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Jets
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• physically: sprays of 
particles in the detector 
— probing partonic 
degrees of freedom	


• well defined objects in 
perturbation theory*	


• ideal hard probes for 
extracting properties of 
the medium!

abundant particle content of the jets. So, in a rigorous and
very tangible sense, we really do get to see the quarks and
gluons—but as flows of energy, not individual particles.

We refer to the phenomenon of weak coupling for
hard gluons but strong coupling for soft gluons as “asymp-
totic freedom.”7 Despite its whimsical name, the concept is
embodied in precise equations. It allows us to make quan-
titative predictions of how often hard-radiation events
occur in strong-interaction processes of many different
kinds, at different energies. As we see in figure 4, there is
by now a plenitude of direct evidence for the central pre-
diction that the coupling strength of gluons decreases with
increasing energy and momentum.8 Note that several of
the individual points in the figure summarize hundreds of
independent measurements, all of which must be—and
are—fitted with only one adjustable parameter (the
quark–gluon coupling measured at the Z-boson mass).

The actual history was different. The need for asymp-
totic freedom in describing the strong interaction was
deduced from much more indirect clues, and QCD was
originally proposed as the theory of the strong interaction
because it is essentially the unique quantum field theory

having the property of asymptotic freedom.9 From these
ideas, the existence of jets, and their main properties,
were predicted before their experimental discovery.5

High temperature QCD
The behavior of QCD at high temperature is of obvious
interest. It provides the answer to a childlike question:
What happens if you keep making things hotter and hot-
ter? It also describes the behavior of matter at crucial
stages just after the Big Bang. And it is a subject that can
be investigated experimentally with high-energy colli-
sions between heavy nuclei. (See PHYSICS TODAY, May,
page 20.) Brookhaven National Laboratory’s Relativistic
Heavy Ion Collider, where experiments are just getting
under way, will be especially devoted to this kind of
physics. (See figure 5.)

To avoid confusion, I should state that, when I discuss
high-temperature QCD in this article, I’m assuming that
the net baryon density (quarks minus antiquarks) is very
small. Conversely, when I discuss high-density QCD, I
mean a high net density of quarks at low temperature, but
well above the ordinary quark density of cold nuclear mat-
ter. Temperature and net baryon density are generally
taken as the two independent variables of the phase dia-
gram for hadronic matter.

Asymptotic freedom implies that QCD physics gets
simpler at very high temperature. That would seem
implausible if you tried to build up the high-temperature

phase by accounting for the production
and interaction of all the different
mesons and baryon resonances that are
energetically accessible at high tempera-
ture. Hoping to bypass this forbidding
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FIGURE 3. IN HIGH-ENERGY e+e– annihila-
tions into strongly interacting particles, the
many-particle final state is observed (left) to
consist of  two or occasionally three (or,
very rarely, four or more) “jets” of particles
leaving the collision in roughly the same
directions. QCD  predicts their production
rates and angular and energy distributions
by assuming that (right) a single primary
quark or gluon underlies each jet. The jets
are explained by asymptotic freedom,
which tells us that the probability is small
for emitting a quark or gluon that drastical-
ly alters the flow of energy and momentum.
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FIGURE 2. MASS SPECTRUM of mesons and baryons, as pre-
dicted by QCD and intensive number-crunching.5 Only two
adjustable parameters went into this calculation: the coupling
strength and the strange-quark mass (by way of the K or v
meson, both of which incorporate strange quarks). The up-
and down-quark masses can be approximated by zero. Solid
dots are for calculations tied to the measured K mass; open
dots are tied to the v mass.  The agreement with the measured
masses (red lines) is at the 10% level. Such calculations are
improving as computer power and techniques get better.
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“2 jet”

“3 jet”

* free from problems related to hadronic fragmentation functions…
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Two main features

3

1

p · k =
1

E⇤(1� cos ⇥)
⇤ �s

� E

Q0

d⇤

⇤

� 1

�/Q0

d⇥

⇥
⇥ �s log

2 E

Q0

Resummation of double logarithms + single log corrections
!"#$%&'("()(*+$#(,"-./"+01(*(2+("3*0%"41("

567*8972:567*8"724(227"

;<*0%"=7#$+#"03"&(*46*>7:?("-./@"/08#1$4A(*@"B10A(@"C6(''(*@"D*0E72"FGHHGIJ""

large-angle emissions 
are restored with 
the total charge!

⇥
dNg

d⇥d2k�
⇥ �sCF

k2�
+ (q � q̄)

� � �qq̄ (k� � ⇥�qq̄)

⇥
dNg

d⇥d2k�
� �sCA

k2�
� � �qq̄ (k� � ⇥�qq̄)

Color coherence = angular ordering



K. Tywoniuk (UB)

MLLA evolution equation

4

Θjet

E

zE

(1− z)E

θ

ω = xE

D

A

B

C

d

d logQ

xD

D
A (x,Q) =

Z 1

0
dz

↵(k?)

2⇡

ˆ

P

BC
A (z)

x

z

D

D
B

⇣
x

z

, zQ

⌘

Bassetto, Ciafaloni, Marchesini, Mueller, Dokshitzer, 
Khoze, Troyan, Fadin, Lipatov (80’s)

• probabilistic picture, factorization	

• jet scales — perturbative evolution	

• angular ordering — essential for small x	

• MLLA + Local-Parton-Hadron-Duality	


• K factor
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Distribution of gluons in a jet
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QCD jet in vacuum
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•   Inclusive jet observables determined by two scales: 

        the jet transverse mass  

        non-perturbative scale  

M� � E �jet

Q0 � �QCD

Q0
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•   In medium scales? (before doing the math) 

   M� � E �jet
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QCD jet in medium
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•   In medium scales? (before doing the math) 
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New scales:

Casalderrrey-Solana, Mehtar-Tani, Salgado, KT 1210.7765
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Counting sources
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One emitter
1/Qs

Two emitters
1/Qs

jet remains coherent subjets decohere

:: medium induced radiation (BDMPS,… spectrum)

The scale Qs-1 determines the number of independent color 
sources that can are resolved by the medium.

Mehtar-Tani, Salgado, KT 1009.2965; 1102.4317; 1112.5031; 1205.57397; Casalderrrey-Solana, Iancu 1105.1760
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Resolved effective charges
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Resolving jet substructure
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Coherence survival prob. �med = 1� e��2
jet/�

2
c

jet definition (Θjet=R)!

Θjet

θc

�c = 1/
�

q̂L3

Coherent inner ‘core’
• branchings occurring inside the medium        

with θ < θc — hard modes	

• the core interacts w/ medium coherently	

• induces radiation — loses energy

Casalderrrey-Solana, Mehtar-Tani, Salgado, KT 1210.7765

Perez-Ramos, Mathieu PLB 718 (2013) 1421 [arXiv:1207.2854]; Perez-Ramos, Renk arXiv:1401.5283

A large fraction of the jets contain 90% of their energy within Θ~0.1
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Motivation
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probability of only finding one leading subjet in the 
presence of a fragment with mom frac z
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Figure 19: The radial moment at the Tevatron. Data are from [11,12,15]. The dashed
curve is the leading order perturbative result, with R = 1, Rsep = 1.3 and CTEQ4M pdfs
with αs(MZ) = 0.116. The solid curve is our fit to the data. The dotted curve is the
perturbative component of the fit.

It is interesting to note that although our LO results are considerably larger than
those in [15], presumably because of the partial set of NLO terms they include, our
K factor comes out almost identical to theirs. This is presumably a reflection of the
fact that the ET dependencies of the power-suppressed terms are considerably different
owing to the different flavour dependencies. If our perturbative contribution is forced
to be as small as theirs, the resulting ᾱ0 does not agree with [28].

One might worry about how far from unity the fitted value of K is. However, we
have already argued in the previous section that with current jet definitions one expects
large uncertainties and large higher order corrections, so we are not unduly worried. In
fact in this context it is worth pointing out that we can get an equally good quality of
fit, with comparable ᾱ0 values, for any Rsep between 1 and 2. Any change in Rsep is
compensated by a change in K in the fit. It is hard to draw any quantitative conclusions
without improved jet definitions and a full NLO calculation.

5 Summary and discussion

In this paper we have tried to examine all the important effects associated with predict-
ing the jet shape distribution in hadron collisions. In doing so, we are examining the
details of how a hard parton turns into a jet of hadrons. We have estimated that large
corrections arise from high orders in perturbation theory and from non-perturbative ef-
fects. Traditionally, this has been regarded as a reason to shy away from looking inside
jets, but we would like to advocate exactly the opposite view: the parton→hadrons tran-
sition is one of the most interesting outstanding questions in QCD, and it is precisely
because these effects are large that we should look inside jets to study them. Hadron
collisions make a perfect place to make such studies, because they are a source of high
rates of jets over a very wide range of jet scales in the same experiment.

28

3 The jet shape

The jet shape is, at present, the most common way of resolving internal jet structure.
It is inspired by the cone-type jet algorithm, but its use is not restricted to cone jets.
It is defined by first running a jet algorithm to find a jet axis. The jet shape Ψ(r; R) is
then:

Ψ(r; R) =

∑

i ET i Θ(r − Rijet)
∑

i ET i Θ(R − Rijet)
, (17)

where the sum over i can be over either all particles in the event, as used by CDF and
DØ, or only those particles assigned to the jet, as used by ZEUS. We have found that
using cone-type jet definitions, there is little difference between the two (less than 10%
even at the jet edge). However, if the jet is defined in the k⊥ algorithm, we shall see
that there are strong reasons for preferring the definition in which the sum is only over
those particles assigned to the jet. For now, we concentrate on the more commonly-used
definition in which the sum is over all particles. Thus Ψ is the fraction of all energy
within a cone of size R around the jet axis that is within a smaller cone of size r, also
around the jet axis. Clearly we have Ψ(R; R) = 1, with Ψ(r; R) rising monotonically in r.

In this paper, we prefer to work in terms of the differential jet shape:

ψ(r; R) =
dΨ(r; R)

dr
. (18)

Thus ψ dr is the fraction of all energy within a cone of size R around the jet axis that
is within an annulus of radius r and width dr, centred on the jet axis.

To define ψ in a cross sectional form, imagine defining the single-particle production
cross section, differential in the particle ET and distance from the jet axis r,

dσ

dET dr
. (19)

ψ is then given by:

ψ(r; R) =

∫

dET ET
dσ

dET dr
∫R
0 dr

∫

dET ET
dσ

dET dr

. (20)

3.1 Leading order calculation

As we have mentioned several times already, the NLO matrix elements for the jet cross
section determine the jet shape at LO. However, it is important to note that in taking
the ratio in Eq. (20), both parts should be evaluated to the same order (LO in this
case). If the denominator is mistakenly evaluated to NLO, one gets artificially large
renormalization scale dependence. Compare

µ2 d

dµ2

A0α3
s (µ)

B0α2
s (µ) + B1α3

s (µ) + 2β0B0α3
s (µ) log µ2/E2

T

= −3β0
A0

B0
α2

s (µ) + O(α3
s ), (21)

14

Seymour hep-ph/9707338

blue/green curves :: pT = 100, 200 GeV

solid/dashed curves :: K = 1, 10

q̂(⇠) = 2K"

�
~x(⇠)

�

Bias in HIC: jets are filtered by energy 
loss mechanisms
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Let’s stick to the theoretically cleanest 
situation taking into account small deviations 

and look for a consistent picture…
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Factorization of radiation
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•assume collimated jets and coherence — 
leading contribution to inclusive spectra 
at high energies	


• separation in angles — only the total 
charge radiates — jet calculus 

Mehtar-Tani, KT 1401.8293

3

a cone defined by the jet reconstruction radius. We cal-
culate this quantity by

E (� < ⇥jet) �
⇧ 1

0
dx

⇧ �jet

0
d�

⌅

i=q,g

x
dNmed

i

d� dx
, (5)

which sums the energy of partons inside the jet cone, i.e.,
� < ⇥jet. In terms of transverse momenta this limitation
corresponds to k⇥ < xQ. On the other hand, the typi-
cal transverse momentum of a parton propagating in the
plasma is given by the characteristic scale Qs =

⌃
q̂L.

Hence, the angular condition can be turned into a con-
dition on the parton energy, x > x0, where x0 � Qs/Q.
Hence, we shall approximate, E (� < ⇥jet) ⇤ E (x > x0).
In our case Qs = 3.6 GeV severely restricts the amount
of soft induced radiation that is allowed within the cone.
The description of broadening will be discussed in more
detail in a forthcoming work, see also [17].

We have computed the in-cone energy fraction for two
jet reconstruction angles using the previously extracted
medium parameters within the uncertainty due to the
variation in ⇥BH. We find that up to 14–19% of the
energy flows out a cone of ⇥jet = 0.3 (x0 = 0.12). We
scarcely recover more energy by opening the jet cone to
⇥jet = 0.8 (x0 = 0.045), in which case roughly 9–15% of
the energy is still missing. This confirms that multiple
branching in the medium is an e⌅ective mechanism that
transports energy from hard to soft quanta at large angles
[11]. The results obtained here agree qualitatively with
the estimates from the CMS collaboration on the out-of-
cone energy flow for di-jets where it was observed that the
energy imbalance could be recovered only at angles larger
than 0.8 and were carried by tracks with 0.5 GeV < p⇥ <
4 GeV [5]. Moreover, the typical transverse momentum
broadening of the coherent jet due to scatterings in the
plasma is of the order of Qs. Hence, one can estimate the
angular deviation of the sub-leading jet to be �⇥jet ⇥
Qs/p⇥ ⇥ 0.036 for a jet p⇥ = 100 GeV. We note that,
�⇥jet ⌅ ⇥jet, in agreement with the observation that
most di-jets are back-to-back.

Finally, we focus on the modifications of the frag-
mentation functions of jets. Concretely we will con-
centrate on the so called intra-jet energy distribution
of hadrons dNvac

�
d ln(1/x) � Dvac(x;Q) which is typ-

ically plotted in terms of the variable � = ln(1
�
xh)

where xh =
⌃
x2 + (mh/p⇥)2 and x are ratios of the

hadron and parton energies to the jet energy, respec-
tively. The Q dependence of Dvac is governed by the
Modified Leading-Logarithmic Approximation (MLLA)
evolution equations [13] which take into account the dou-
ble logarithmic contributions (DLA) as well as the full
set of single logarithmic corrections. One of the key fea-
tures of this evolution is the angular ordering (AO) of
subsequent emissions which is a manifestation of color
coherence. The evolution takes place between the jet
scale Q and the hadronization scale Q0 which can be set

to ⇤QCD by invoking the Local Parton-Hadron Duality
hypothesis. The resulting parton spectrum can then be
directly compared to hadron spectra by introducing an
energy independent scaling factor.

The collimation property of vacuum jets can be in-
ferred directly from the fact that Dvac only depends on
the jet energy and cone angle in terms of Q, which is
the largest scale of the process. The separation of in-
trinsic jet and medium scales allow to find the modified
fragmentation function directly via the jet calculus rule,

Dcoh
med(x;Q,L) =

⇧ 1

x

dz

z
Dvac

⇥x
z
;Q

⇤
Dmed

q (z, p⇥, L) ,(6)

where Dmed
q (x, p⇥, L) is the distribution of primary

quarks [21]. Here we point out two crucial points con-
cerning Eq. (6). First and foremost, the subscript of the
resulting distribution refers to the coherent jet (color)
structure that survives the medium interactions at this
level of approximation. In other words, vacuum and
medium fragmentation take place independently of each
other and are governed by separate evolution equations.
Secondly, we have also neglected the variation of the in-
trinsic jet scale which comes about due to the energy loss
at large angles discussed above. As this was estimated to
contribute to a ⇥ 20% variation to the jet scale, we will
allow for a certain variation of the jet energy scale of the
medium-modified jets.

Remarkably, the simple picture incorporated in
Eq. (6), which has shown to be quite consistent up to
now, breaks down in the soft sector (cf. grey band in Fig.
2). This can be traced back to the transverse momentum
broadening of soft quanta, Eq. (5), which practically re-
moves them from the cone. However, by comparing the
minimal angle for induced radiation ⇥c = (q̂L3

�
12)�1/2

[10, 11], which with our set of parameters corresponds to
⇥ 0.08, to the typical jet reconstruction radius, presently
considered to be ⇥jet = 0.3. This implies that sub-
leading structures of the jet are resolved by the medium
[3, 12]. Postponing for the moment a more refined treat-
ment of jet energy loss, we will rather emphasize how this
breakdown of jet color coherence, initially studied in [3],
demands a more subtle and novel treatment of soft gluon
emission at relatively small angles.

Up to now, we have neglected the fact that the jet-
medium interactions give rise to additional radiation that
violates the strict AO of the vacuum shower [12]. Since
this component is geometrically separated from the AO
vacuum-like radiation and associated with large forma-
tion times, it is therefore not a⌅ected by the medium
(e.g. by transverse momentum broadening). Note that
since this contribution also is subleading in DLA, it is
enough to include the e⌅ect from the first nontrivial split-
ting. This allows us to add this contribution incoherently
to the full, medium-modified intrajet distribution. The
intrajet distribution in heavy-ion collisions can thus be

medium induced, 
large angle radiation

small angle, vacuum-
like evolution

Jeon, Moore hep-ph/0309332; Baier, Mueller, Schiff, Son hep-ph/0009237; Blaizot, Iancu, Mehtar-Tani 1301.6102
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Induced radiation

14

Jeon, Moore hep-ph/0309332; Baier, Mueller, Schiff, Son hep-ph/0009237; Blaizot, Iancu, Mehtar-Tani 1301.6102

• probabilistic interpretation	

• turbulent flow: no intrinsic accumulation of energy	

• effective in transporting sizable energy to large angles	

• xBH: regularization at short formation times ~ λmfp

Distribution of particles after 
passing a medium of “length”
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Nuclear modification factor
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• assuming quark jets (n=5.6)	

• allows to fix medium scales 

(fixing L = 2.5 fm)	

• high-p⊥ jets are the most 

reliable probe of q̂
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Mehtar-Tani, KT 1401.8293
Qs = 3.6 GeV

Missing pt in dijet events Θ Θ

missing energy at θ<Θ 14 - 19 % 9 - 15 %

Jet deflection :: ∆Θ ~ Qs/E ~0.04
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Soft gluons in the cone
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Going beyond the inclusive jet spectrum, the 
assumption of fully coherent jets marginal

�jet = 0.3

�c = 0.08

Contribution from 2nd emission in	

 DLA w/ running coupling.
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FIG. 2. Upper panel: the longitudinal fragmentation function
plotted as a function of � = ln 1

�
x. Lower panel: the ratio of

medium-modified and vacuum fragmentation functions. The
experimental data are taken from [8]. See text for further
details.

written as the sum of two components,

Djet
med(x;Q,L) = Dcoh

med(x;Q,L) +�Ddecoh
med (x;Q,L) ,(7)

where Dcoh
med is the coherent modified jet spectrum found

from Eq. (6) and the decoherence of in-cone vacuum radi-
ation is contained in �Ddecoh

med . We compute the real con-
tribution at two successive emissions at DLA accuracy
with the inclusion of running coupling e⇤ects, yielding

�Ddecoh
med (x;Q, q̂, L) =

⌅ E

⇥

d⇤⇥

⇤⇥

⌅ �jet

Q0/⇥

d⇥⇥

⇥⇥

⇥�med(⇥
⇥)�s(⇤

⇥⇥⇥)

⌅ �max

��

d⇥

⇥
�s(⇤⇥) , (8)

where the decoherence parameter reads �med(⇥⇥) = 1 �
exp[�⇥⇥q̂L3/12] [12] and ⇥max = min(⇥jet, Qmed/⇤). In
this context, Qmed = max

�
(⇥⇥L)�1, Qs

⇥
is the hardest

scale of the splitting. To test the sensitivity of the re-
sulting distribution to this parameter we have varied
Qmed while keeping Qs at the central value such that
0.8 < lnQmed

⇤
Q0 < 3.2. As a further refinement, we

will also demand that the first splitting occurs inside
the medium. This puts a constraint on the formation
time of the first gluon, i.e., tf(⇤⇥) ⇧ (⇤⇥⇥⇥2)�1 < L. For
consistency, we will also count the traversed path length
from the production point by shifting L ⌅ L� tf(⇤⇥) in
�med(⇥⇥).

The resulting vacuum and medium distributions for
jets with Q = 30 GeV are shown in the upper panel of

Fig. 2, while the lower panel details the ratio of the latter
to the former. We compare to experimental data from
CMS for jets with p⇤ > 100 GeV [8]. First, the vacuum
baseline data are reproduced by the MLLA equation by
adjusting the relevant parameters (Q0 = 0.4 GeV, mh =
1.1 GeV and K = 1.6) to optimize the description, de-
picted by a sold (blue) line in the upper part of Fig. 2.
Due to the energy loss in the medium, we have allowed
the jet scale of the medium-modified jets to vary within
E ⌃ [100,125] GeV (we plot the results for the extreme
cases). In what follows, the variation of the BH frequency
was found to be negligible and the central value ⇤BH =
1.5 GeV was used. The result of using only Eq. (6),
depicted by the dashed (grey) lines, which assume co-
herent radiation, yields a suppression of the distribution
at all � as compared to that in vacuum. This reflects
the energy loss via soft gluon radiation at large angles
o⇤ the total charge of the jet and is in agreement with
the suppression of the nuclear modification factor. How-
ever, the data indicates that the suppression turns into
an enhancement when � & 3 in the most central col-
lisions [8]. Accounting for color decoherence as given in
Eq. (7) we describe the excess of soft particles in the mea-
sured medium-modified fragmentation function, see the
thin-solid (red) curves in Fig. 2. The resulting ratio of
medium-to-vacuum distributions show the characteristic
dip and enhancement behavior with increasing � around
the humpbacked plateau. Note that the MLLA equation
is valid at intermediate values of � and that the region of
small � . 1 is sensitive to energy conservation and hence
should be discarded. On the other hand, for � ⇤ 4.5 the
distribution in reaching the limits of phase space and is
very sensitive to non-perturbative physics and the precise
jet energy scale.

To summarize, we have investigated several jet observ-
ables that have recently been measured at the LHC. Our
model based on the QCD limit of color coherence is con-
sistent with the di⇤erent features seen in data and we are
able to pin down departures from this picture in the soft
sector of fragmentation functions, which we argue is an
evidence for partial decoherence. Our approach further
shows how jets produced in these collisions can be used
as a powerful tool to extract information about the QGP
and color coherence.
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Figure 6. Inclusive gluon production o⇥ one of the qq̄-antenna constituent, after azimuthal angle
average, for energies 0 < ⌅ < ⌅max. Parameters are ⇥qq̄ = 0.2, �med = 0.5 and Qhard/⌅ = 0.4.

This are the general features encoded in the hard emission currents in eqs. (2.22) and

(6.7) and generalizes the picture of medium-induced decoherence described in Section 5

and refs. [7, 8].

Let us wrap up the discussion by considering hard gluon emissions. While interferences

are already strongly suppressed for ⌅ > mD/⇥qq̄ in the “dipole regime” due to longitudinal

interference e⇥ects (the LPM e⇥ect), the same is not true for the “saturation” regime where

the independent spectrum will dominate in the energy interval mD/⇥qq̄ � ⌅ < ⌅̄c. In this

case, the antenna spectrum is predominantly the superposition of two independent spectra

and the bulk of the independent radiation takes place at smaller angles than the opening

angle, see Section 6.2.

7 Numerical results

We proceed with a numerical evaluation of the antenna spectrum. Following the strategy

of Section 2, we divide the spectrum into coherent contributions o⇥ the quark an the

antiquark, namely

dNmed = dNmed
q + dNmed

q̄ , (7.1)

where

⌅
dNmed

q

d3k
=

�sCF

(2⇤)2 ⌅2

�
Rmed

q � Jmed
q

⇥
. (7.2)

The independent spectrum Rmed
q was already discussed in detail in Section 4 and is defined

explicitly in eq. (4.7). The interferences, on the other hand, are not as simply recovered as

in the vacuum case.
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Fragmentation function
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• vacuum baseline reproduced 
by MLLA :: valid close to the 
humpbacked plateau	


• allow the jet energy to vary 
(due to energy loss)	


• coherent jet quenching 
important for intermediate l	


• decoherence plays main role 
at large l (small x)

Mehtar-Tani, KT 1401.8293
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Summary
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• jet quenching is a powerful tool to access 
properties (e.g. q̂) of the hot and dense QGP	

• resolved sub-jets are a consequence of color 

transparency (perturbative QCD)	

• good description with a consistent set of parameters	


• Outlook	

• need further refinements (nuclear geometry, pQCD jet 

cross sections, hydro, improved observables) and 
systematic approach to pin down medium parameters
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Transparency vs decoherence
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Decoherence a high gluon energies
(A two scale problem)

• The decoherence parameter 

�med ⇥ 1� exp[� 1
12

Q2
s r2
�]

Q2
s = q̂ L

r� = �qq̄ L

•                       (Dipole regime)r⇥ < Q�1
s •                       (Decoh. regime)r⇥ > Q�1

s

r��qq̄ Q�1
s

r��qq̄ Q�1
s

• Hard scale:                                    andQ �max (r�1
⇥ , Qs) k� < Q

screening
 length�med �

1
12

Q2
s r2
� �med � 1

Decoherence a high gluon energies
(A two scale problem)

• The decoherence parameter 

�med ⇥ 1� exp[� 1
12

Q2
s r2
�]

Q2
s = q̂ L

r� = �qq̄ L

•                       (Dipole regime)r⇥ < Q�1
s •                       (Decoh. regime)r⇥ > Q�1

s

r��qq̄ Q�1
s

r��qq̄ Q�1
s

• Hard scale:                                    andQ �max (r�1
⇥ , Qs) k� < Q

screening
 length�med �

1
12

Q2
s r2
� �med � 1

decoherence 
parameter

Mehtar-Tani, Salgado, KT 1009.2965; 1102.4317; 1112.5031; 1205.57397; Casalderrrey-Solana, Iancu 1105.1760

k� < Qhard hardest scale determines phase space for radiation

Qs-1

a snapshot of the 
medium:

a simple case — the antenna
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Onset of decoherence
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⇥qq̄�med ! 0 Coherence
⇥qq̄

�med ! 1 Decoherence

In ω→0 limit, only vacuum-like:

induced 
radiation

Qhard

�

Qhard = max
�
r�1
⇥ , Qs, �k

⇥
Qhard = max

�
r�1
⇥ , Qs, �k

⇥ • decoherence opens phase space at 
large angles θmax=Qhard/ω	


• modification of angular orderingk� < Qhard

dN tot

q,�⇤ =

↵sCF

⇡

d!

!

sin ✓ d✓

1� cos ✓
[⇥(cos ✓ � cos ✓qq̄) + �

med

⇥(cos ✓qq̄ � cos ✓)] .
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Induced radiation
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Baier, Dokshitzer, Mueller, Peigné, Schiff (1997-2000), Zakharov (1996), 

Wiedemann (2000), Gyulassy, Levai, Vitev (2000), Arnold, Moore, Yaffe (2001)

Multiple scattering in the medium:
�

tbr = �mfpNcoh

k2br = µ2Ncoh

tbr =
�

�/q̂

k2br =
�

q̂�

�x⇥ = k�1
br

:: Landau-Pomeranchuk-Migdal effect�mfp � tbr
tf =

�

k2� �

tbr

Bethe-Heitler regime

�
⇥BH

q̂
= � ⇥ ⇥BH = �2q̂ � �m2

D

tbr � �mfp

Factorization regime

⇥c = q̂L2 � m2
DL2

�

tbr � L
�BH � � � �c

LPM regime


