Summary of Jet and E_T^{miss} Reconstruction in ATLAS Analyses

David López Mateos (Harvard University), August 25th, 2014 2014 CMS Jet/MET Workshop

Outline

- Calorimetry and Inputs
- ▶ Jet Energy MC-based Calibration
- ▶ In-situ techniques and Systematic Uncertainties on the JES
- ▶ Beyond the JES: Jet energy resolution and Jet mass calibration
- ▶ Jet substructure and hadronic jet tagging
- Missing transverse energy
- Summary and Conclusions
- ⇒ All the results shown here and more in our public twiki

The ATLAS LAr Calorimetry

▶ EM and hadronic end-cap calorimetry use LAr as active medium

The ATLAS EM Calorimetry

▶ Very fine read-out segmentation in η in first layer (motivated by $H \rightarrow \gamma \gamma$)

▶ Longitudinal segmentation helps following development of the shower

▶ Additional pre-sampler layer acts as "active medium" for material in front of calo

The ATLAS Tile Calorimeter

- ▶ For precision hadronic barrel calorimetry use scintillating tiles and steel
- ▶ Longitudinal segmentation helps follow shower development
- ▶ Large fraction of barrel services leave detector at η ~0.9

The Forward Calorimeter

- Projectivity is somewhat lost
- ▶ Relatively small calorimeter: use Tungsten to contain showers
- ▶ Cluster size is relatively large: harder to use for substructure

Material Budget and Jet Containment

- ▶ Material budget in hadronic calorimeter is quite high, to contain guarantee containment of the shower
- ▶ Tails can be relevant at $p_T \sim I$ TeV, can be corrected by looking at activity in the muon spectrometer

• Clusters are built starting from the fine readout granularity of the ATLAS calorimeter (above the EM calorimeter in the central region)

- ▶ Seeds are taken from cells that are above 4 standard deviations of the noise
- ▶ Noise includes electronic noise and average energy readings from pile-up
- ▶ Each cell has its value of noise stored in a database and that value is validated in data

 \blacktriangleright Cluster grows (in 3 dimensions) into adjacent cells where a deposition >2 σ is found

- \blacktriangleright Cluster grows (in 3 dimensions) into adjacent cells where a deposition >2 σ is found
- Growth continues while adjacent cells with $>2\sigma$ are found

- \blacktriangleright Cluster grows (in 3 dimensions) into adjacent cells where a deposition >2 σ is found
- Growth continues while adjacent cells with $>2\sigma$ are found

• Once growth is no longer possible, an additional set of boundary cells is added (irrespective of their energy)

Cluster Calibration

- Weights for non-compensation
 - Cluster energy
 - Cluster depth
 - Cell energy density
- Weights for energy out of the cluster
 - Cluster depth
 - Cluster isolation
- Weights for energy in dead material
 - Cluster energy
 - Energy deposited in each layer
 - Cluster depth

Calibration Sequence

- ▶ Not very different from CMS
- ▶ MC JES calibration also includes an eta calibration
- ▶ Global sequential calibration is based on properties: important to reduce flavor dependence of JES

Area Subtraction and Residual Pile-up Corrections

- $\triangleright \rho$ calculated in central region
- ▶ Residual correction required for out-oftime pileup

Energy and η Calibration

 \blacktriangleright Just invert the response as a function of energy (and η)

Global Sequential Corrections

- \blacktriangleright Just invert the response as a function of energy and something else (and η)
- \blacktriangleright Currently, that something else is: $n_{trk},$ track width, $f_{EM3},$ $f_{Tile\,I}$ $N_{segments}$ behind the jet
- ▶ Missing correlations don't win us much

In-situ Analyses: η Intercalibration

- ▶ In-situ calibration freezes out at around η ~3
- ▶ Systematics mostly come from modeling of 3rd jet radiation in different MCs
- ▶ Expect less dependence (smaller systematics) with NLO MCs

In-situ Analyses: V+jet

- ▶ Both MPF and direct balance techniques give compatible results
- Uncertainties dominated by EM scale
- ▶ Reach to about I TeV using 2012 data

In-situ Analyses: Multijet

▶ Get to higher p_T (up to 1.8 TeV with full 2012 dataset) by using single jet recoiling against multiple (calibrated jets)

In-situ Analyses: Multijet

- ▶ Uncertainties quite comparable (~I%) to V+jet uncertainties
- ▶ Uncertainties on the topology (and the JES) of the recoil are most important

In-situ Analyses: Single-particle

- ▶ Large effort to extrapolate to higher pts using data
- ▶ Most of it coming from the test-beam, but also from isolated hadron (pions and protons/antiprotons) data

In-situ Analyses: Single-particle

- ▶ Single-particle results allow propagating shifts and uncertainties to JES
- ▶ Shift predicted by single particle analysis compatible with shift observed in data within <1%!

In-situ Combination

- ▶ In-situ calibration and uncertainties come from statistical combination between all methods
- \blacktriangleright Dedicated pile-up (N_{PV} and μ dependent) and flavor uncertainties

Beyond the JES: Jet Energy Resolution

- \blacktriangleright Concerned mostly with the core (2 σ) of the distribution
- ▶ Two methods used to subtract radiation (and in good agreement)
- Methods confirm improvements obtained with global sequential calibrations

Jet response at LCW scale

Beyond the JES: Calibrating the Jet Mass

Same technique

- ▶ Calibrated energy <u>doesn't mean</u> calibrated mass (same goes for systematics)
- ▶ Calibration improves resolution and teaches us many things about detector response
- ▶ Generic mass calibration trickier at low masses, easier for EW jets

Jet Mass Uncertainties: Tracking Measurements

- Reference measurement is very precise, but of a quite different quantity than that of interest (large fragmentation systematics)
- ▶ Much more generic (do not exploit balance, can be applied to different topologies/variables)
- ▶ Used in ATLAS for mass scale, splitting scales and N-subjetiness uncertainties

Jet Mass Uncertainties: Tracking Measurements

- ▶ Measurement of p_T^{trk}/p_T^{calo} pioneered early in the run to estimate the JES in a dijet sample (used also for b-jets, for instance)
- ▶ Versatile because reference doesn't require specific topology
- ▶ Used for mass/ d_{12}/τ_n uncertainties

Sub+Superstructure: Jet Pull

- ▶ Performance studies to understand whether we can measure and understand color flow
- ▶ Definition of pull angle same as CMS, both jets in a W "pull" towards each other

Sub+Superstructure: Jet Pull

- ▶ Color flow is a subtle effect, detector resolution is not particularly good, so it becomes even more subtle
- ▶ Tracks and cuts on magnitude can be used to help obtaining better performance

Pile-up Jet Tagging

- ▶ Progress in pile-up rejection: solve the problem of pile-up dependent efficiency
- ▶ Demonstration of small q/g dependence (and also for b-jets)

Quark/Gluon Tagging

▶ Important and challenging

• Large phase space is relevant (low p_T and large η)

 MCs show differences among them (and also differences with data)

▶ ATLAS has published a detailed study based on 2011 data

CMS Jet/MET Workshop 2014 D. LOPEZ MATEOS 33

[*] arXiv:1405.6583

Quark/Gluon Tagging: Data Extraction

$$\begin{split} P_i(\eta, p_{\mathrm{T}}) = & f_q(\eta, p_{\mathrm{T}}) \times P_{q,i}(\eta, p_{\mathrm{T}}) \\ & + f_g(\eta, p_{\mathrm{T}}) \times P_{g,i}(\eta, p_{\mathrm{T}}) \\ & + f_c(\eta, p_{\mathrm{T}}) \times P_{c,i}(\eta, p_{\mathrm{T}}) \\ & + f_b(\eta, p_{\mathrm{T}}) \times P_{b,i}(\eta, p_{\mathrm{T}}) \end{split}$$
 for γ +jet only \longrightarrow $+ f_{\mathrm{fake},i}(\eta, p_{\mathrm{T}}) \times P_{\mathrm{fake},i}(\eta, p_{\mathrm{T}})$

- ▶ Build a data-driven tagger to:
 - Extract properties independently for quarks and gluons
 - Depend on the MC only at second order
- ► Likelihood distribution is compressed: less discrimination in data

Quark-Gluon Tagging: Performance

*] arXiv:1405.6583

- ▶ Data tagger is more performant than Herwig++, less than Pythia
- Systematic uncertainties do not cover the difference for all operating points

Boosted Boson Tagging: Optimizations

- First results made available earlier this year (even though some version already used for boosted W/Z cross-section measurement)
- Mass variables clearly extremely powerful, but can get better
- ⇒Emerging from BOOST: how precisely can we determine the y axis?

Top-tagging: Inputs

- ▶ Top-tagging already a bit more sophisticated
- ▶ Not perfect agreement in all variables used for tagging, but pretty good agreement for the most part

Top-tagging: Performance

- ▶ Summary of the latest performance in ATLAS (updates to the HTT to come soon)
- ⇒ Some more focus recently on the systematics for these curves

Fat-Bottomed Jets: b-tagging in Boosted Objects

- Effort ongoing to decouple b-tagging from jet reconstruction
- ⇒ Flexibility for boosted object reconstruction and tagging optimization

Missing E_T Reconstruction

- ▶ For most analyses, selection of objects is the same
- ▶ Sensitive analyses performed dedicated selection
- Mostly care about the understanding the soft term (but hard terms are important to understand performance)

Pile-up Suppression in the Soft Terms

▶ Energy density in forward region heavily suppressed

Indication that pile-up deposits merge with signals in the same cluster

Use of tracks in analogy to JVF

$$STVF = \left(\sum p_{\mathrm{T}}^{\mathit{track},\mathit{PV}} \middle/ \sum p_{\mathrm{T}}^{\mathit{track}}\right)_{\substack{\mathit{unmatched} \\ \mathit{objects}}}$$

Pile-up Suppression in the Soft Terms

▶ Resolution seems best with STVF

Soft term scale is heavily suppressed

▶ Appropriate for certain final states, but clearly not optimal

Soft Terms Validation in Data

- ▶ Clear issue with scale at low PT
- Area-based methods are somewhere in the middle

- Differences between data and MC covered by
 - Soft terms scale
 - Transverse resolution
 - Longitudinal resolution

Track-Based Soft Terms

Soft term performance degradation is due to pile-up

▶ Track-based E_T^{miss} used quite often for background rejection

▶ Pile-up dependence much reduced, data/MC agreement equally good

Summary and Conclusions

- ▶ ATLAS has a very mature program for understanding JES and JER
- ▶ New developments coming through, in particular in the aspects of pile-up suppression
- ▶ Techniques in the JES program have found their way to jet substructure studies
- ▶ Those techniques and their application to boosted object tagging systematics are still evolving, expect a lot of activity during Run 2
- ▶ No silver bullet still found for suppressing pile-up for the missing ET soft terms, but this will remain important through to the HL-LHC

Back-up Slides

Quark/Gluon Tagging: Dijet Distributions

Quark/Gluon Tagging: γ +jet

Distributions

Jet Mass Response

Boosted Boson Tagging Correlations

Boosted Boson Tagging Validation

 ν_{QJets}

ETmiss Sample Dependence

ETmiss Systematic Uncertainties

ETmiss in Data

