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Introduction

Study of suppression of high-pT particles in central
PbPb collisions at LHC.

Analysis based on the quenching weights (QW) for
medium-induced gluon radiation.

QW computed in multiple soft scattering approximation.

Embedded in a hydrodynamical description of the
medium.

This analysis has already been done for RHIC:
arXiv:0907.0067[hep-ph] (N. Armesto, M. Cacciari, T.
Hirano, James L. Nagle and Carlos A. Salgado.

We will try to compare the information obtained for
RHIC and for LHC.
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RHIC results

Nuclear modification factors RAA for single-inclusive and IAA

for hadron-triggered fragmentation functions for different
values of 2K = K ′/0.73, with K ′ = 0.5, 1, 2, 3, ..., 20. The
green line in the curve corresponding to the minimum of the

common fit to RAA and IAA data: K =4.1.
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Left: χ2-values for different values of K for light hadrons and
for the three different extrapolations for ξ < τ0. Red lines

correspond to single-inclusive π0 data from PHENIX (RAA)
and black ones to the double-inclusive measurements by

STAR (IAA).
Right: the corresponding central values (minima of the χ2 )

and the uncertainties computed by considering ∆χ2 = 1.
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Hydrodynamical medium modeling
In relativistic heavy-ion collisions, the medium evolves
dynamically.
3D ideal hydrodynamics is used to describe this
evolution.
Using the results of Tetsufumi Hirano et al. for

∂µT
µν = 0

in (τ, x , y , ηs) with Tµν = (ε+ P)uµuν − Pgµν and
with thermal equilibrium time τ0 = 0.6fm/c. Initial
conditions are: ux (τ0) = uy (τ0) = uηs (τ0) = 0.
For the Quark-Gluón-Plasma (QGP) phase we use the
EOS

p =
1

3
(ε− 4B)

with B
1
4 = 247 MeV.

These hydrodynamical solutions will be used to
constraint the transport coefficient q̂.
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Single inclusive cross section

The production of a hadron h at transverse momentum
pT and rapidity y can be described by

dσAA→h+X

dpTdy
=

∫
dx2

x2

dz

z

∑
i ,j

x1fi/A(x1,Q
2)x2fj/A(x2,Q

2)

× d σ̂ij→k

dt̂
Dk→h(z , µ2

F )

We use CTEQ6L (LO) free proton parton densities.

We take the factorization scale as Q2 = (pT/z)2 and
the fragmentation scale as µF = pT .

Medium modified fragmentation functions are
modeled as

D
(med)
k→h (z , µ2

F ) =

1∫
0

dεPE (ε)
1

1− ε
D

(vac)
k→h

(
z

1− ε
, µ2

F

)
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where PE (ε) is the Quenching Weight and the vacuum

fragmentation function, D
(vac)
k→h (z , µ2

F ), is taken from Florian,
Sassot and Stratmann.

FF are modified by medium-induced gluon radiation
through QW.

Fragmentation takes place in vacuum.

nPDF are taken from the EKS98 analysis.
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Quenching Weights
The probabilility distribution of a fractional energy loss,
ε = ∆E/E , quenching weight, of the parton in the
medium is given by

P(∆E ) =
∞∑

n=0

1

n!

[
n∏

i=1

∫
dωi

dI (med)(ωi )

dω

]

× δ

(
∆E −

n∑
i=1

ωi

)
exp

− ∞∫
0

dω
dI (med)

dω


Independent gluon emission has been assumed.
QW are Poisson distributions.
QW is the normalized sum of the emission probabilities
for an arbitrary number of n gluons which carry away
the total energy ∆E .
dI (med)

dω is calculated as dI (med)

dω = dI (tot)

dω −
dI (vac)

dω in the
multiple soft scattering approximation.
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Multiple soft scattering approximation for a
static medium

The inclusive energy distribution of gluon radiation off
an in-medium produced parton is given by

ω
dI (med)

dω
=

αsCR

(2π)2ω2
2Re

∞∫
ξ0

dyl

∞∫
yl

dȳl

∫
du

χω∫
0

dk⊥

× e−ik⊥·ue
− 1

2

∞∫̄
yl

dξn(ξ)σ(u) ∂

∂y
· ∂
∂u

u=r(ȳl )∫
y=0

Dr

× exp

i ȳl∫
yl

dξ
ω

2

(
ṙ2 − n(ξ)σ(r)

iω

)
n(ξ), density of scattering centers.
σ(r), strength of a single elastic scattering.
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In the multiple soft scattering approximation we use

σ(r)n(ξ) ' 1

2
q̂(ξ)r2.

with q̂ =
〈q2

⊥〉med

λ for a static medium

All the information about the medium is contained in q̂
and L.

But partons propagate under a rapidly expanding
medium, so q̂ depends on time

q̂(ξ) = q̂0

(
ξ0

ξ

)α
where alpha is the expansion parameter.

In a dynamical medium we use a scaling law which
relates the energy distribution in a collision of arbitrary
dynamical expansion to an equivalent static scenario.
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Energy loss implementation

We use QW in the multiple soft scattering
approximation.

They depend on two quatities, ωc and R, which for a
static medium are given by ωc = 1

2 q̂L
2 e R = ωcL.

In a dynamical medium we make use of the following
scaling relations:

ωeff
c (x0, y0, τprod , φ) =

∫
dξξq̂(ξ),

[q̂L]eff (x0, y0, τprod , φ) =

∫
dξq̂(ξ),

Reff (x0, y0, τprod , φ) =
3

2

∫
dξξ2q̂(ξ),

We choose to use ωeff
c and Reff .
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We specify the relation between q̂(ξ) and the medium
properties given by our hydrodynamical model as

q̂(ξ) = Kq̂QGP(ξ) ' K · 2ε3/4(ξ)

The production weight is given by

ω(x0, y0) = TPb(x0, y0)TPb(~b − (x0, y0))

The average values of q̂ and and the medium-modified
fragmentations functions are computed as

〈q̂〉 =
1

N

∫
dφdx0dy0ω(x0, y0)

[
[q̂L]eff (x0, y0, φ)

]2
2ωeff

c (x0, y0, φ)

〈D(med)
k→h (z , µ2

F )〉 =
1

N

∫
dφdx0dy0ω(x0, y0)

×
∫

dζP(x0, y0, φ, ζ)
1

1− ζ
D

(vac)
k→h

(
z

1− ζ
, µ2

F

)
where N = 2π

∫
dx0dy0ω(x0, y0).
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Energy loss for times prior to hydrodynamic
behavior

Ambiguity on the value of the transport coefficient for
values smaller than the thermalization time τ0.

We use three extrapolations.

Case i): q̂(ξ) = 0 for ξ < τ0,
Case ii): q̂(ξ) = q̂(τ0) for ξ < τ0,
Case iii): q̂(ξ) = q̂(τ0)/ξ3/4 for ξ < τ0
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Single-inclusive results

The experimental data used in our analysis are given in
terms of the nuclear modification factor for single
measurements

RAA =
dNAA/d

2pTdy

〈Ncoll〉dNpp/dp2
Tdy

Experimental data are all for Pb-Pb collisios at LHC
energy

√
sNN = 2.76 TeV.

ALICE data on RAA for charged particles with pT > 5
GeV in the centrality class 0-5 % and for |η| < 0.8.

CMS data on RAA for charged particles with pT > 5
GeV in the centrality class 0-5 % and for |η| < 1.

Results for different values of 2K = K ′/0.73, with K ′ =
0.5, 1, 2, 3, ..., 20.
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Double-inclusive results

IAA =
DAA(zT , p

trig
T )

Dpp(zT , p
trig
T )

where

DAA(zT , p
trig
T ) ≡ ptrig

T

dσh1h2
AA /dy trigdptrig

T dyassocdpassoc
T

dσh1
AA/dy

trigdptrig
T

and zT = passoc
T /ptrig

T and the factorization scale is taken as
the pT of the hadrons

ALICE data on IAA on the away side for central (0-5 %)
PbPb collisions at

√
sNN = 2.76 TeV.

Results for different values of 2K = K ′/0.73, with K ′ =
0.5, 1, 2, 3, ..., 20.
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Case i) q̂(ξ) =0 for ξ < τ0

Curves that best fit
experimental data are the

corresponding to K = 1.37 and
K = 2.05.

The value of K obtained is K =
1.37.
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Case ii) q̂(ξ) = q̂(τ0) for ξ < τ0

Curves that best fit
experimental data are the

corresponding to K = 0.68 and
K = 1.37.

The curve that best fit
experimental data is the one

with K = 0.68.
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Case iii) q̂(ξ) = q̂(τ0)/ξ
3/4 for ξ < τ0

The value of K obtained in this
case is K = 0.68.

The value of K obtained in this
case is K = 0.68.

19 / 25



Modeling jet
quenching with

Quenching
Weights

shortname

Introduction

RHIC results

Hydrodynamical
medium modeling

Perturbative cross
sections

Energy loss
implementation

Single-inclusive
and
double-inclusive
results

Conclusions

Conclusions

Good agreement with experimental data.

Results for single-inclusive measurements compatible
with double-inclusive measurements.

Results influenced by the early time treatment chosen.
The case q̂(ξ) =0 before thermalization is very different
from the rest.

In our model, medium more transparent at LHC than at
RHIC.

Extension to the the case of massive quarks: in progress.
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Case i) q̂(ξ) = 0 for ξ < τ0

Results choosing [q̂L]eff and ωeff
c

The curves that best fit
experimental data are the

corresponding to K = 2.05 and
K = 2.73.

The curve that best fit
experimental data is the one

with K = 0.68.
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Case ii) q̂(ξ) = q̂(τ0) for ξ < τ0

The value of K obtained are
K = 2.05 and K = 2.73.

The value of K obtained is
K = 0.68.
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Case iii) q̂(ξ) = q̂(τ0)/ξ
3/4 for ξ < τ0

The value of K obtained in this
case is K = 1.37.

The value of K obtained in this
case is

K = 0.68.
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RHIC results with q̂(ξ) = q̂(τ0) for ξ < τ0

Choosing ωeff
c and Reff Choosing [q̂L]eff and ωeff

c
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