Jet Reconstruction w/ Voronoi Algorithm

- Performed random cone study in minimum bias data
- Deviations as a function of η are less than 1 GeV through all bins

6

Tracking Corrections

- Correct for efficiency and fake rate in both pp and PbPb
 - Additional secondary rate correction applied to pp
- Correction parameters are:
 - Centrality
 - p_T

 - η
 - Minimum ΔR_{jet}
- Good agreement with truth after correction in all parameters
 - Left: example in p_T

Observables: Dijet Axis

Define new axis for projection of track momentum: **Dijet Axis**

- $\phi_{\text{dijet}} = (\phi_1 + (\pi \phi_2))/2$
- CMS-HIN-10-004 used leading jet axis
 - This choice results in noncancellation of background in ΔR
 - Dijet Axis symmetric w.r.t. dijet system, background cancels

Christopher McGinn

Observables: Multiplicity Difference

- CMS-HIN-10-004, observed tracks in subleading hemisphere of lower p_T than leading
- Can re-examine observation with a hemisphere multiplicity difference measurement

Define:

$$\Delta_{\text{mult}} = N_{\text{Trk}}^{\text{Corrected}} |_{\Delta \phi_{\text{Trk,average}} > \pi/2} - N_{\text{Trk}}^{\text{Corrected}} |_{\Delta \phi_{\text{Trk,average}} < \pi/2}$$
Hemisphere 2
Hemisphere 1

Observables: Missing p_T v. A_J

- Return to missing p_T measurement
 - More differential in centrality
 - Examine relative to pp
- Define sum of track momentum projected onto dijet axis:

$$\mathbf{p}_{\mathrm{T}}^{\parallel} = \sum_{\mathrm{i}} -p_{\mathrm{T}}^{\mathrm{i}} \cos\left(\phi_{\mathrm{i}} - \phi_{\mathrm{Dijet}}\right)$$

Observables: Missing $p_T v$. ΔR

Results: Multiplicity (I)

- As function of $A_J = (p_{T,1} p_{T,2})/(p_{T,1} + p_{T,2})$, increasing multiplicity towards subleading hemisphere
 - excess approaches 15 particles in most central PbPb relative to pp

φı

Results: Multiplicity (II)

- As function of $\Delta p_{T,12} = (p_{T,1} p_{T,2})$, similar picture
 - excess approaches same rough numbers in PbPb central collisions towards subleading hemisphere

Results: Missing p_T v. A_J

CMS-PAS-HIN-14-010

- Compared to pp, see a centrality dependent excess of 0.5 2.0 p_T particles towards subleading hemisphere
 - Replace 2.0 8.0 p_T particles in pp

Results: Missing $p_T v$. ΔR (I)

CMS-PAS-HIN-14-010

• Inclusive A_J selection

Excess through large ΔR

- See a centrality dependent enhancement of low p_T particles in PbPb relative to pp

Results: Missing $p_T v$. ΔR (II)

CMS-PAS-HIN-14-010

 $A_J < 0.22$ selection

0.5 - 1.0 p_T excess through large ΔR

Some enhancement of 0.5-1.0 GeV/c particles in PbPb relative to the same selection in pp

Results: Missing $p_T v$. ΔR (III)

• $A_J > 0.22$ selection

1.0 - 2.0 p_T excess through large ΔR

• See a greater enhancement of low p_T particles in PbPb relative to the same selection in pp, particularly 1.0-2.0 GeV/c

Christopher McGinn

Results: Missing $p_T v$. ΔR (IV)

Results: Missing $p_T v$. $\Delta R (V)$

Results: Missing $p_T v$. ΔR (VI)

Summary and Plans

- Dijet momentum imbalance can be recovered by summing over large angles
 - Subleading jet particles are characterized by higher multiplicities at a lower momentum
 - Relative to pp, observe lower momenta and higher multiplicities
 - 2.0 8.0 GeV in pp -> 0.5 2.0 in PbPb
 - Differences centrality dependent
- Currently interested in doing generator comparisons with results
 - Particularly for ΔR distribution, look for low p_T enhancement through large angles

Christopher McGinn

Backup: In-Cone

Christopher McGinn

23

Backup: Out-Cone

Backup: Gen. Pythia w/ Cuts

Backup: Jet p_T scale and resolution

CMS-PAS-HIN-14-010

