

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

LHC vacuum system overview & Outlook for HL-LHC

G. Bregliozzi TE-VSC-LBV

Outline:

✓ LHC Vacuum system requirements

- Cryogenic vacuum
 - Heat load, dynamic effects, BS temperature oscillations
- Room temperature vacuum
 - Vacuum dynamic effects
- ✓ NEG Performances: "Feedback" from operation
- $\checkmark\,$ RP Dose considerations during LS1
- ✓ Conclusions & Outlook for HL-LHC

LHC Vacuum System Requirements Cryogenic System

Cold vacuum was dimensioned as a function of the beam-induced power

- **1.** Synchrotron radiation: Intercepted by the beam screen 5K-20K
- 2. Image current from the beam: Intercepted by the beam screen 5K-20K
- 3. Photoelectron and multipacting: Intercepted by the beam screen 5K-20K
- 4. Nuclear scattering: Intercepted by the cold bore at 1.9K
 - > Nuclear scattering allowance of ≈ 0.2 W m⁻¹ for the two beams.
 - Additionally beam lifetime of ≈100 h
 - Average gas density must satisfy the "lifetime limit" <1.10¹⁵ H₂ molecules m⁻³ ≈ 10⁻⁸ mbar

Pressure in the cryogenic LHC Vacuum

Hydrogen saturated vapour pressure from Honig and Hook (1960)

Without beam

Static pressure is in the UHV-XHV range

In principle, inside a leak tight cryogenic vacuum system operating at 1.9 K, the pressure level is defined by the hydrogen vapour pressure (<< 10⁻¹⁹ Torr)

With circulating beam

Dynamic pressure is dominated by 3 sources :

- Ion stimulated molecular desorption
- SR stimulated molecular desorption
- Electron stimulated molecular desorption

Ion Induced Desorption: Vacuum Stability

- Ion bombardment of the beam pipe walls desorbs gas: Feedback effect.
- When the beam current approach the **critical current**, the pressure increases to infinity.
 - Perforated beam screen: Pumping speed for different gases

$$(\eta_i I)_{\text{crit}} = \frac{e}{\sigma} S_{\text{eff}}$$

	H ₂	CH ₄	СО	CO ₂
(η/) _{crit} [A]	1300	80	70	35

• Perforated beam screen offers room for LHC upgrades

Synchrotron Radiation: Variation with E

- Example of fill 3005 26/8/2012 : unbaked Cu surface
- With ~ 400 mA stored current, the pressure increases at the arcs extremity during the energy ramp.
- A threshold is observed at ~ 2.5 TeV

Cleaning Effect Under SR

- Arc extremity's vacuum gauges : unbaked Cu and cryogenic beam screen
- Reduction by **2 orders of magnitude** since October 2010

- 2 trends :
- Room temperature
- Cryogenic temperature

• Inside the arc, at 5-20 K, $\Delta P < 10^{-10}$ mbar (i.e. **below detection limit**)

High Luminosity

• The photodesorption yield at cryogenic temperature is estimated to be < 10⁻⁴ molecules/photon

Electron multipacting effects in the ARCs

- Limited pressure reading of the gauges in the ARC: $P < 1 \cdot 10^{-9}$ mbar \approx Under range
- No pressure rise does not means no electron cloud
- At this time, the cryogenic system observed a larger heat load due to photoelectrons induced multipacting: need scrubbing

LS1 Consolidation: Installation of vacuum gauges in Q12-13 for pressure reading down to $1\cdot 10^{-11}$ mbar

Dealing with beam screens : Example of ITs

During beam injection, the heat load onto the BS increases : as expected, gas transients appeared

=> Keep a bare surface on the BS

2) Optimisation of ITs cooling loops to keep temperature increase below 25 K => avoid crossing adsorption isotherms

3) Flushing the gas from the BS towards the cold bore by appropriate warm up to > 90 K
=> when a lot of gas is accumulated (scrubbing run): BS heaters updated and functional

4) Evacuation of condensed gas during TS/Xmas-break while ITs cooling is stopped => definitive removal of gas from the vacuum system

.uminosit

Room Temperature Vacuum System Long Straight Sections

LSS design value: a challenge with circulating beams

- Life time limit due to nuclear scattering ~ 100 h
 - $n \sim 10^{15} H_2/m^3$
 - <P_{arc}> < 10⁻⁸ mbar H₂ equivalent
 - ~ 80 mW/m heat load in the cold mass due to proton scattering
- > Minimise background to the LHC experiments

	H2_eq / m ³	mbar
<lss<sub>1 or 5></lss<sub>	~ 5 10 ¹²	10-10
<atlas></atlas>	~ 10 ¹¹	10-11
<cms></cms>	~ 5 10 ¹²	10-10

A. Rossi, CERN LHC PR 674, 2003. A. Rossi, CERN LHC PR 783, 2004.

LSS Ion Induced Desorption: Vacuum Stability

- 1. The current at which a pressure run-away occurs is directly proportional to the ion induced desorption yield for a given vacuum system
- 2. An *in-situ* bake-out significantly reduced the ion induced desorption yields:
 - The most critical gases are CH₄, CO and CO₂ due to the combined relatively large desorption yield and inferior molecular conductance.
 - For a given vacuum chambers diameter the distance between lumped pumps may be increased.

ID [mm]	Lmax for CH ₄	Lmax for CO and CH ₄	Lmax for CO ₂ , CO and CH ₄
	stability [m]	stability [m]	stability [m]
80	93	15.7	15

In the LHC:

- ➢ Fixed distance for Ion Pumps ≈ 28 m room for LHC upgrades but...
- \succ Relaying in the NEG pumping speed for CO and CO₂

Electron multipacting in the uncoated area of the LSS

Constant conditioning over the year on all the cold-warm transition

 $<P_{1HC1SS} > \sim 5.10^{-11}-5.10^{-10}$ mbar function of the effective pumping speed at the vacuum gauge location

Electron multipacting in the LHC experiments NEG coating everywhere as a baseline

- Almost constant pressure during the year
- > $< P_{LHC Experiments} > ≈ 3.10^{-11} \text{ mbar}$

NEG Coating preservation in the LHC LS2 & LS3 Outlook

Consequences from LHC operation NEG Performances

LSS NEG Performances Preservation Vacuum requirements for LS2 & LS3

Materials that will be installed in the LHC vacuum system at room temperature shall:

- a) Qualified regarding their outgassing: < 10⁻¹² mbar·l/s·cm²
- b) The total outgassing flux of each devices should not exceed ~ 1.10⁻⁷ mbar.l/s
- c) The gas composition must be dominated by H₂ and no contaminants should be detected after bake-out of the device
- d) All trapped volumes shall be avoided as well as contact between large surfaces

Any deviation from the total admissible outgassing flux or from the operating temperature imply an **additional pumping speed** to ensure the required gas density profile and the vacuum stability and preserve the NEG performance on a long run

- a) In case of air internal leak on a vacuum components the maximum allowed leak rate $< 5 \cdot 10^{-9}$ mbar l s⁻¹ NEW
- b) All surfaces "facing" the beam must have a low SEY NEW

In case dumping materials like ferrite inserted on a new equipment a dedicated cooling system must be foresee - **NEW**

RP Outlook: LS1 Activities The LS1 is the "Splice consolidation shutdown" lr e The main 2013-14 LHC consolidations 137 over 179 vacuum sectors to be 7% baked and NEG activated 13% 16% Collimators 14% Repair & New BI Equipment RF ALARA 5% TDI Upgrade MKI 5% NEG & Electron Cloud Pilot Sector Experimental Area VSC Consolidation & New Layout 16% VAX Update 11% DFBA Intervention TOTEM & ALFA 5% 5% 1% 2% **Radiation dose to the personnel already important in the LSS7**

RP Outlook: LS1 Activities Integrated dose per person 04/2013-02/2014

High Luminosity LHC

Data for Al4030 personnel

Conclusions from LHC operation

> NO DESIGN ISSUE: pumping layout and instrumentation behaved as expected

- Dynamic vacuum effects were enhanced by the fast increase of luminosity
- Non NEG coated areas dominates by far the pressure rises: all devices concerned.
- Operation with 50 ns beams has no impact for the beam vacuum after a dedicated scrubbing run even if the bunch population is increased up to ≈1.6·10⁺¹¹ p/b.

Operation with ions was "transparent" for the beam vacuum

Outlook for HL-LHC

• Ion Induced desorption:

- Actual ARC and LSS: NO DESIGN ISSUE.
- New devices & layout must be validated with operation parameters

• Synchrotron radiation:

- Expected heat loads and photon: photon & photon-electron stimulated desorption.
- Some additional information will be gained by the COLDEX experiment on the possibility of implementing carbon coating

• Electron cloud build:

Upgrade of the LSS by lowering the electron cloud build up of surfaces facing the beam: all groups are concerned

• More strict vacuum acceptance test of new devices:

- Avoid "bad" surprise in the machine
- Must preserve the "NEG performance" to avoid any issue with background for the experiments
- Increase pumping speed on localized area

Thank you

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

