Dose to beam screen and dose from beam screen

F. Cerutti, L.S. Esposito EN-STI/EET

Technical Meeting on Vacuum for HL-LHC 5 March 2014

Outline

- Inner Triplet—CP—D1 beam screen:
 - radiation on the beam screen
 - effect on the coil energy deposition due to its different executive design
 - updated total heat load
- Protection elements in the Matching Section:
 - TAN, collimators, masks
 - present energy deposition estimations

Inner Triplet – CP – D1

FLUKA geometry model for IT-CP-D1

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Conceptual design of the beam screen (BS) for the Q1 and Q2-Q3-CP-D1 areas.

Spot the differences between beam screens

- 1. cooling capillary (tube) size
- 2. absorber shape
- 3. INNERMET 180
 - . beam screen thickness (2⇒1 mm)

thus bringing Q1 aperture to 113 mm elsewhere to 123 mm

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Peak dose deposited on the beam screen

Relevant for the carbon coating used to mitigate electron cloud heating, follow-up of a discussion with M. Taborelli

Particle species that contribute to the dose

Deposited dose is mainly due to electrons/positrons, whereas the fluence is dominated by few MeV photons

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Main contributors to the fluence and dose

High energy spectrum

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Effect on peak dose due to BS design changes

Possible mitigation (to be investigated): move the orbit corrector at the end of the CP (effect on beam performance?), or see next slide

BPM with tungsten absorbers

Beneficial especially for the interconnect Q3-CP

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Peak power profile

Machine operation is guarantee with a factor 10 from quench value

Total heat load UPDATED (vertical crossing)

	50 cm gap in ICs		10 cm gap in ICs	
Power [W]	Magnet	Beam	Magnet	Beam
Q1A + Q1B	110	150	110	150
Q2A + corr	105	50	105	50
Q2B + corr	130	70	130	65
Q3A + Q3B	160	60	160	60
СР	70	45	65	45
D1	100	50	95	50
Interconnects	25	85	25	95
Total	700	510	690	515
Previous estimation	630	615	615	630

Figures reported refer to a luminosity of 5×10^{34} cm⁻² s⁻¹

Total values for horizontal crossing are about 10% lower

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Matching Section

Matching Section beam-line

Inventory of Matching Section protecting devices

- Masks:
 - INNERMET 180 as bulk material on 1 mm copper beam screen-shaped support (i.e. aperture is dimensioned to match the beam screen of the protected magnet)
 - 50 cm long placed at 1.5 m from magnetic length
 - mask-beam screen gap set to 75 cm
 - distance between active parts of TLC-mask set to 75 cm

Inventory of Matching Section protecting devices

- Masks:
 - INNERMET 180 as bulk material on 1 mm copper beam screen-shaped support (i.e. aperture is dimensioned to match the beam screen of the protected magnet)
 - 50 cm long placed at 1.5 m from magnetic length
 - mask-beam screen gap set to 75 cm
 - distance between active parts of TLC-mask set to 75 cm
- Of course plus TAN, and TCLs (in front of D2, Q5, Q6)

Layout example: Q6 IP-side

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Peak power profile: HL vs LHC

L.S. Esposito, Technical Meeting on Vacuum for HL-LHC, 5 March 2014

Summary

- IT—CP—D1 beam screen is exposed to ~ 1 Gy after 3000 fb⁻¹ mainly of electromagnetic nature
- Impact of the executive beam screen design has been evaluated
 - The most important mitigation measure seems to be shielded Q3—CP interconnect
- Updated total heat load figures on the IT-CP-D1 string
 - the cold mass (beam screen) is expected to absorb 700 (515) W from collision debris at 5 × 10³⁴ cm⁻² s⁻¹
- The protection of the Matching Section relies on the synergy between TAN, collimators and masks
 - A first iteration taking into account inputs from optics, magnet, energy deposition and integration has been concluded
 - Hot points individuated:
 - **D2** (TCL4@20 σ) where 2 mW/cm³ can be reached (40 MGy/3000 fb⁻¹)
 - Q4 corrector (w/o mask) 2 mW/cm³ can be reached (20 MGy/3000 fb⁻¹)