
Making ROOT I/O
Thread-Safe

Christopher Jones FNAL

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Goal
Make it safe to
Read multiple TFiles on different threads	

Write multiple TFiles on different threads	

Have calls to other ROOT functions on other threads not interfere with I/O	

Not a goal
Reading/writing one TFile on multiple threads

���2

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Tools
Known problems
List from Philippe Canal	

List of shared resources	

Valgrind’s helgrind tool
Finds data races and mutex ordering problems	

Static analysis
Written using LLVM	

Builds a graph of which functions call which other functions	

Finds all globals	

Creates a list of all functions which connect to a global/shared resources

���3

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Procedure
Fix known problems

Use static analyzer to find connects between I/O routines and
known shared resources
Protect those resources	

Build test system
Start N threads	

On each thread open a TFile for reading and one for writing then copy all
objects from one to the other	

Run helgrind on test system

���4

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Unexpected Connections
Found several unexpected connections between components

Filling a TH1 can interfere with opening a TFile
TH1::Fill can cause a rebinning of the histogram	

Rebinning calls TObject::Clone	

TObject::Clone uses serialization code	

Serialization code does lazy work	

Lazy work can also happen when opening a TFile	

Added protections for these connections

���5

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Types of Fixes
Algorithm changes

C++11 thread_local

C++11 std::atomic<>

Adding more mutex locks

���6

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Algorithm Changes
TObject determining if instance on stack or heap
Previously kept a begin and end value for addresses given from heap	

If new object this between values assumed to be on heap
Heap in threaded program not contiguous	

Stacks for new threads can exist between heap sections
Changed to TObject::new causing memory to be filled with ‘magic’ value	

If member data set to ‘magic’ value then on heap
No need for global info (begin and end values) so no thread problem	

Avoid rebuilding StreamerInfos
Use thread-safe flag in object to denote work has already been done	

Also speeds up single-threaded case	

Avoid resetting values
Check if a value is not already what you are going to change it to	

���7

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Using C++11
Only C++11 has a memory model for threading
Only C++ version which gives portable threading	

Decided with Philippe that ROOT would only be thread-safe
when compiled using C++11

std::thread_local
Used for globals in ROOT which hold temporary state for a callstack	

E.g. TClass::fgCallingNew only used during callstacks involving TClass::New

std::atomic<>
Used for global variables used to assign unique IDs	

Used for member data which are caches

���8

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

mutex
Originally incomplete coverage of mutex in ROOT code
often mutex used to lock change in structure but no lock when reading	

Used static analysis to determine best routine to make lock

Helgrind used to find lock ordering problem
If have two mutex (A,B) and two different threads take the locks indifferent
order (A then B vs B then A) can lead to deadlock

���9

Thread-safe ROOT I/O Concurrency Forum 12/03/2014

Results
Test program now runs with no reported helgrind errors

Performance
As number of threads increased the event throughput was constant	

Found that I/O was completely serial	

gdb ‘polling’ showed N-1 threads were stopped in mutex wait

Code
Available on github	

https://github.com/Dr15Jones/root
Being used as basis for Philippe Canal’s threading work

���10

https://github.com/Dr15Jones/root

