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Overview: Why we want good vacuum?

- What happens if we do not have good cavity vacuum
- Fast vacuum trips due to hydrogen monolayers on cavity surfaces

 Risk: Reduced crabbing strength, increased power dissipation on
cavity, long term loss of performance

- Thermal Loading and Quenches
- Risk: Quenches => impact on operational efficiency
- Excess Field Emission in the cavity

 Risk: Reduced crabbing strength, localized quench spots

- What can cause vacuum deterioration in the cavity
- Multipacting - especially around the power coupler
* Risk: Damage to power coupler, reduced operational efficiency

- Activation/creation of defects on cavity surface



LHC: Example of pressure profile

- Good vacuum: but sensitive to dust and to venting procedures




LHC: Example of pressure profile

Good vacuum: but sensitive to dust and to venting procedures

Gauges on neighbouring warm sections (NEG coated)

* measures pressure at entrance to cold sections

Cold section => cryo pumping of surroundings onto cavity surfaces

In-situ RF conditioning: expect higher pressures around power couplers

Gauges need same range as beamline gauges
* Penning Gauge Range: 10711 to 10> mBar
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LHC:

—xample of pressure profile
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Overview: Crab cavity vacuum requirements

- Crab Cavities: Superconducting Niobium Cavities operating at 2 K.
- Primary requirements on the vacuum system
- Cavities need to see only the best possible vacuum conditions

4 )
=> static machine vacuum < 10-11 mBar

=> dynamic beam induced vacuum should be < 10-1° mBar )
g
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« HL-LHC
- Installation in LHC LSS1 & LSS5 during LS3

- 16 crab cavities per IP (4 per beam per side)

- Crab Cavity Validation Run in the SPS
- Install in SPS for operation in 2017 and 2018
- 2 crab cavities in one cryo module

- SPS is not baked out => machine vacuum is high vacuum (~10-8 mBar)



C: Vacuum lIssues



HL-LHC: Crab Cavity Installation

« Crab cavity modules installed at ~155 m from IP1 and IP5
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- Crab Cavity Installation: Between the D2 and the Q4

D2 Crab Cavities Q4




HL-LHC: Crab Cavity Installation

Initial Crab
Integration sketch
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HL-LHC: Crab Cavity Layout
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HL-LHC: Vacuum IiSsues

- Crab Cavity Cryomodule
- Conceptual Design not yet realized
- 1 module (8 cavities) or 2 modules (4 cavities each) or 4 modules ...
- Modules fully conditioned in SM18 prior to installation in LHC

- Requires: all beamline components baked out + (warm) RF conditioning of
crabs cavities?

10
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- Modules fully conditioned in SM18 prior to installation in LHC

- Requires: all beamline components baked out + (warm) RF conditioning of
crabs cavities?

- Crab Cavity Installation
- Modules transported and installed under vacuum (Pcav <10-"mBar)
« Requires isolation valve on each end of a module
- Connection to machine vacuum:

- Crab cavities should not cryo-pump the beam line => Isolation valves
opened only when cavities cold and machine vacuum at compatible level

* Requires ion pump at each end of a crab cavity cryomodule string

- Add pumps if multi-module string + compatible D2-Q4 space constraints
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HlL-LHC: Machine Vacuum Issues

« Machine Vacuum

- As low as possible ( <101 mBar with beam) => assumes e-cloud mitigations
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HlL-LHC: Machine Vacuum Issues

- Machine Vacuum
- As low as possible ( <101 mBar with beam) => assumes e-cloud mitigations
- Concern: Thermal loads from collision products impacting on crabs
« Under study: Addition of TCTs + TCLs + masks at Q4 & D2
* Provides protection but risk pollution into crabs

* NB: no collimator equip around RF at IP4
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Additional debris protection (masks) for crab Vertical TCL to protect D2 Additional TCT-like collimators protecting Q4
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Additional debris protection (masks) for crab Vertical TCL to protect D2 Additional TCT-like collimators protecting Q4

- Protection of Cavity vacuum:
- Is it assumed fast closing vacuum valves are not accepted for HL-LHC?

 Implies interlock cavity operation on neighborhood vacuum level
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Preparation for

C: S

PS Crab Validation

Run



Preparation for HL-LHC: SPS Crab Run

« SPS Crab Cavity Validation Run

Installed in LSS4 of SPS for test in 2017
2 cavities in 1 cryomodule

Cavities to be operated at 2K
Cryomodule ~3m in length

13



Preparation for HL-LHC: SPS Crab Run

- SPS Crab Cavity Validation Run = NSNS B
- Installed in LSS4 of SPS for test in 2017 ll T,’
» 2 cavities in 1 cryomodule - 1F)
- Cavities to be operated at 2K *i ‘_(Jf
» Cryomodule ~3m in length g — b

Crab Cavities Installed after 2015 COLDEX Run
- Requires CODEX to be completely de-installed by end of 2015
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SPS LS5S4 Bypass Section

- Cryomodule Mechanical constraints => New Y-Chamber needed

- Transverse separation of bypass increased from 340 to 510mm
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SPS LS5S4 Bypass Section

- Cryomodule Mechanical constraints => New Y-Chamber needed

- Transverse separation of bypass increased from 340 to 510mm

- Y-Chamber redesign

- Reduce impedance => impedance and HOM studies

- Mechanical reliability

 |ncreased number of translation cycles

Vacuum Chamber

433.5

(Transition)

VVSB Valve

175 258.5

<

433.5

=> stress analysis of bellows

258.5 175

Vacuum Chamber

CRAB

VVSB Valve

2131

(Transition)

VVSB Valve

i o [ %lf e At
LSS P— i 1 — b
|
it — -
'LT’ s159 vacuum Chamber '
o ' VVSB Valve
175 3517 ~SPS Bypass
3867 2131

 Remote transverse movement in/out of beam line under 20 min
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Y-Chambers: Impedance issues

- Y-Chamber design: opening angle increased from 12 to 16 deg
- Possibility of reducing impedance + increasing mechanical reliability

- Question of choosing suitable and feasible mechanical design
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SPS Vacuum conditions for Cralb Cavity Run

- Assume worst case operational conditions = 10- mBar

Timeseries Chart between 2011-01-06 16:06:27.000 and 2012-01-01 16:06:27.000 (UTC_TIME)
2012 SPS Vacuum level at Crab location
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SPS Vacuum conditions for Cralb Cavity Run

- Assume worst case operational conditions = 10- mBar

Timeseries Chart between 2011-01-06 16:06:27.000 and 2012-01-01 16:06:27.000 (UTC_TIME)
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Necessary to improve both static and beam induced vacuum
- Install Cryo-trap around Crab Cavity cryomodule
- Reduces: Vacuum level in Cavities to acceptable level
- Apply amorphous carbon coating to up/down stream of Cryomodule

« Suppress electron gas/e-cloud to prevent multipacting/thermal loading
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Proposals for achieving the required SPS vacuum

- Transition from warm unbaked machine to cold (2K) crab cavity zone
- Main concern: Pollution of cavity from water
- Deploy a cryo-trap on each side of the crab cryo module
- Second concern: What about molecular species other than water

- Add ion pumping upstream of the cryo-trap

17
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- Possibility of electron loading from beam induced e-cloud
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- Apply amorphous carbon coatings to warm sections immediately
up and down stream of the crab cryo module => reduce the SEY

- SM18: Check coated pipes + SRF cavity don’t degrade performance
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Proposals for achieving the required SPS vacuum

- Transition from warm unbaked machine to cold (2K) crab cavity zone
- Main concern: Pollution of cavity from water
- Deploy a cryo-trap on each side of the crab cryo module
- Second concern: What about molecular species other than water

- Add ion pumping upstream of the cryo-trap

- Possibility of electron loading from beam induced e-cloud
- Main concern: source of multipacting, quenching, discharges

- Apply amorphous carbon coatings to warm sections immediately
up and down stream of the crab cryo module => reduce the SEY

- SM18: Check coated pipes + SRF cavity don’t degrade performance

- Crab cavity running will be limited to periods of dedicated beam time
- Possibility for regular warm-up and pumping of crab location
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Achieving the required SPS vacuum

- NEG Coating: possibility but may saturate due to SPS machine vacuum

« Cryo-Trap: at each end of Crab module
 Freeze out molecules (mostly H20)
» Forms transition from std beam pipe to reduced aperture of crab cavity

* Not a permanent SPS installation=> Installed between Y-Chambers

< ~1m >

|
+ 80K Cooling

lon Pumping
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Achieving the required SPS vacuum

- NEG Coating: possibility but may saturate due to SPS machine vacuum

- Cryo-Trap: at each end of Crab module
 Freeze out molecules (mostly H20)
» Forms transition from std beam pipe to reduced aperture of crab cavity

* Not a permanent SPS installation=> Installed between Y-Chambers

( ~ 1 m ) Profile plotter
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- Expected vacuum reduction: >0(100) => Pcavity <10°1° mBar achievable
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Summary

« Crab Cauvities:

- Primary vacuum requirement is dynamic vacuum < 101 mBar
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Summary

« Crab Cauvities:

- Primary vacuum requirement is dynamic vacuum < 101 mBar

- HL-LHC:
- Crab cryomodules fully conditioned before exposed to machine vacuum

* Need to understand collision product load on crabs and implications of
masks/collimators on cavity pressure

- Cavity protection: Need to understand if fast vacuum valves permitted
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Summary

« Crab Cauvities:

- Primary vacuum requirement is dynamic vacuum < 101 mBar

- HL-LHC:
- Crab cryomodules fully conditioned before exposed to machine vacuum

* Need to understand collision product load on crabs and implications of
masks/collimators on cavity pressure

- Cavity protection: Need to understand if fast vacuum valves permitted

- SPS Crab cavity validation run in 2017-2018
- Crab Cavities to use “COLDEX area” in LSS4 of SPS
* Need new Y-Chamber => updated design
* Proposal: Cryo-trap + pumping to reduce vacuum level in Crab vicinity
- Need to minimize risk of thermal heating and multipacting

- Proposal: amorphous carbon coating of beam line around crabs
19



Additional Slides on Copper Crabs with Nb Coating



Crab - QWRs: Possibility of Niobium on Copper

Thermocouples positions :
Inner conductor
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Crab - QWRs: Possibility of Niobium on Copper

Thermocouples positions :
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Cavity Coating: Cut + Coat + Join

 Current of the order of few kA/m, total current a few kA
- RF design of beam port region can be optimized

« Maximum losses: a few watts in case of clamped connection
« Based on from HIE-ISOLDE experience

« But: common vacuum cryostat required

* Other connection possibilities can be studied which might allow also
leak tightness, thus separate vacua

Courtesy: R. Calaga Surface Currents

C\ERN Vacuum, Surfaces & Coatings Group
SZ -\ Technology Department 9 December 2013 Sergio Calatroni



Short summary: Coating pros/cons
« HIE-ISOLDE experience: required surface fields can be achieved

« Operate at 4.5 K, no quenches from Nb/Cu, no magnetic shielding

Losses estimated at 50 W at 4.5 K,

- total wall plug power including cryo static losses and COP not
much different compared to bulk @ 1.7 K (work in progress)

- Expected losses from cut-and-clamp assembly are acceptable
« Several accelerators operate split cavities

« Cooling by conduction is an option with copper cavities
« May suppress bath cyostat in favour of He circulation

 Massive copper allows excellent stability, even at 4.5K
« HIE-ISOLDE micro-phonics is 0.02 Hz/mbar

« Joining technology is presently a hot subject and needs study

« Common vs separate vacuum cryostat: Need study/risk analysis )

C\ERN Vacuum, Surfaces & Coatings Group
SZ -\ Technology Department 9 December 2013 Sergio Calatroni



