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Introduction

m Study of suppression of high-pr particles in central
PbPb collisions at LHC.

m Analysis based on the quenching weights (QW) for
medium-induced gluon radiation.

m QW computed in multiple soft scattering approximation.

m Embedded in a hydrodynamical description of the
medium.

m This analysis has already been done for RHIC:
arXiv:0907.0067[hep-ph] (N. Armesto, M. Cacciari, T.
Hirano, James L. Nagle and Carlos A. Salgado.

m We will try to compare the information obtained for
RHIC and for LHC.
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Nuclear modification factors Raa for single-inclusive and a4
for hadron-triggered fragmentation functions for different
values of 2K = K’/0.73, with K = 0.5, 1, 2, 3, ..., 20. The
green line in the curve corresponding to the minimum of the
common fit to Raa and a4 data: K =4.1.
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Left: y2-values for different values of K for light hadrons and
for the three different extrapolations for £ < 7. Red lines
correspond to single-inclusive mg data from PHENIX (Raa)
and black ones to the double-inclusive measurements by
STAR (laa).
Right: the corresponding central values (minima of the x? )
and the uncertainties computed by considering Ax? = 1.




Hydrodynamical medium modeling

In relativistic heavy-ion collisions, the medium evolves
dynamically.

3D ideal hydrodynamics is used to describe this
evolution.

Using the results of Tetsufumi Hirano et al. for

9, TH =0
in (7,x,y,ns) with TH = (e + P)u*u” — Pg"” and
with thermal equilibrium time 79 = 0.6fm/c. Initial
conditions are: uy(70) = u,(70) = up,(70) = 0.
For the Quark-Gluén-Plasma (QGP) phase we use the
EOS )
p= 5(6 —4B)

with B = 247 MeV.
These hydrodynamical solutions will be used to
constraint the transport coefficient §.
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m The production of a hadron h at transverse momentum
p7 and rapidity y can be described by
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doAA—htX B / dxp dz
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X 7D z, sections
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m We use CTEQ6L (LO) free proton parton densities.

m We take the factorization scale as Q% = (p7/z)? and
the fragmentation scale as ur = pr.

m Medium modified fragmentation functions are
modeled as

1
d) 1 v. 4
D (2, 112) / dePe(e)7— D, (1_5#%>
0




where Pg(e) is the Quenching Weight and the vacuum
fragmentation function, D,((V_ﬁ)(z,u%), is taken from Florian,
Sassot and Stratmann.

m FF are modified by medium-induced gluon radiation

through QW.
m Fragmentation takes place in vacuum.
m nPDF are taken from the EKS98 analysis.
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Quenching Weights uencring with
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m The probabilility distribution of a fractional energy loss,
e = AE/E, quenching weight, of the parton in the
medium is given by

1|~ di(med) (w;)
n=0 i=1
n % dl(med)
AE-S w -
><5< Zw)exp /dw Jo

i=1 0

m Independent gluon emission has been assumed.

m QW are Poisson distributions.

m QW is the normalized sum of the emission probabilities
for an arbitrary number of n gluons which carry away
the total energy AE.
dl(med) . d(med) o d|(tot) di(vac) .

do is calculated as. do = dw T dw in the
multiple soft scattering approximation.
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Multiple soft scattering approximation for a senching o
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m The inclusive energy distribution of gluon radiation off
an in-medium produced parton is given by

ditmed) asCg
w dw - 27T 2 22Re/dyI/dyl/du/ko_ Perturbative cross
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m n(&), density of scattering centers.
m o(r), strength of a single elastic scattering.




In the multiple soft scattering approximation we use

g(o)r.

N

a(r)n(&) ~

(43)

with § = 5 for a static medium

All the information about the medium is contained in §
and L.

But partons propagate under a rapidly expanding
medium, so § depends on time

o) = (%)

where alpha is the expansion parameter.

In a dynamical medium we use a scaling law which
relates the energy distribution in a collision of arbitrary
dynamical expansion to an equivalent static scenario.
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Energy loss implementation

m We use QW in the multiple soft scattering
approximation.

m They depend on two quatities, wc and R, which for a
static medium are given by we = 3gL% e R = wcL.

m In a dynamical medium we make use of the following
scaling relations:

W (X0 Y0s Torods &) — / dE€a(c),

(4L (%0, Yo, Torods &) — / dea (),

3
Reff(XOaYOanroda¢) = 2/d§§26(£)a

m We choose to use wé and Re.
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m We specify the relation between §(§) and the medium Modeling jet

quenching with

properties given by our hydrodynamical model as Quenching
eights
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4(€) = Kagar(€) = K - 2¢/(¢)
m The production weight is given by
w(x0:%0) = Trs(x0, ¥0) Tro(b — (%0, ¥0))

m The average values of g and and the medium-modified
fragmentations functions are computed as

[[8L]° (x0, y0, 6)]
2wgff (X07 Yo, d))

Energy loss
implementation

(@ = I]\-I/d(bdXOdYOW(XOJ/O)

meéi ].
(D™ (2,12)) = ~ / dedxodyow (3o, 10)

vac z
/dCP(X07YO7¢ C) C l(<—>h) <1_C,M%>
where N = 27 [ dxodyow(x0, o).




Energy loss for times prior to hydrodynamic
behavior

m Ambiguity on the value of the transport coefficient for
values smaller than the thermalization time 7p.
m We use three extrapolations.
m Case i): (&) = 0 for & < 79,
m Case ii): §(&) = (o) for & < 70,
m Case iii): §(€) = §(m)/E3/* for € < 1o
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Single-inclusive results

m The experimental data used in our analysis are given in
terms of the nuclear modification factor for single
measurements

dNaa/d*prdy
Ncoll> dNPP/dpgr dy

m Experimental data are all for Pb-Pb collisios at LHC
energy /syn = 2.76 TeV.
m ALICE data on Ry for charged particles with pr > 5

GeV in the centrality class 0-5% and for || < 0.8.
m CMS data on Rpp for charged particles with pr > 5
GeV in the centrality class 0-5% and for |n| < 1.

m Results for different values of 2K = K’/0.73, with K’ =
051,23, .., 20

Raa =
(
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Double-inclusive results

[or Daa(zr, p7®)
AA — D trig
op(2T: PT")

where

hih 7 tri
D ( trig) _ trig dO.AlA 2 / dytr/g dp _,flg dyassoc dpz_a,_ssoc
AA\ZT, P17 ) = PT Py g I T8
do ./ dyt"8 dpF
and zr = p"TSSOC/pE,fig and the factorization scale is taken as
the pr of the hadrons

m ALICE data on /a4 on the away side for central (0-5 %)
PbPb collisions at /syny = 2.76 TeV.

m Results for different values of 2K = K’/0.73, with K’ =
051,23, .. 20.
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Case i) g(&) =0 for £ < 79 P
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- results
Curves that best fit
experimental data are the The value of K obtained is K =
corresponding to K = 1.37 and 1.37.
K = 2.05.




Case ii) §(&) = g(mo) for & < 79
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The curve that best fit
experimental data is the one
with K = 0.68.
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Case iii) §(¢) = §(70)/E3* for € < 79 caneing

Quenching
Weights

shortname

1.00 1
4 & PbPb 2.76 TeV 0-5% ALICE
¢ ¢ PbPb 2.76 TeV 0-5% ALICE
0.8
| _
06
& 0.10 3
04
S —
-
02 =——— —
— Tt
¢ & PbPb 2.76 TeV 0-5% ALICE Single-inclusive
I 1 PbPb2.76 TeV 0-5% CMS o and
0.01% 55 5 & 36 %0 2 05 @i o5 g6 07 os 05 1o double-inclusive
pr(GeV/e)

results

The value of K obtained in this The value of K obtained in this
case is K = 0.68. case is K = 0.68.
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Conclusions

m Good agreement with experimental data.

m Results for single-inclusive measurements compatible
with double-inclusive measurements.
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Conclusions

m Good agreement with experimental data.
m Results for single-inclusive measurements compatible
with double-inclusive measurements.

m Results influenced by the early time treatment chosen.
The case §(&) =0 before thermalization is very different
from the rest.
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Conclusions

m Good agreement with experimental data.

m Results for single-inclusive measurements compatible
with double-inclusive measurements.

m Results influenced by the early time treatment chosen.
The case §(&) =0 before thermalization is very different
from the rest.

m In our model, medium more transparent at LHC than at
RHIC.
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Conclusions

m Good agreement with experimental data.

m Results for single-inclusive measurements compatible
with double-inclusive measurements.

m Results influenced by the early time treatment chosen.
The case §(&) =0 before thermalization is very different
from the rest.

m In our model, medium more transparent at LHC than at
RHIC.

m Extension to the the case of massive quarks: in progress.
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Case i) g(&) =0for & <1 P
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Conclusions

The curves that best fit The curve that best fit

experimfental data are the experimental data is the one
corresponding to K = 2.05 and with K = 0.68

K =273.
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Conclusions
The value of K obtained are The value of K obtained is

K =2.05 and K = 2.73. K = 0.68.




Case iii) §(¢) = §(70)/E3* for € < 79
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The value of K obtained in this

case is
K = 0.68.

The value of K obtained in this
case is K = 1.37.
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RHIC results with §(¢) = &(ro) for & < 7o
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