Modeling jet quenching with Quenching Weights

C. Andrés ¹, N. Armesto ¹, Carlos A. Salgado ¹, M. Cacciari ^{2,3,4} and Yan Zhu ¹

¹Universidade de Santiago de Compostela

²Université Paris Diderot, Paris, France

³Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005, Paris, France

⁴CNRS, UMR 7589, LPTHE, F-75005, Paris, France

3rd Heavy Ion Jet Workshop, Lisbon, July 10th 2014

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Outline

1 Introduction

- 2 RHIC results
- 3 Hydrodynamical medium modeling
- 4 Perturbative cross sections
- 5 Energy loss implementation
- 6 Single-inclusive and double-inclusive results
- 7 Conclusions

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 ──○<

Introduction

- Study of suppression of high-p_T particles in central PbPb collisions at LHC.
- Analysis based on the quenching weights (QW) for medium-induced gluon radiation.
- QW computed in multiple soft scattering approximation.
- Embedded in a hydrodynamical description of the medium.
- This analysis has already been done for RHIC: arXiv:0907.0067[hep-ph] (N. Armesto, M. Cacciari, T. Hirano, James L. Nagle and Carlos A. Salgado.
- We will try to compare the information obtained for RHIC and for LHC.

Modeling jet quenching with Quenching Weights

shortname

Introduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

RHIC results

Nuclear modification factors R_{AA} for single-inclusive and I_{AA} for hadron-triggered fragmentation functions for different values of 2K = K'/0.73, with K' = 0.5, 1, 2, 3, ..., 20. The green line in the curve corresponding to the minimum of the common fit to R_{AA} and I_{AA} data: $\mathbf{K} = 4.1$.

Weights shortname RHIC results medium modeling

Modeling iet

quenching with Quenching

Left: χ^2 -values for different values of K for light hadrons and for the three different extrapolations for $\xi < \tau_0$. Red lines correspond to single-inclusive π_0 data from PHENIX (R_{AA}) and black ones to the double-inclusive measurements by STAR (I_{AA}).

Right: the corresponding central values (minima of the χ^2) and the uncertainties computed by considering $\Delta\chi^2 = 1$.

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Hydrodynamical medium modeling

- In relativistic heavy-ion collisions, the medium evolves dynamically.
- 3D ideal hydrodynamics is used to describe this evolution.
- Using the results of *Tetsufumi Hirano et al.* for

$$\partial_{\mu}T^{\mu
u} = 0$$

in (τ, x, y, η_s) with $T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$ and with thermal equilibrium time $\tau_0 = 0.6$ fm/c. Initial conditions are: $u_x(\tau_0) = u_y(\tau_0) = u_{\eta_s}(\tau_0) = 0$.

For the Quark-Gluón-Plasma (QGP) phase we use the EOS

$$p=\frac{1}{3}(\epsilon-4B)$$

with $B^{\frac{1}{4}} = 247$ MeV.

• These hydrodynamical solutions will be used to constraint the transport coefficient \hat{q}_{a} , where \hat{q}_{a}

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Single inclusive cross section

The production of a hadron h at transverse momentum p_T and rapidity y can be described by

$$\frac{d\sigma^{AA \to h+X}}{dp_T dy} = \int \frac{dx_2}{x_2} \frac{dz}{z} \sum_{i,j} x_1 f_{i/A}(x_1, Q^2) x_2 f_{j/A}(x_2, Q^2)$$

$$imes rac{d\hat{\sigma}^{ij
ightarrow k}}{d\hat{t}} D_{k
ightarrow h}(z,\mu_F^2)$$

- We use CTEQ6L (LO) free proton parton densities.
- We take the factorization scale as $Q^2 = (p_T/z)^2$ and the fragmentation scale as $\mu_F = p_T$.
- Medium modified fragmentation functions are modeled as

$$D_{k \to h}^{(med)}(z, \mu_F^2) = \int_0^1 d\epsilon P_E(\epsilon) \frac{1}{1 - \epsilon} D_{k \to h}^{(vac)}\left(\frac{z}{1 - \epsilon}, \mu_F^2\right)$$

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

where $P_E(\epsilon)$ is the **Quenching Weight** and the vacuum fragmentation function, $D_{k \to h}^{(vac)}(z, \mu_F^2)$, is taken from *Florian*, *Sassot and Stratmann*.

- FF are modified by medium-induced gluon radiation through QW.
- Fragmentation takes place in vacuum.
- nPDF are taken from the EKS98 analysis.

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

Quenching Weights

The probabilility distribution of a fractional energy loss,

 ϵ = Δ*E*/*E*, quenching weight, of the parton in the medium is given by

$$P(\Delta E) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dI^{(med)}(\omega_{i})}{d\omega} \right]$$
$$\times \delta \left(\Delta E - \sum_{i=1}^{n} \omega_{i} \right) \exp \left[- \int_{0}^{\infty} d\omega \frac{dI^{(med)}}{d\omega} \right]$$

- QW are Poisson distributions.
- QW is the normalized sum of the emission probabilities for an arbitrary number of *n* gluons which carry away the total energy Δ*E*.
 dl^(med)/dw is calculated as dl^(med)/dw = dl^(tot)/dw dl^(vac)/dw in the

multiple soft scattering approximation.

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Multiple soft scattering approximation for a static medium

 The inclusive energy distribution of gluon radiation off an in-medium produced parton is given by

$$\omega \frac{dI^{(med)}}{d\omega} = \frac{\alpha_s C_R}{(2\pi)^2 \omega^2} 2Re \int_{\xi_0}^{\infty} dy_l \int_{y_l}^{\infty} d\bar{y}_l \int d\mathbf{u} \int_{0}^{\chi_{\omega}} d\mathbf{k}_{\perp}$$
$$\times e^{-i\mathbf{k}_{\perp} \cdot \mathbf{u}} e^{-\frac{1}{2} \int_{\bar{y}_l}^{\infty} d\xi n(\xi) \sigma(\mathbf{u})} \frac{\partial}{\partial \mathbf{y}} \cdot \frac{\partial}{\partial \mathbf{u}} \int_{y=0}^{\mathbf{u} = \mathbf{r}(\bar{y}_l)} \mathcal{D}\mathbf{r}$$
$$\times \exp \left[i \int_{y_l}^{\bar{y}_l} d\xi \frac{\omega}{2} \left(\dot{\mathbf{r}}^2 - \frac{n(\xi) \sigma(\mathbf{r})}{i\omega} \right) \right]$$

n(ξ), density of scattering centers.
 σ(r), strength of a single elastic scattering.

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

э

In the multiple soft scattering approximation we use

$$\sigma(\mathbf{r})n(\xi) \simeq \frac{1}{2}\hat{q}(\xi)\mathbf{r}^2$$

with $\hat{q}=\frac{\langle q_{\perp}^{2}\rangle_{\textit{med}}}{\lambda}$ for a static medium

- All the information about the medium is contained in *q̂* and L.
- But partons propagate under a rapidly expanding medium, so *q̂* depends on time

$$\hat{q}(\xi) = \hat{q}_0 \left(rac{\xi_0}{\xi}
ight)^lpha$$

where alpha is the expansion parameter.

In a dynamical medium we use a scaling law which relates the energy distribution in a collision of arbitrary dynamical expansion to an equivalent static scenario.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Energy loss implementation

- We use QW in the multiple soft scattering approximation.
- They depend on two quatities, ω_c and R, which for a static medium are given by $\omega_c = \frac{1}{2}\hat{q}L^2$ e $R = \omega_c L$.
- In a dynamical medium we make use of the following scaling relations:

$$\omega_c^{eff}(x_0, y_0, \tau_{prod}, \phi) = \int d\xi \xi \hat{q}(\xi),$$

$$[\hat{q}L]^{eff}(x_0, y_0, \tau_{prod}, \phi) = \int d\xi \hat{q}(\xi),$$

$$R^{\text{eff}}(x_0, y_0, \tau_{\text{prod}}, \phi) = \frac{3}{2} \int d\xi \xi^2 \hat{q}(\xi)$$

• We choose to use ω_c^{eff} and R^{eff} .

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

We specify the relation between *q̂*(ξ) and the medium properties given by our hydrodynamical model as

$$\hat{q}(\xi) = K \hat{q}_{QGP}(\xi) \simeq K \cdot 2\epsilon^{3/4}(\xi)$$

The production weight is given by

$$\omega(x_0, y_0) = T_{Pb}(x_0, y_0) T_{Pb}(\vec{b} - (x_0, y_0))$$

The average values of *q̂* and and the medium-modified fragmentations functions are computed as

$$\langle \hat{q} \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0) \frac{\left[\left[\hat{q} L \right]^{eff}(x_0, y_0, \phi) \right]^2}{2\omega_c^{eff}(x_0, y_0, \phi)}$$

$$\langle D_{k \to h}^{(med)}(z, \mu_F^2) \rangle = \frac{1}{N} \int d\phi dx_0 dy_0 \omega(x_0, y_0)$$

$$\times \int d\zeta P(x_0, y_0, \phi, \zeta) \frac{1}{1 - \zeta} D_{k \to h}^{(vac)} \left(\frac{z}{1 - \zeta}, \mu_F^2 \right)$$

where $N = 2\pi \int dx_0 dy_0 \omega(x_0, y_0)$.

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Energy loss for times prior to hydrodynamic behavior

- Ambiguity on the value of the transport coefficient for values smaller than the thermalization time τ₀.
- We use three extrapolations.

• Case i):
$$\hat{q}(\xi) = 0$$
 for $\xi < \tau_0$,

• Case ii):
$$\hat{q}(\xi) = \hat{q}(\tau_0)$$
 for $\xi < \tau_0$,

• Case iii):
$$\hat{q}(\xi) = \hat{q}(\tau_0) / \xi^{3/4}$$
 for $\xi < \tau_0$

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

(ロ) (回) (主) (主) (三) の()

Single-inclusive results

 The experimental data used in our analysis are given in terms of the nuclear modification factor for single measurements

 $R_{AA} = \frac{dN_{AA}/d^2 p_T dy}{\langle N_{coll} \rangle dN_{pp}/dp_T^2 dy}$

- Experimental data are all for Pb-Pb collisios at LHC energy $\sqrt{s_{NN}} = 2.76$ TeV.
- ALICE data on R_{AA} for charged particles with $p_T > 5$ GeV in the centrality class 0-5% and for $|\eta| < 0.8$.
- CMS data on R_{AA} for charged particles with $p_T > 5$ GeV in the centrality class 0-5% and for $|\eta| < 1$.
- Results for different values of 2K = K'/0.73, with K' = 0.5, 1, 2, 3, ..., 20.

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Double-inclusive results

$$I_{AA} = \frac{D_{AA}(z_T, p_T^{trig})}{D_{pp}(z_T, p_T^{trig})}$$

where

$$D_{AA}(z_T, p_T^{trig}) \equiv p_T^{trig} \frac{d\sigma_{AA}^{h_1h_2}/dy^{trig} dp_T^{trig} dy^{assoc} dp_T^{assoc}}{d\sigma_{AA}^{h_1}/dy^{trig} dp_T^{trig}}$$

and $z_T = p_T^{assoc} / p_T^{trig}$ and the factorization scale is taken as the p_T of the hadrons

- ALICE data on I_{AA} on the away side for central (0-5%) PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV.
- Results for different values of 2K = K'/0.73, with K' = 0.5, 1, 2, 3, ..., 20.

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Case i) $\hat{q}(\xi) = 0$ for $\xi < \tau_0$

Curves that best fit experimental data are the corresponding to K = 1.37 and K = 2.05.

The value of K obtained is K = 1.37.

イロト 不得 トイヨト イヨト

3

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

17 / 25

Case ii) $\hat{q}(\xi) = \hat{q}(\tau_0)$ for $\xi < \tau_0$

Curves that best fit experimental data are the corresponding to K = 0.68 and K = 1.37.

The curve that best fit experimental data is the one with K = 0.68.

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

The value of K obtained in this The value of K obtained in this case is K = 0.68. case is K = 0.68.

イロト 不得下 イヨト イヨト 二日

medium modeling

Modeling jet

quenching with Quenching Weights shortname

Single-inclusive and double-inclusive results

Good agreement with experimental data.

- Results for single-inclusive measurements compatible with double-inclusive measurements.
- Results influenced by the early time treatment chosen. The case *q̂*(ξ) =0 before thermalization is very different from the rest.
- In our model, medium more transparent at LHC than at RHIC.
- Extension to the the case of massive quarks: in progress.

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の≪

- Good agreement with experimental data.
- Results for single-inclusive measurements compatible with double-inclusive measurements.
- Results influenced by the early time treatment chosen. The case *q̂*(ξ) =0 before thermalization is very different from the rest.
- In our model, medium more transparent at LHC than at RHIC.
- Extension to the the case of massive quarks: in progress.

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

- Good agreement with experimental data.
- Results for single-inclusive measurements compatible with double-inclusive measurements.
- Results influenced by the early time treatment chosen.
 The case *q̂*(ξ) =0 before thermalization is very different from the rest.
- In our model, medium more transparent at LHC than at RHIC.
- Extension to the the case of massive quarks: in progress.

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

- Good agreement with experimental data.
- Results for single-inclusive measurements compatible with double-inclusive measurements.
- Results influenced by the early time treatment chosen. The case *q̂*(ξ) =0 before thermalization is very different from the rest.
- In our model, medium more transparent at LHC than at RHIC.
- Extension to the the case of massive quarks: in progress.

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

- Good agreement with experimental data.
- Results for single-inclusive measurements compatible with double-inclusive measurements.
- Results influenced by the early time treatment chosen. The case *q̂*(ξ) =0 before thermalization is very different from the rest.
- In our model, medium more transparent at LHC than at RHIC.
- Extension to the the case of massive quarks: in progress.

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

(ロ) (回) (目) (目) (日) (の)

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

Backup

21 / 25

Case i) $\hat{q}(\xi) = 0$ for $\xi < \tau_0$

Results choosing $[\hat{q}L]^{eff}$ and ω_c^{eff}

The curves that best fit experimental data are the corresponding to K = 2.05 and K = 2.73.

The curve that best fit experimental data is the one with K = 0.68

Modeling jet quenching with Quenching Weights

shortname

RHIC results

medium modeling

Case ii) $\hat{q}(\xi) = \hat{q}(\tau_0)$ for $\xi < \tau_0$

The value of K obtained are K = 2.05 and K = 2.73.

The value of K obtained is K = 0.68.

イロト イボト イヨト イヨト

3

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

イロト 不得 トイヨト イヨト

3

^{24 / 25}

RHIC results with $\hat{q}(\xi) = \hat{q}(au_0)$ for $\xi < au_0$

Choosing ω_c^{eff} and R^{eff}

Choosing $[\hat{q}L]^{eff}$ and ω_c^{eff}

э

A D K A D K A D K A D K

Modeling jet quenching with Quenching Weights

shortname

ntroduction

RHIC results

Hydrodynamical medium modeling

Perturbative cross sections

Energy loss implementation

Single-inclusive and double-inclusive results

Conclusions

25 / 25