

Impedance considerations for the design of the triplet/D1 beamscreen

N. Mounet, B. Salvant, C. Zannini and E. Métral

Acknowledgements: G. Arduini, C. Boccard, G. Bregliozzi, D. Draskovic, L. Esposito, S. Fartoukh, C. Garion, G. Iadarola, R. Jones, R. Kersevan, T. Lefevre, N. Kos, A. Mostacci, A. Nosich, G. Rumolo, M. Taborelli and E. Todesco

- Reminder on current and HL-LHC final triplet layout and beam screen geometry
- Power loss estimates
- Update on beam screen contribution on total impedance budget

HL LHC triplet layout (IR1 & 5)

HL LHC triplet layout (IR1 & 5)

Resistive-wall impedance of new beam screens: impact of the weld

3 different positions tested, with either 1mm or 2mm height (CST):

Resistive-wall impedance of new beam screens: impact of the weld

3 different positions tested, with either 1mm or 2mm height (CST):

Resistive-wall power loss in the triplets

 HL-LHC triplets beam screens resistive-wall power loss (gaussian bunches) of each kind of device in the triplets, including BS weld factor:

IR2 & 8 (HL-LHC parameters - worst case): 7 TeV, N_b= 3.5 10¹¹, M=2*1404 bunches, σ_z =7.5cm

BS type	BS 53	BS 63	BS 74
b [mm]	20.2	25.2	30.5
P _{loss} /L [W/m]	1.2	1.0	0.8

IR1 & 5 (HL-LHC parameters - worst case), with 2mm weld in a corner:

BS type	small, aC + Cu coating	large, aC + Cu coating
b [mm]	50.5	60.5
P _{loss} /L [W/m]	0.37	0.31

Resistive-wall power loss in the triplets

 HL-LHC triplets beam screens resistive-wall power loss (gaussian bunches) of each kind of device in the triplets, including BS weld factor:

IR2 & 8 (HL-LHC parameters - worst case): 7 TeV, N_b= 3.5 10¹¹, M=2*1404 bunches, σ_z =7.5cm

BS type	BS 53	BS 63	BS 74
b [mm]	20.2	25.2	30.5
P _{loss} /L [W/m]	1.2	1.0	0.8

IR1 & 5 (HL-LHC parameters - worst case), with 2mm weld in a corner:

BS type	small, aC + Cu coating	large, aC + Cu coating
b [mm]	50.5	60.5
P _{loss} /L [W/m]	0.37	0.31

Note: these assume no interferences between the 2 beams EM fields. Effect of these can be evaluated (see studies by G. Rumolo, G. Iadarola, C. Zannini); this was done for the current beam screens, where it tends to decrease the final power loss.

HL LHC: impedance considerations in IR1 & 5 - N. Mounet et al - 01/07/2013

Power loss due to pumping holes

- Thanks to A. Mostacci mathematica notebook, PhD thesis and help:
 - power loss due the TEM (coaxial) wave propagating between beam screen & cold bore,
 - pessimistic approach adopted: assume holes are uniformly distributed (actually they are random in size and position), and all area outside BS is filled with TEM wave,
 - \Rightarrow result: power loss (per unit length) is negligible compared to the resistivewall power loss: less than 0.1 mW/m both for LHC and HL-LHC, taking a small beam screen thickness for HL-LHC (0.5mm)
 - \Rightarrow even smaller in new BS with larger stainless steel thickness (1 mm).

Contribution from the beam screens (and tapers) to the total HL-LHC impedance

 Horizontal dipolar impedance (case of round 15cm optics, 50µm Cu, 15° angle tapers, holes surface coverage between 2.5% and 3%) Real part
Imag. part

 \rightarrow very small contribution from triplets at high frequency, up to 3% at first unstable betatron line (8 kHz) (same in vertical and longitudinal – see backup slides), \rightarrow pumping holes & tapers give a negligible contribution.

Can we make it better / worse ?

Contribution in percent to total model (horizontal dipolar imp.)

A word about BPMs in triplets

• From R. Jones, HL-LHC PLC meeting (18/01/2013):

Many more stripline BPMs than in LHC triplets & much higher β functions \rightarrow transverse impedance has to be looked at carefully (ongoing collaboration on BPM design with T. Lefevre – D. Draskovic).

Transverse impedance in the HL-LHC era - WP2 - HiLumi annual meeting 13/11/2013

Conclusions

- Beam screens from the triplets contribute little to the total HL-LHC impedance budget (less than 3% at worst).
- Main (by far) contribution is resistive-wall. At constant aperture & β*, it can be decreased to ~1% by adding more Cu.
- Pumping holes contribution is very small (0.2% at most), even in worst case scenario of 4% surface coverage.

Backup slides

Geometric impedance of the tapers

• Broad-band (BB) impedance of taper evaluated with Yokoya's formula [CERN SL/90-88] for cylindrical geometry, valid under the contitions $b\theta/\sigma_z <<1$ and either $a/\sigma_z >>1$ or (b-a)/a <<1:

$$Z^{T} = \frac{j Z_{0} \theta}{\pi} \left(\frac{1}{a} - \frac{1}{b} \right), \ \frac{Z^{L}}{n} = \frac{j \mu_{0} \theta f_{0}}{2} (b - a)$$

with *a* the smallest radius, *b* the largest radius, θ the taper slope, σ_z the RMS bunch length and f_0 (~11.2 kHz) the revolution frequency.

Taper impedance is directly proportional to its angle.

• New triplet BS: taper between Q1 and Q2, with standard angle (4 tapers on the whole):

Taper parameters	$BSQ1 \rightarrow BSQ2$	
a [mm]	50.5	
b [mm]	60.5	
Taper angle	15°	
<mark>lm(Ζ⁷)</mark> [Ω/m]	53	
lm(<i>Z^L/n</i>) [μΩ]	19	

HL LHC: impedance considerations in IR1 & 5 - N. Mounet et al - 01/07/2013

Contribution from the beam screens (and tapers) to the total HL-LHC impedance

 Vertical dipolar impedance (case of round 15cm optics, 50µm Cu, 15° angle tapers, holes surface coverage between 2.5% and 3%) Real part
Imag. part

Contribution from the beam screens (and tapers) to the total HL-LHC impedance

Longitudinal impedance

Real part

Technical Meeting on Vacuum for HL-LHC: Impedance considerations - N. Mounet et al - 05/03/2014

Imag. part