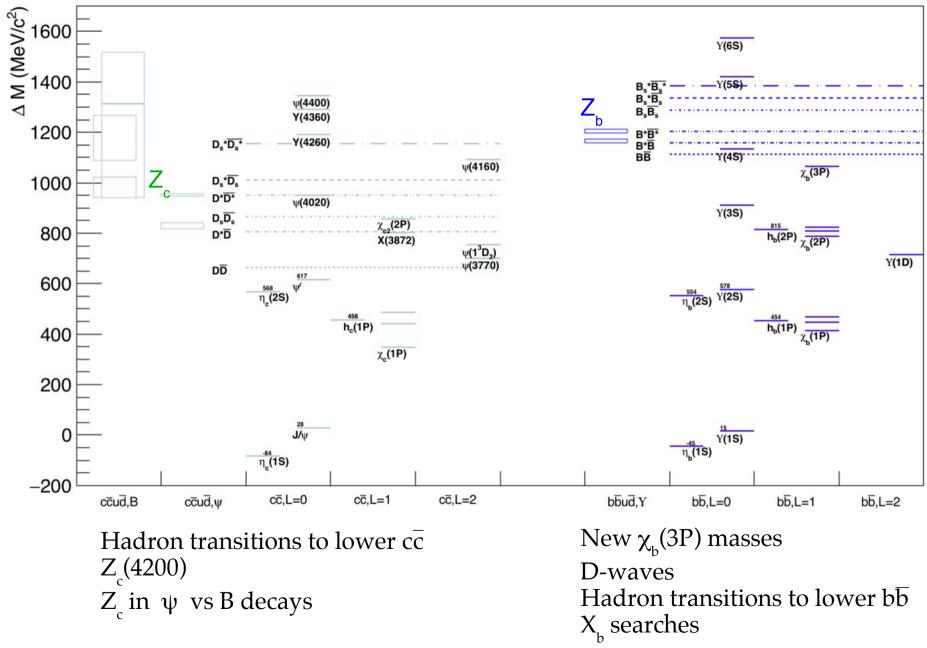





## Roberto Mussa INFN Torino





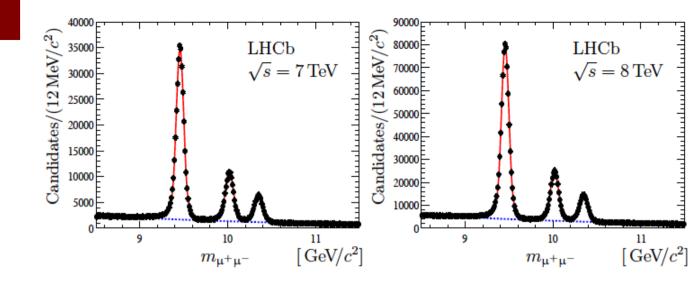



#### Charmonium

#### Bottomonium



## $\chi_b(3P)$ @ LHCb


JHEP 1410 (2014) 88

Excellent resolution, perfect separation between the three Y(nS) states.

Amazing statistics from a total of 3 fb<sup>-1</sup> (7+8 TeV)

Photons detected and measured in ECAL: high stats but low resolution (analysis with converted photons in progress)

Goal: quantify the fraction of Y(nS) produced from decays of  $\chi_b$  states.

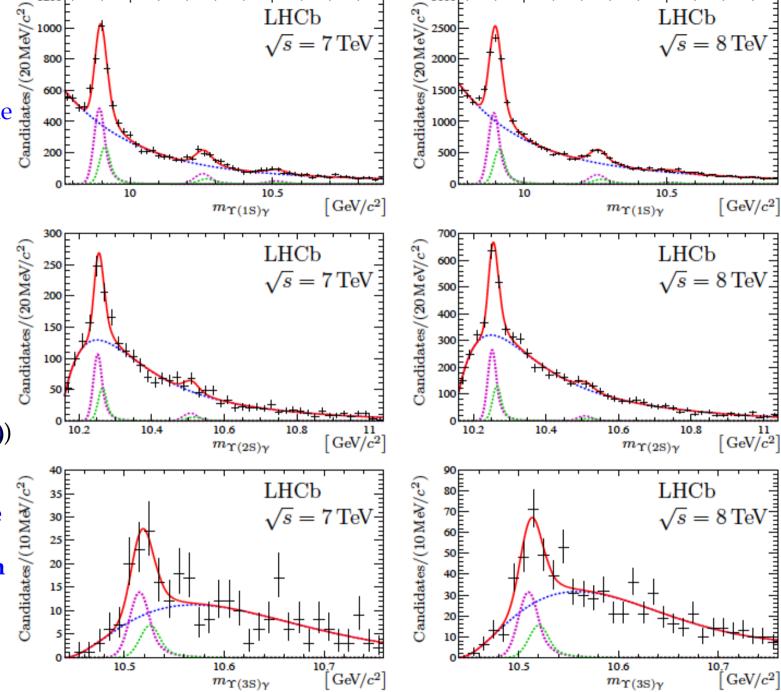


| Signal yield √                                            | $\sqrt{s} = 7  \mathrm{TeV}$ | $\sqrt{s} = 8  \mathrm{TeV}$ |
|-----------------------------------------------------------|------------------------------|------------------------------|
| $N_{\Upsilon(1S)}$ 326                                    | $6300 \pm 638$               | $747610 \pm 969$             |
| $N_{\Upsilon(2S)}$ 100                                    | $0620 \pm 395$               | $229950\pm576$               |
| $N_{\Upsilon(3S)}$ 57                                     | $7613 \pm 312$               | $129450 \pm 459$             |
| Decay mode                                                | $\sqrt{s} = 7  \mathrm{TeV}$ | $\sqrt{s} = 8  \mathrm{TeV}$ |
| $N_{\chi_{\rm b}(1{\rm P})\to \Upsilon(1{\rm S})\gamma}$  | $1908 \pm 71$                | $4608 \pm 115$               |
| $N_{\chi_{\rm b}(2{\rm P})\to\Upsilon(1{\rm S})\gamma}$   | $390 \pm 41$                 | $904 \pm 68$                 |
| $N_{\chi_{\rm b}(3{\rm P})\to\Upsilon(1{\rm S})\gamma}$   | $133 \pm 31$                 | $196 \pm 50$                 |
| $N_{\chi_{\rm b}(2{\rm P})\to \Upsilon(2{\rm S})\gamma}$  | $265 \pm 30$                 | $660 \pm 46$                 |
| $N_{\chi_{\rm b}(3{\rm P})\to\Upsilon(2{\rm S})\gamma}$   | $48 \pm 17$                  | $73 \pm 26$                  |
| $N_{\chi_{\rm b}({\rm 3P}) \to \Upsilon({\rm 3S})\gamma}$ | $56 \pm 12$                  | $126 \pm 20$                 |



EPJC74 (2014) 10, 3092

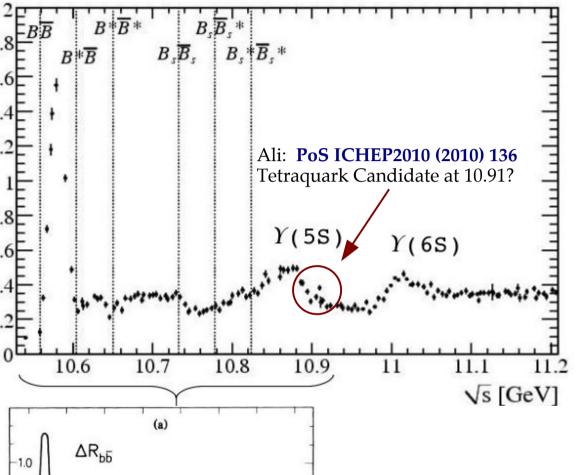
First observation of the radiative transition to Y(3S)


## Best measurement of mass:

LHCB 10511.3 $\pm$ 1.7 (mass of  $\chi_{h1}$ (3P))

#### **Previous:**

ATLAS 10530±5±9 PRL108 (2012) 152001 DØ 10551±14±17 (mixed  $\chi_{b1}$ (3P)+ $\chi_{b2}$ (3P)) PRD86 (2012) 031103


More than 30% of the Y(nS) produced at LHC are coming from  $\chi_b$ (1,2,3P) decays



QNP 2015, Valparaiso March 2-6 2015

R.Mussa, Hadron physics at B-factories

## Scan of the Y(5S)-Y(6S) region: Babar



Phys.Rev.Lett.102:012001,2009

- 130 points, 25 pb<sup>-1</sup> ,  $\Delta E{=}5$  MeV  $\sqrt{s}$  = 10.54-11.2 GeV
- $R_{b\overline{b}} = \sigma(b\overline{b})/\sigma(\mu\mu)$

Predicted by Tornqvist, using Phys.Rev.Lett.53:878,1984 the Coupled Channel Model -.5 (Eichten et al.)

5

10.8 √s/GeV

10.6

10.7

R.Mussa, Hadron physics at B-factories

## Y(5-6S) scans: $Y\pi\pi$ vs $R_{b}$

ArXiV:1501.01137

Measurements of  $\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)$  and  $\sigma(e^+e^- \to b\bar{b})$  in the  $\Upsilon(10860)$  and  $\Upsilon(11020)$  resonance regions

#### Data samples:

- 121.4 fb<sup>-1</sup> on Y(5S) nominal peak, at  $\sqrt{s}$  = 10865 GeV
- 61 points, 50 pb<sup>-1</sup>,  $\sqrt{s} = 10.75-11.05 \text{ GeV}$
- 16 points, 1 fb<sup>-1</sup>,  $\sqrt{s} = 10.63-11.02 \text{ GeV}$
- continuum data at  $\sqrt{s} = 10520 \text{ GeV}$

#### Selection criteria for Rb:

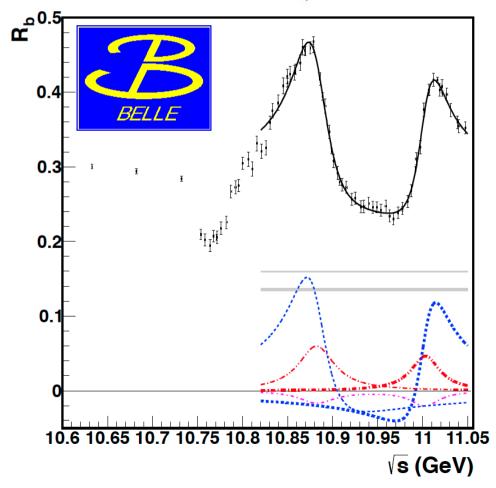
$$E_{\text{tot,ECL}} = (0.1 \text{-} 0.8)^* \sqrt{s}$$

$$E_{vis} > 0.5* \sqrt{s}$$

Fox Wolfram  $R_2 < 0.2$ 

 $\Delta R$ <1.5 cm;  $\Delta z$ <3.5 cm

## Rb is calculated subtracting the qq (q=u,d,s,c) continuum


$$\tilde{R}_{b,i} = \frac{1}{\epsilon_{b\bar{b}}} \left( \frac{N_i}{\mathcal{L}_i \sigma_{\mu\mu,i}^0} - \frac{N_{\rm ct}}{\mathcal{L}_{\rm ct} \sigma_{\mu\mu,\rm ct}^0} \frac{\epsilon_{q\bar{q},i}}{\epsilon_{q\bar{q},\rm ct}} \right)$$

#### Rb' after correcting for ISR

$$R'_{b,i} \equiv R_{b,i} - \sum \sigma_{\mathrm{ISR},i}/\sigma^0_{\mu^+\mu^-,i}$$
 R.Mussa, Ha

## Rb and Rb' are fitted in the range $\sqrt{s}$ =10.82-11.05 with :

$$\mathcal{F} = |A_{\rm nr}|^2 + |A_{\rm r} + A_{5S}e^{i\phi_{5S}}f_{5S} + A_{6S}e^{i\phi_{6S}}f_{6S}|^2$$



## Y(5-6S) scans: Yππ vs $R_b$

ArXiV:1501.01137

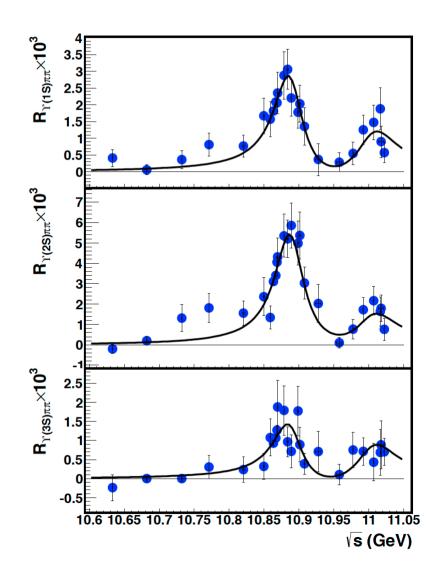
Measurements of  $\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)$  and  $\sigma(e^+e^- \to b\bar{b})$  in the  $\Upsilon(10860)$  and  $\Upsilon(11020)$  resonance regions

#### Data samples:

- 121.4 fb<sup>-1</sup> on Y(5S) nominal peak, at  $\sqrt{s} = 10865 \text{ GeV}$
- 61 points, 50 pb<sup>-1</sup>,  $\sqrt{s} = 10.75-11.05 \text{ GeV}$
- 16 points, 1 fb<sup>-1</sup>,  $\sqrt{s} = 10.63-11.02 \text{ GeV}$
- continuum data at  $\sqrt{s} = 10520 \text{ GeV}$

#### Selection criteria for Rb:

$$N_{tracks}$$
=4 ( $P_{T}$ >100 MeV);


 $\Delta R$ <1 cm;  $\Delta z$ <5 cm  $|\Delta z_{\pi\pi}^{}2\Delta z_{\mu\mu}^{}|$  < 3mm  $|M(\pi\pi\mu\mu)2\sqrt{s}|$ <0.2 GeV

## Rb is calculated subtracting the $q\bar{q}$ (q=u,d,s,c) continuum

$$\tilde{R}_{b,i} = \frac{1}{\epsilon_{b\bar{b}}} \left( \frac{N_i}{\mathcal{L}_i \sigma_{\mu\mu,i}^0} - \frac{N_{\text{ct}}}{\mathcal{L}_{\text{ct}} \sigma_{\mu\mu,\text{ct}}^0} \frac{\epsilon_{q\bar{q},i}}{\epsilon_{q\bar{q},\text{ct}}} \right)$$

#### Rb' after correcting for ISR

$$R'_{b,i} \equiv R_{b,i} - \sum \sigma_{\mathrm{ISR},i} / \sigma^0_{\mu^+\mu^-,i}$$



# $Z_b \rightarrow \overline{B}B^* + B\overline{B^*}, B^*\overline{B^*}$

ArXiV:1209.6450

| BF[ $\Upsilon$ (5S) $\rightarrow$ B <sup>(*)</sup> $\overline{B}$ (*) $\pi$ ] | preliminary<br>Belle 121.4 fb <sup>-1</sup> | significand |
|-------------------------------------------------------------------------------|---------------------------------------------|-------------|
| BB̄                                                                           | <0.60 % at 90% C.L.                         |             |
| $B\overline{B}* + B\overline{B}*$                                             | $(4.25 \pm 0.44 \pm 0.69)$ %                | $9.3\sigma$ |
| B* <u>B</u> *                                                                 | $(2.12 \pm 0.29 \pm 0.36)$ %                | 5.7σ        |

|                             | 50 | E                                                  |
|-----------------------------|----|----------------------------------------------------|
| 2/2                         | 40 | <b>Z</b> <sub>b</sub> 8σ                           |
| nce 🖁                       | 30 | phsp Z <sub>b</sub> '?                             |
| с/вопелем                   | 20 | E I I I I I I I I I I I I I I I I I I I            |
| Never                       | 10 |                                                    |
|                             | 0  | 10.6 10.65 10.7 10.75<br>rM(π), GeV/c <sup>2</sup> |
|                             | 50 | M (B*B*)                                           |
| 1/03                        | 40 | Z <sub>b</sub> '                                   |
| Mev                         | 30 | <b>Z</b> <sub>b</sub> ' 6.8σ                       |
| events/5 MeV/c <sup>2</sup> | 20 | phsp                                               |

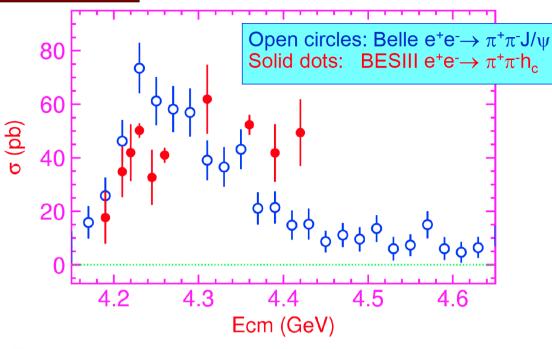
10.65

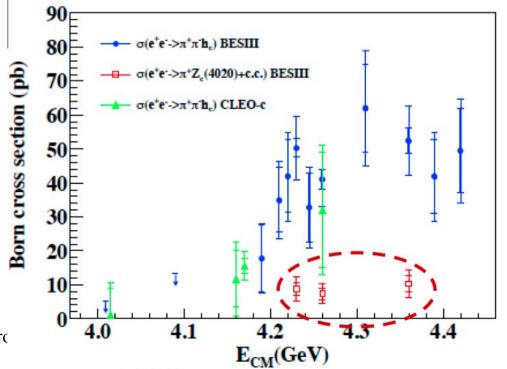
10.6

| Channel                                 | Fraction, %     |                 |  |
|-----------------------------------------|-----------------|-----------------|--|
|                                         | $Z_b(10610)$    | $Z_b(10650)$    |  |
| $\Upsilon(1S)\pi^+$                     | $0.32 \pm 0.09$ | $0.24 \pm 0.07$ |  |
| $\Upsilon(2S)\pi^+$                     | $4.38 \pm 1.21$ | $2.40 \pm 0.63$ |  |
| $\Upsilon(3S)\pi^+$                     | $2.15 \pm 0.56$ | $1.64 \pm 0.40$ |  |
| $h_b(1P)\pi^+$                          | $2.81 \pm 1.10$ | $7.43 \pm 2.70$ |  |
| $h_b(2P)\pi^+$                          | $4.34 \pm 2.07$ | $14.8 \pm 6.22$ |  |
| $B^{+}\bar{B}^{*0} + \bar{B}^{0}B^{*+}$ | $86.0 \pm 3.6$  | _               |  |
| $B^{*+}\bar{B}^{*0}$                    | -               | $73.4 \pm 7.0$  |  |

10.75

## High energy scans: bb vs cc


#### Differences:


- Y(5,6S) peaks are well resolved, Y(4.26,4.36) are NOT
- Transitions to  $h_b$  dominated by  $Z_b$ , While only 20% of  $h_c$  is reached via  $Z_c$

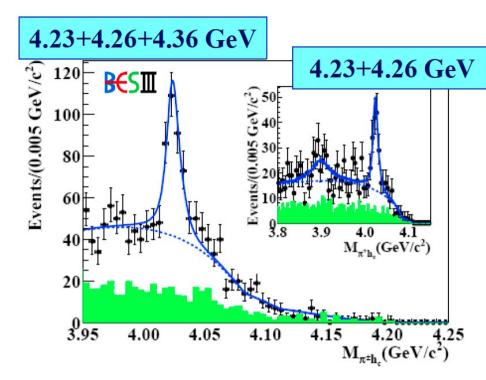


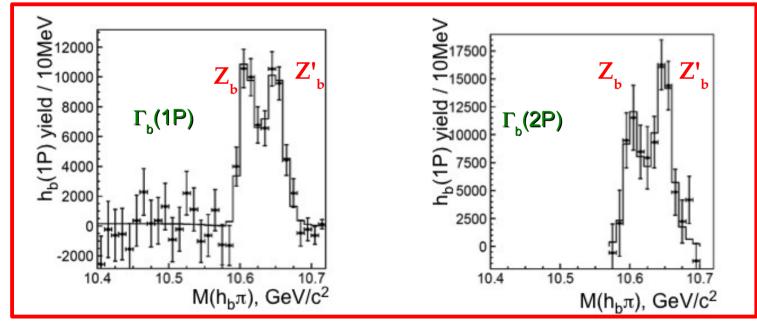
QNP 2015, Valparaiso March 2-6 2015

R.Mussa, Hadro






# $Z_b vs Z_c$


BES-III high statistics results are from exclusive analysis of data taken at Ecm = 4.23,4.26,4.36 GeV

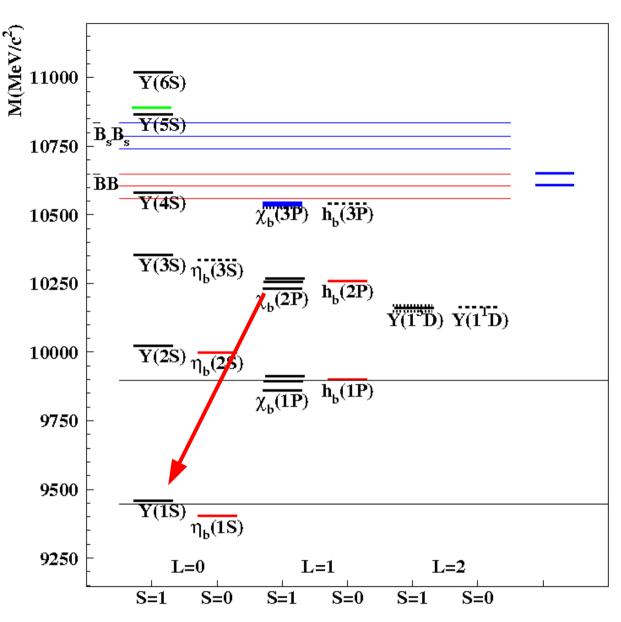
#### Cannot yet exclude $Z_{c}(3.9) \rightarrow \pi h_{c}!!!$

All Belle results on Zb are from the Y(5S) peak from inclusive analysis

Belle analysis on hb from Y(6S) much harder: stay tuned

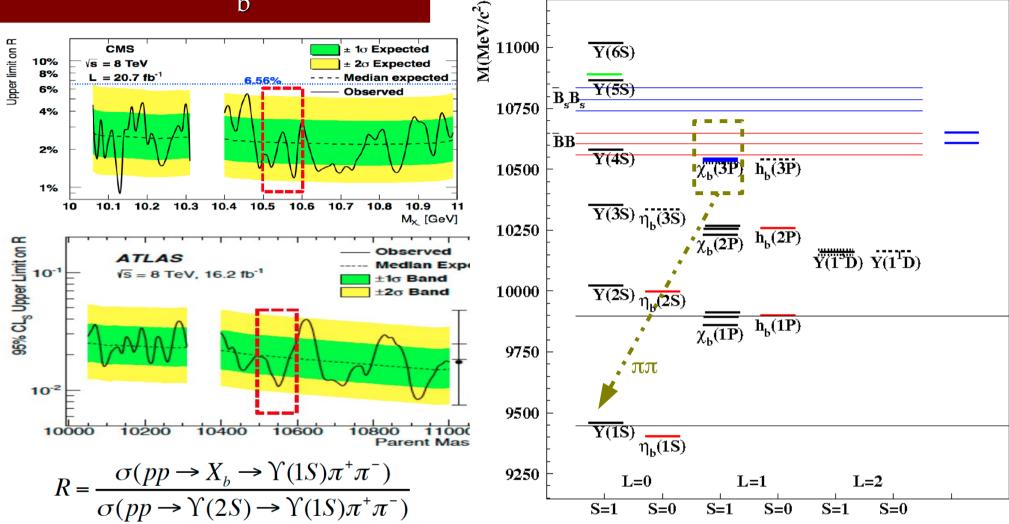





### The $\omega$ transitions

Observed by CLEO in 2004 PRL 92,222002 (2004)

| $\chi_{b1}(2P) \to \omega \Upsilon(1S)$ | $1.63 ^{~+0.40}_{~-0.34} \%$   |
|-----------------------------------------|--------------------------------|
| $\chi_{b1}(2P) \to \gamma \Upsilon(2S)$ | $.199 \pm .019$                |
| $\chi_{b1}(2P) \to \gamma \Upsilon(1S)$ | $9.2 \pm 0.8 \%$               |
| $\chi_{b1}(2P) \to \pi\pi\chi_{b1}(1P)$ | $(9.1 \pm 1.3) \times 10^{-3}$ |


$$\chi_{b2}(2P) \to \omega \Upsilon(1S)$$
 $\chi_{b2}(2P) \to \gamma \Upsilon(2S)$ 
 $\chi_{b2}(2P) \to \gamma \Upsilon(1S)$ 
 $\chi_{b2}(2P) \to \gamma \Upsilon(1S)$ 
 $\chi_{b2}(2P) \to \pi \pi \chi_{b2}(1P)$ 
 $\chi_{b2}(2P) \to \pi \pi \chi_{b2}(1P)$ 

In charmonium,  $\omega$  transitions are observed from X(3872) and Y(3915)



### What about a bottomonium analogue?

## Search for X<sub>b</sub> at LHC



In charm,  $M(D^+)-M(D^0)=4.73~\text{MeV} \rightarrow \text{large isospin violation: } BR(J/\psi\omega) \approx BR(J/\psi\rho)$ In bottom,  $M(B^+)-M(B^0)=0.32 \rightarrow \text{no isospin violation} \rightarrow BR(X_b \rightarrow Y\rho) \approx 0$ 

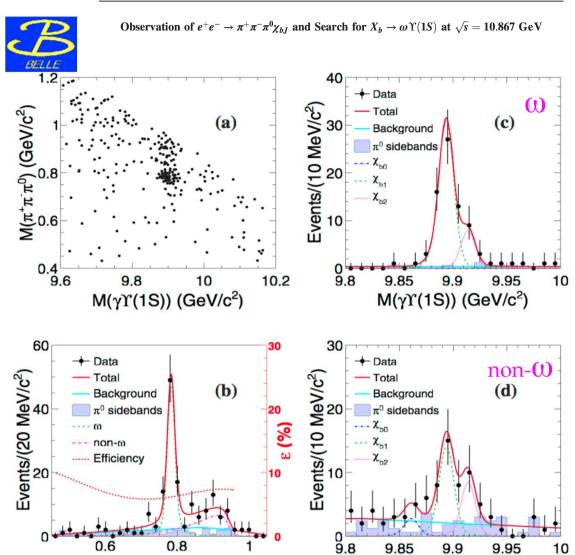
Belle has searched for  $X_b \rightarrow Y\omega$  in Y(5S) decays, as suggested in PRD91,014014 (2015)

## Observation of $\Upsilon(5S) \rightarrow \overline{\omega \chi_b(1P)}$

Sample=118 fb<sup>-1</sup> at Y(5S) peak  $\chi_{b\Sigma}$  decays to  $\gamma$ ee, $\gamma\mu\mu$ 

Significant  $3\pi$  contribution observed also from outside  $\omega$  peak, stronger at the  $\chi_{h2}$ 

| Mode                                             | $\sigma_B$ (pb)          | $\mathcal{B}$ (10 <sup>-3</sup> ) |
|--------------------------------------------------|--------------------------|-----------------------------------|
| $\pi^{+}\pi^{-}\pi^{0}\chi_{b0}$                 | < 3.1                    | < 6.3                             |
| $\pi^{+}\pi^{-}\pi^{0}\chi_{b1}$                 | $0.90 \pm 0.11 \pm 0.13$ | $1.85 \pm 0.23 \pm 0.23$          |
| $\pi^{+}\pi^{-}\pi^{0}\chi_{b2}$                 | $0.57 \pm 0.13 \pm 0.08$ | $1.17 \pm 0.27 \pm 0.14$          |
| $\omega \chi_{b0}$                               | < 1.9                    | < 3.9                             |
| $\omega \chi_{b1}$                               | $0.76 \pm 0.11 \pm 0.11$ | $1.57 \pm 0.22 \pm 0.21$          |
| $\omega \chi_{b2}$                               | $0.29 \pm 0.11 \pm 0.08$ | $0.60 \pm 0.23 \pm 0.15$          |
| $(\pi^+\pi^-\pi^0)_{\text{non-}\omega}\chi_{b0}$ | < 2.3                    | < 4.8                             |
| $(\pi^+\pi^-\pi^0)_{\text{non-}\omega}\chi_{b1}$ | $0.25 \pm 0.07 \pm 0.06$ | $0.52 \pm 0.15 \pm 0.11$          |
| $(\pi^+\pi^-\pi^0)_{\text{non-}\omega}\chi_{b2}$ | $0.30 \pm 0.11 \pm 0.14$ | $0.61 \pm 0.22 \pm 0.28$          |


The total contribution of  $\omega \chi_b(1P)$  to BR is 0.3%, comparable with the larger hadronic transitions to lower bottomonia

$$R = \frac{\sigma(e + e \rightarrow \omega \chi_{b2})}{\sigma(e + e \rightarrow \omega \chi_{b1})} = 0.38 \pm 0.16(stat.) \pm 0.09(syst.)$$

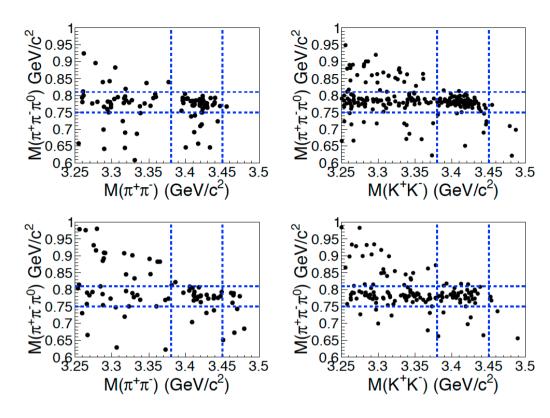
$$R = \frac{\sigma(e + e - \to (\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b2})}{\sigma(e + e - \to (\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b1})} = 1.20 \pm 0.55(stat.) \pm 0.65(syst.)$$

PRL 113,142001(2014)

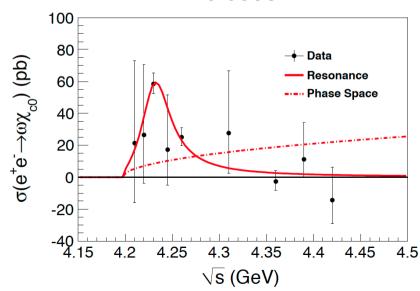
PRL 113, 142001 (2014) PHYSICAL REVIEW LETTERS



 $M(\pi^+\pi^-\pi^0)$  (GeV/c<sup>2</sup>)


 $M(\gamma \Upsilon(1S))$  (GeV/c<sup>2</sup>)

# The ω transitions in charmonium


BES-III study

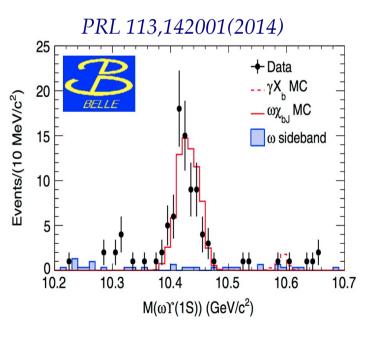
ArXiV:1410.6538

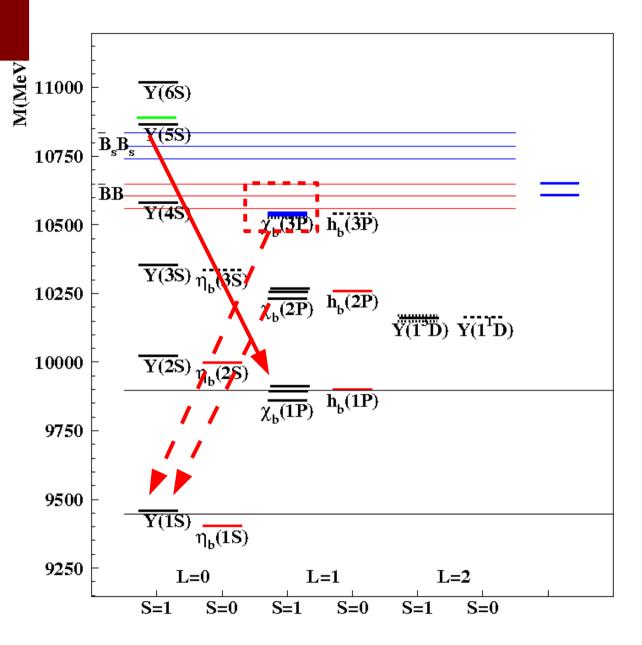
$$e^+e^- \rightarrow \omega \chi_{c0}$$
With  $\chi_{c0} \rightarrow KK$ ,  $\pi\pi$ 



ArXiV:1410.6538




## Search for X<sub>b</sub> at Belle


No evidence of a signal of  $X_b$  is observed in the region between 10.5 and 10.6: the broad peak at 10.4 is actually a reflection from the  $\omega \chi_b(1P)$  transition.

Also, no evidence of radiative transitions to  $\chi_{h}(2P)$ .

Upper limits:

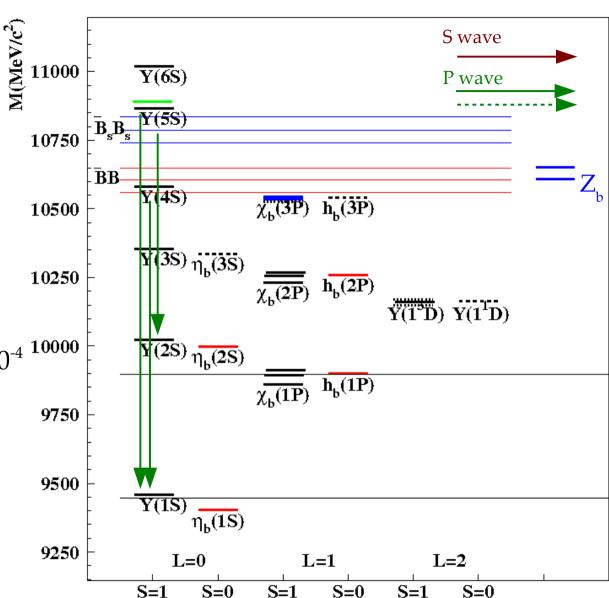
$$BR(\Upsilon(5S) \to X_b)BR(X_b \to \gamma \Upsilon(1,2S)) < 2.9*10^{-5}$$





Analysis of  $\omega Y(1S)$  transitions on Y(4S) dataset is under way. Results will be available soon

## The $\eta$ transitions


In 2008, Babar found out that transitions from Y(4S) to Y(1S) are MORE INTENSE than  $\pi\pi$  transitions.

#### Babar PRD78,112002 (2008) B(Y(4S) $\rightarrow \eta Y(1S)$ ) = $(1.96\pm0.06\pm0.09) \times 10^{-4}$ = $2.5 \times B(Y(4S) \rightarrow \pi\pi Y(1S))$

#### Belle (preliminary)

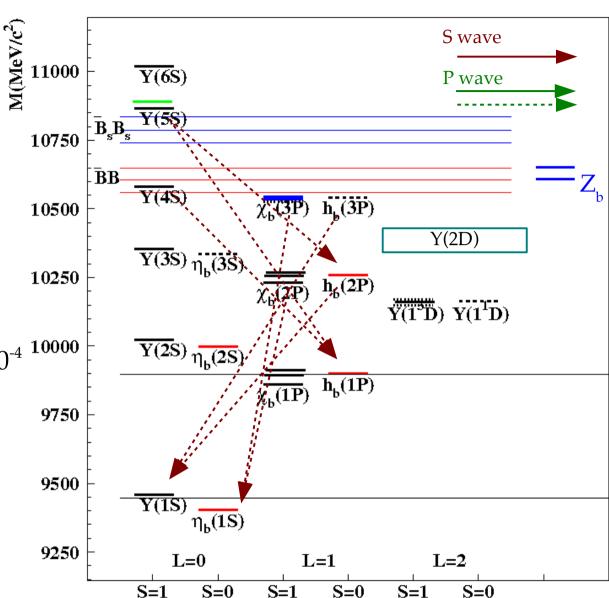
$$\begin{split} B(\Upsilon(5S) &\to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4} \\ &= 0.25 \times B(\Upsilon(5S) \to \pi\pi\Upsilon(1S)) \\ B(\Upsilon(5S) &\to \eta \Upsilon(2S)) = (38 \pm 4 \pm 5) \times 10^{-4} \\ &= B(\Upsilon(5S) \to \pi\pi\Upsilon(2S)) \end{split}$$

All measured η transitions are P-wave.



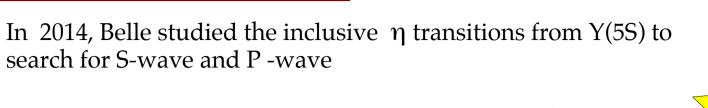
## The η transitions

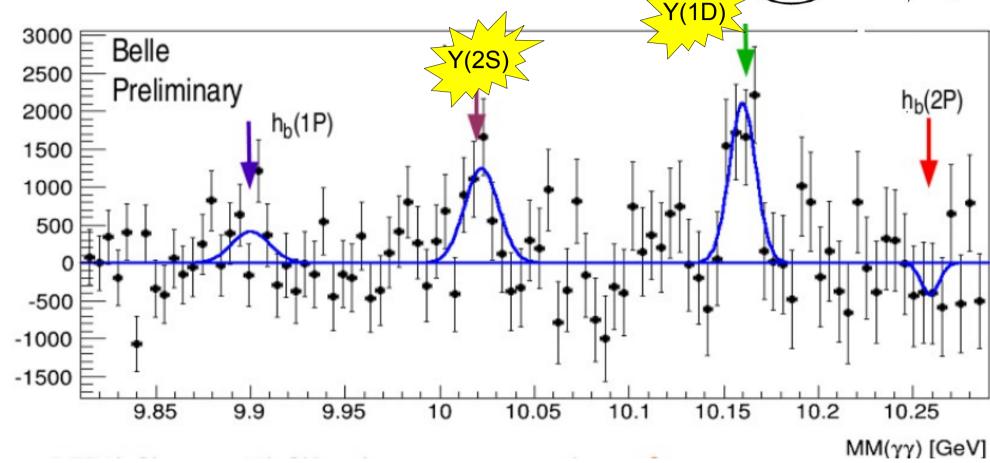
In 2008, Babar found out that transitions from Y(4S) to Y(1S) are MORE INTENSE than  $\pi\pi$  transitions.


Babar PRD78,112002 (2008)  
B(Y(4S) 
$$\rightarrow \eta Y(1S)$$
)  
= (1.96±0.06±0.09)× 10<sup>-4</sup>  
= 2.5 x B(Y(4S)  $\rightarrow \pi\pi Y(1S)$ )

#### Belle (preliminary)

$$\begin{split} B(\Upsilon(5S) &\to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4} \\ &= 0.25 \times B(\Upsilon(5S) \to \pi\pi\Upsilon(1S)) \\ B(\Upsilon(5S) &\to \eta \Upsilon(2S)) = (38 \pm 4 \pm 5) \times 10^{-4} \\ &= B(\Upsilon(5S) \to \pi\pi\Upsilon(2S)) \end{split}$$


All measured  $\eta$  transitions are P-wave.


Why S-wave transitions are not observed?



## The η transitions

Residual / 5 MeV





$$B(\Upsilon(5S) \to \eta \Upsilon(1D)) = (28\pm7\pm4) \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (21 \pm 7 \pm 3) \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta h_{h}(2P)) < 37 \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta h_h(1P)) < 33 \times 10^{-4}$$

Reconstructed

hadrons

part

## The η transitions

Then, the search for inclusive transitions was extended to Y(4S)

Babar PRD78,112002 (2008) B(Y(4S)  $\rightarrow \eta Y(1S)$ ) =  $(1.96\pm0.06\pm0.09) \times 10^{-4}$ =  $2.5 \times B(Y(4S) \rightarrow \pi\pi Y(1S))$ 

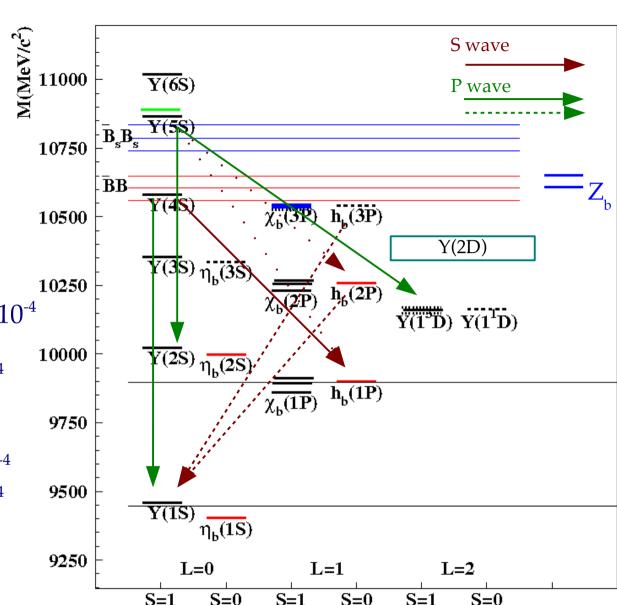
#### Belle exclusive analysis:

$$B(\Upsilon(5S) \to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4}$$

$$= 0.25 \times B(\Upsilon(5S) \to \pi\pi\Upsilon(1S))$$

$$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (38\pm 4\pm 5) \times 10^{-4}$$

 $= B(\Upsilon(5S) \to \pi\pi\Upsilon(2S))$ 


#### Belle inclusive analysis:

$$B(\Upsilon(5S) \to \eta \Upsilon(1D)) = (28 \pm 7 \pm 4) \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (21\pm7\pm3) \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta h_{_{h}}(2P)) < 37 \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta h_b(1P)) < 33 \times 10^{-4}$$



## The largest Y(4S) transition to lower states !!!

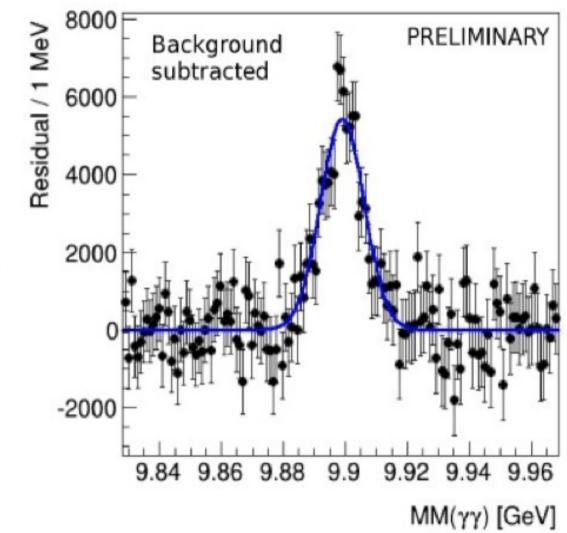
Then, the search for inclusive transitions was extended to Y(4S)

Babar PRD78,112002 (2008) B(Y(4S)  $\rightarrow \eta Y(1S)$ ) =  $(1.96\pm0.06\pm0.09) \times 10^{-4}$ =  $2.5 \times B(Y(4S) \rightarrow \pi\pi Y(1S))$ 

#### Belle exclusive analysis:

$$B(\Upsilon(5S) \to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4}$$
  
= 0.25 x B(\U00a8(5S) \to \pi\pi\U00a8(1S))

$$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (38\pm 4\pm 5) \times 10^{-4}$$
  
=  $B(\Upsilon(5S) \to \pi\pi \Upsilon(2S))$ 

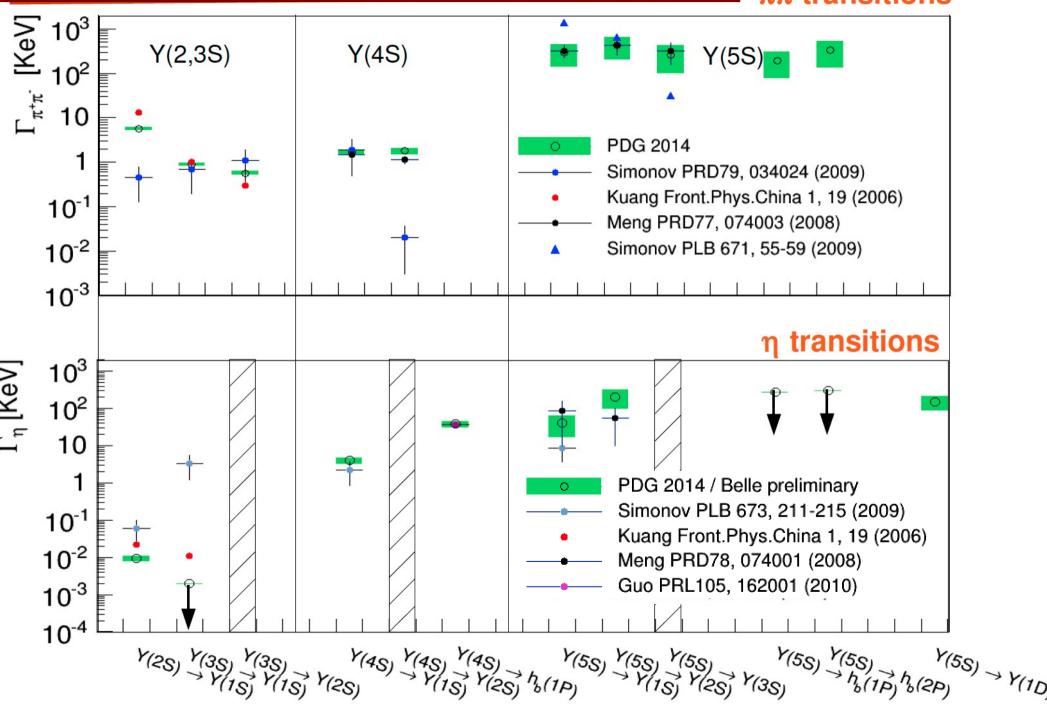

#### Belle inclusive analysis:

$$B(\Upsilon(5S) \rightarrow \eta \Upsilon(1D)) = (28 \pm 7 \pm 4) \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (21 \pm 7 \pm 3) \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta h_b(2P)) < 37 \times 10^{-4}$$

$$B(\Upsilon(5S) \to \eta h_b(1P)) < 33 \times 10^{-4}$$



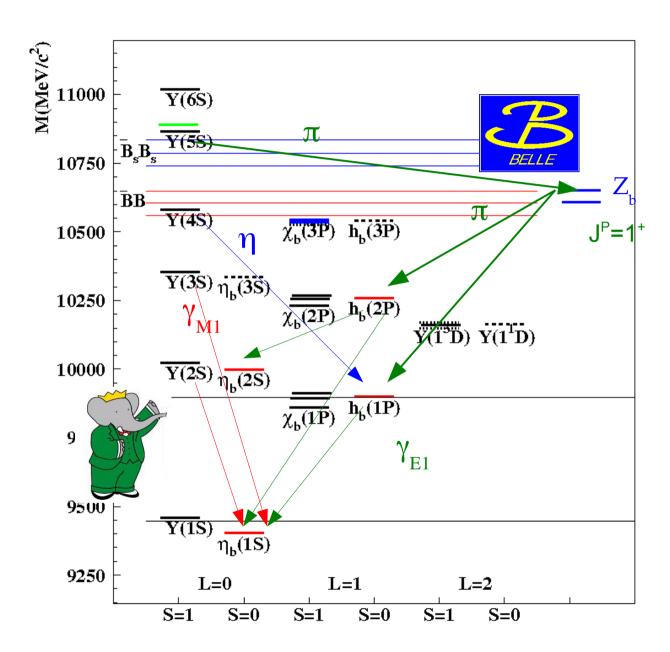

$$B(\Upsilon(4S) \to \eta h_b(1P)) = (18.3 \pm 1.6 \pm 1.7) \times 10^{-4} > 9xB(\Upsilon(4S) \to \eta \Upsilon(1S))$$

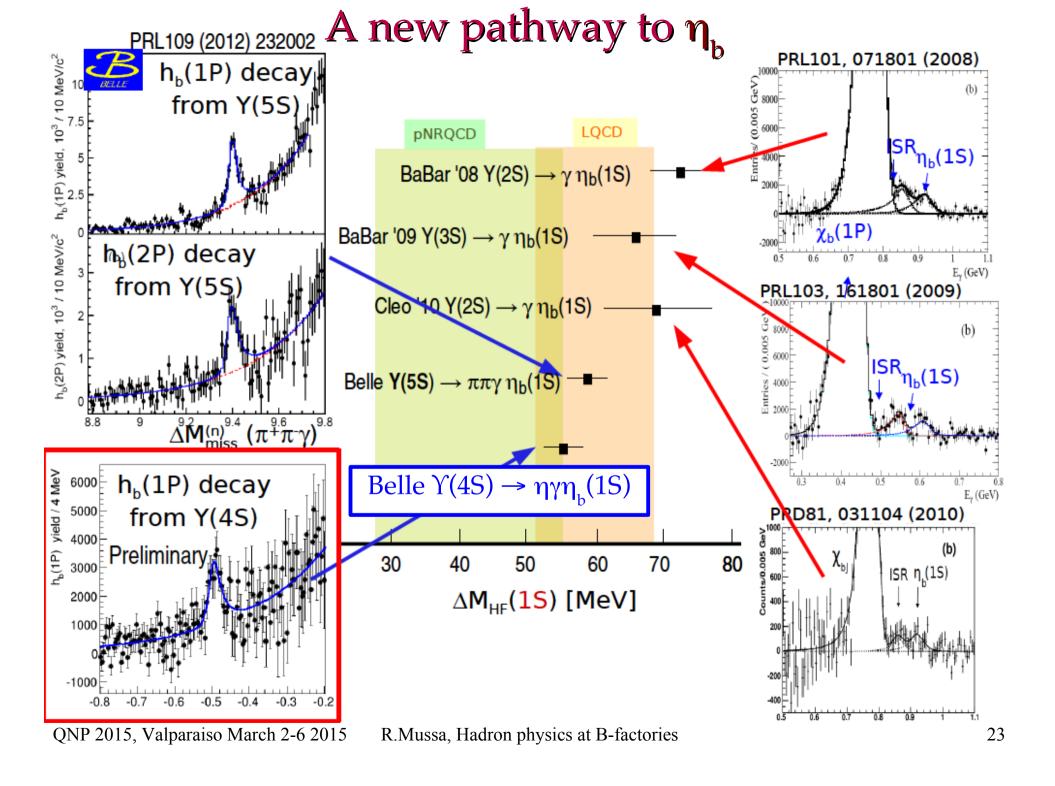
Only one theory prediction: Guo et al, PRL105,162001(2010):  $\sim 10^{-3}$ 

### The $\pi\pi/\eta$ transitions: TH vs EXP

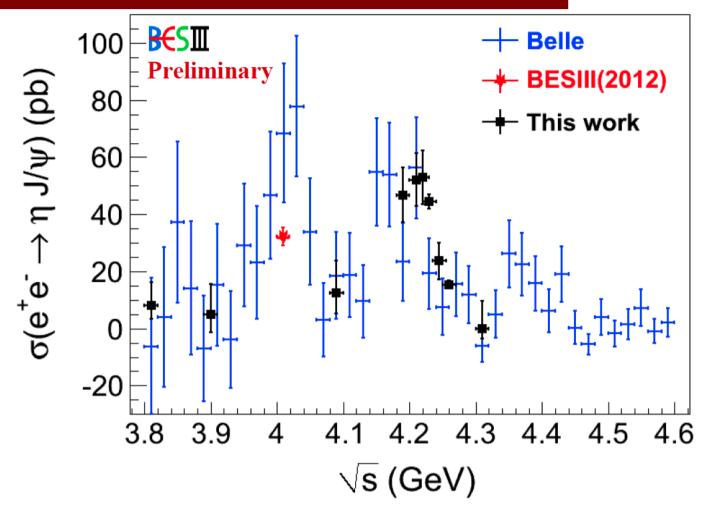
 $\pi\pi$  transitions




## A new pathway to η<sub>b</sub>


5 amazing years for bottomonium spectroscopy:

- 2008 Discovery of  $\eta_b$  (Babar) via M1 transitions from Y(2,3S)
- 2011-2:Discovery of the triple cascade (Belle): **Y(5S)** → **P** → **P**


 $Y(\overline{5}S) \rightarrow Z_b \rightarrow h_b \rightarrow \eta_b$ 

- 2014: Discovery of the  $Y(4S) \rightarrow \eta h_b$  transition (Belle)





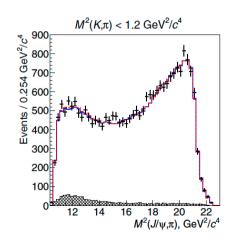
## The η transitions in charmonium

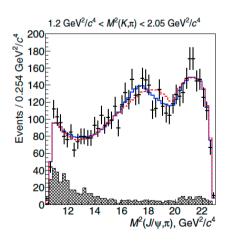


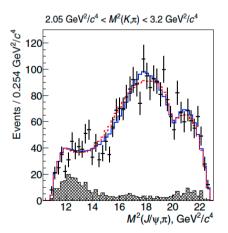
- good agreement with previous results and more precise
- cross sections peaks at ~ 4.2 GeV
- higher energy points' analysis on going

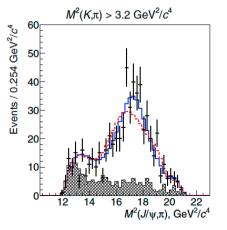
### A new $Z_{c}$ from Belle

PRD 90, 112009 (2014)


$$Z^{\pm}$$
 (4200)  $\rightarrow \psi \pi^{\pm}$ 


- Search in  $B^0 \to J/\psi K^+\pi^-$
- 4D amplitude analysis for  $(M_{K\pi}^2,~M_{J/\psi\pi}^2,~\theta_{J/\psi},~\phi)$
- decay model includes 10 states of  $K^*$  ( $K_0^*(800)$ ,  $K^*(892)$ ,  $K^*(1410)$ ,  $K_0^*(1430)$ ,  $K_2^*(1430)$ ,  $K^*(1680)$ ,  $K_3^*(1780)$ ,  $K_0^*(1950)$ ,  $K_2^*(1980)$ ,  $K_4^*(2045)$ ) and  $Z_c(4430)^+$ 
  - $\Rightarrow$  new decay channel  $Z_c(4430)^+ \rightarrow J/\psi \pi^+$
- and a search with additional  $Z_c^+$


$$^{\dagger}_{O}$$
 22  $^{\dagger}_{O}$  20  $^{\dagger}_{O}$  18  $^{\dagger}_{O}$  16  $^{\dagger}_{O}$  12  $^{\dagger}_{O}$  17  $^{\dagger}_{O}$  17  $^{\dagger}_{O}$  18  $^{\dagger}_{O}$  17  $^{\dagger}_{O}$  18  $^{\dagger}_{O}$  18  $^{\dagger}_{O}$  19  $^{\dagger}_{O}$  19  $^{\dagger}_{O}$  10  $^{\dagger}_{O}$  11  $^{\dagger}_{O}$  10  $^{\dagger}_{O}$  11  $^{\dagger}_{O}$  12  $^{\dagger}_{O}$  12  $^{\dagger}_{O}$  13  $^{\dagger}_{O}$  13  $^{\dagger}_{O}$  15  $^{\dagger}_{O}$  15


$$J^{P}=1^{+}$$
, sig=6.2  $\sigma$ 

$$M = 4196^{+31+17}_{-29-13} \text{ MeV}/c^2, \ \Gamma = 370^{+70+70}_{-70-132} \text{ MeV}$$







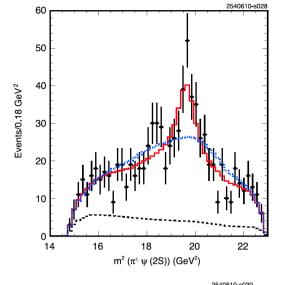


QNP 2015, Valparaiso March 2-6 2015

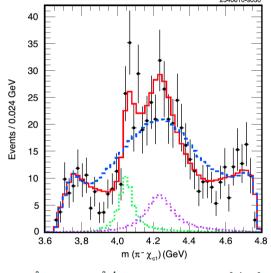
R.Mussa, Hadron physics at B-factories

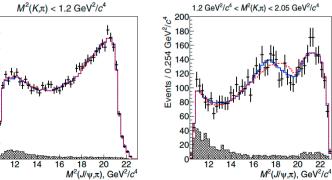
## $Z_c$ 's in B decays

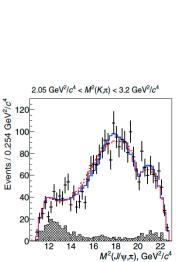
-  $Z_c(4430)$  →  $\psi$   $\pi$ Belle:PRL 100(2008)142001 LHB:PRL 112(2014)222002


$$-Z_{c}(4050) \to \chi_{c1}\pi$$
  
 $-Z_{c}(4250) \to \chi_{c1}\pi$ 

Belle:PRD 78, 072004(2008)

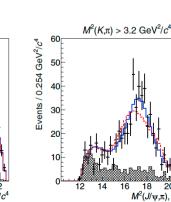

 $-Z_{c}(4200) \rightarrow \psi \pi$  *PRD 90, 112009 (2014)* 


QNP 2015, Valparaiso March 2


300



Candidates /  $(0.2 \, \text{GeV}^2)$ 








**LHCb** 

 $200 - 1.0 < m_{K^+\pi^-}^2 < 1.8 \text{ GeV}^2$ 

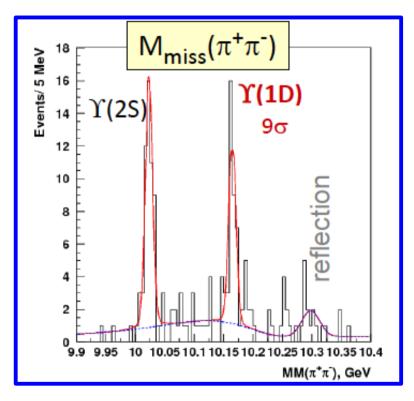


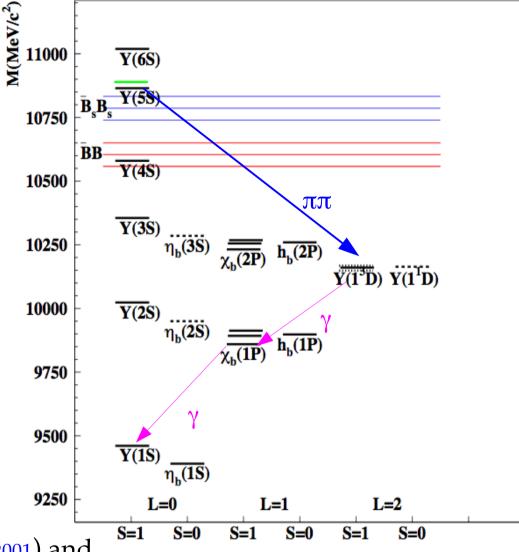
 $m_{\psi^\prime\pi^-}^2 [GeV^2]$ 

20

18

| $Z_{c}(3900)^{\pm}$ | 3899.0±3.6 ±4.9                                                      | 46±10 ±20                                                         | $\pi^{\pm}J/\psi$                   | $e^+e^-{\longrightarrow}\pi^+\pi^-J^/\psi$                                  |
|---------------------|----------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------|
| $Z_{c}(3900)^{0}$   | 3894.8±2.3±2.7                                                       | 29.6±8.2±8.2                                                      | $\pi^0 J/\psi$                      | $e^+e^-{\longrightarrow}\pi^0\pi^0J^/\psi$                                  |
| $Z_{c}(3885)^{\pm}$ | 3883.9±1.5±4.2<br>[single D tag]<br>3884.3±1.2±1.5<br>[double D tag] | 24.8±3.3±11.0<br>[single D tag]<br>23.8±2.1±2.6<br>[double D tag] | D-D*0                               | $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ $e^+e^- \rightarrow \pi^+ D^- D^{*0}$ |
| $Z_{c}(4020)^{\pm}$ | 4022.9±0.8 ±2.7                                                      | $7.9\pm2.7\pm2.6$                                                 | $\pi^{\pm}h_{c}$                    | $e^+e^-{\longrightarrow}\pi^+\pi^-h_c$                                      |
| $Z_c(4020)^0$       | 4023.9±2.2 ±3.8                                                      | fixed                                                             | $\pi^0 \mathbf{h}_{\mathrm{c}}$     | $e^+e^-{\longrightarrow}\pi^0\pi^0h_c$                                      |
| $Z_{c}(4025)^{\pm}$ | 4026.3±2.6±3.7                                                       | 24.8±5.6±7.7                                                      | <b>D</b> * <sup>0</sup> <b>D</b> *- | $e^+e^-{ ightarrow}\pi^+(D^*\stackrel{-}{D}^*)^-$                           |


Belle results


$$Z_c(4050)^{\pm}$$
  $4051^{+24}_{-40}$   $82^{+50}_{-28}$   $\pi^{\pm}\chi_{c1}$  B decays  $Z_c(4200)^{\pm}$   $4196^{+31}_{-29-13}^{+17}$   $370^{+70}_{-70-132}^{+70}$   $\pi^{\pm}J/\psi$  B decays  $Z_c(4250)^{\pm}$   $4248^{+190}_{-50}$   $177^{+320}_{-70}$   $\pi^{\pm}\chi_{c1}$  B decays  $Z_c(4430)^{\pm}$   $4485^{+40}_{-25}$   $200^{+50}_{-60}$   $\pi^{\pm}\psi'$  B decays

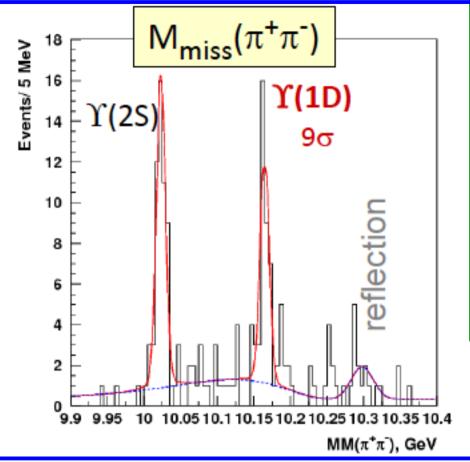
### Bottomonium D waves

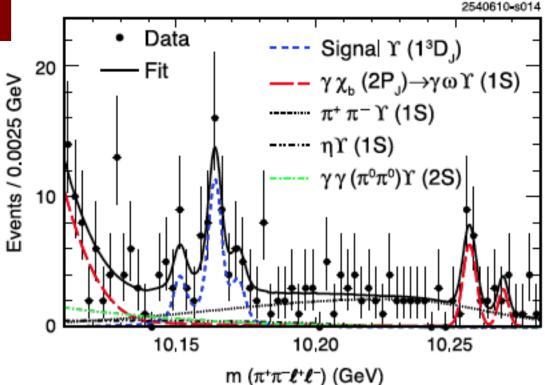
First observations from Y(3S): CLEO *PRD70,03200 (2010)* 

BABAR PRD82,111102 (2010)






Belle observes 1D both inclusively (PRL108,032001) and exclusively (Proc.EPS-HEP 2013) from Y(5S). Assuming that:


- the J=1,2,3 state is produced with ratios 3:5:7,
- $B(1^3D_J \rightarrow \gamma \ 1^3P_{J'})$  from Kwong, Rosner PRD 38, 279 (1998)
- B(1<sup>3</sup>P<sub>J</sub> $\rightarrow \gamma$  Y(1S)) from measured values (PDG)

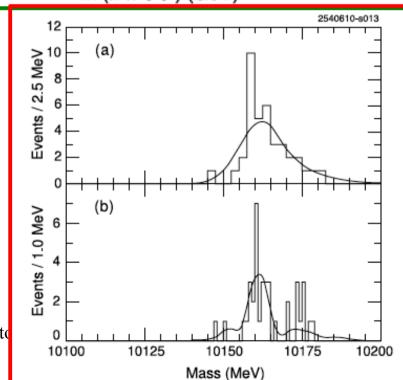
Belle obtains the production rate of Y(1D): J=1 2 3 10%: 49%: 41%

Neglecting the J=1, Belle fits with double gaussian to obtain the upper limit  $M(^3D_3)-M(^3D_2)<10$  MeV

### Bottomonium D waves

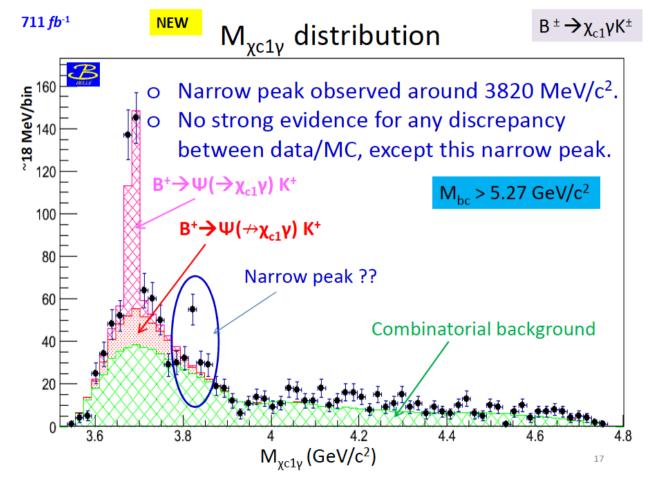




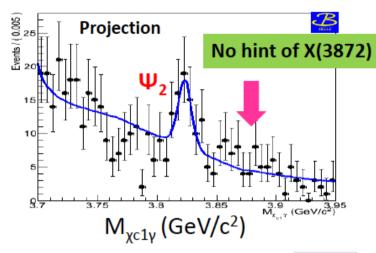

Belle  $10164.7 \pm 1.4 \pm 1.0 \text{ MeV}$ 

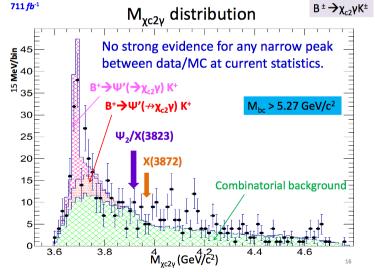
BaBar  $10164.5 \pm 0.8 \pm 0.5$  MeV

CLEO  $10161.1 \pm 0.6 \pm 1.6 \text{ MeV}$ 


Stay tuned on more Belle results on Y(1D)

QNP 2015, Valparaiso March 2-6 2015 R.Mussa, Hadron physics at B-factor

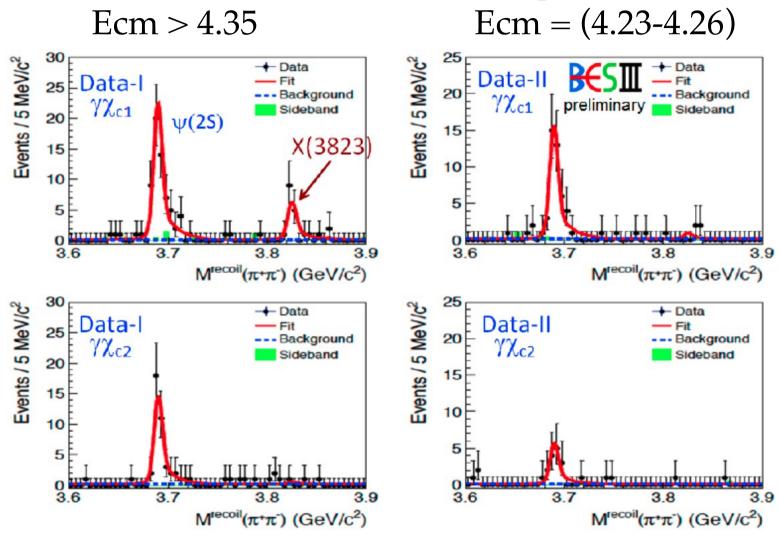




### Charmonium D waves

Evidence (3.8  $\sigma$ ) of the  $^3D_2$  state of charmonium, in B decays!  $M(^3D_2) = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV}/c^2$ 



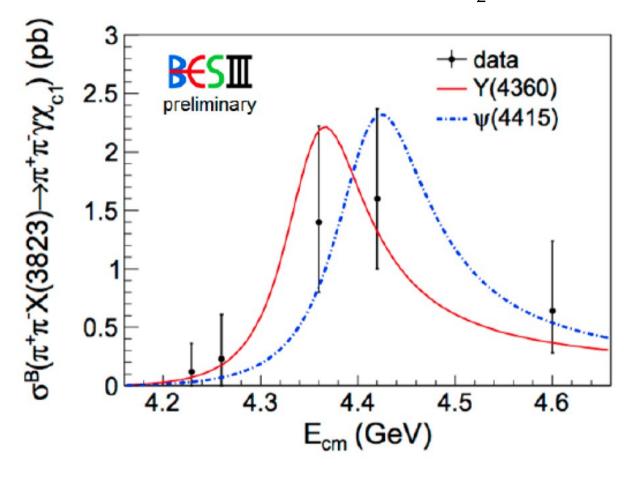
#### X(3872) yield : -0.9±5.1 events





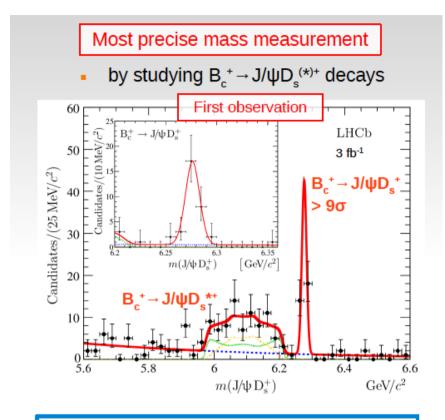

QNP 2015, Valparaiso March 2-6 2015

### Charmonium D waves


Exclusive evidence of  $e^+e^- \rightarrow \pi^+\pi^2\psi'$ ,  $\pi^+\pi^2\psi(1^3D_2)$  at BES-III



Analogy with Y(5S) transitions to Y(1D) and Y(2S)?


### Charmonium D waves

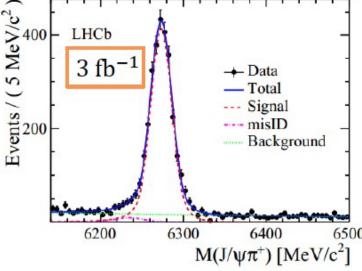
Exclusive evidence of  $e^+e^- \rightarrow \pi^+\pi^2\psi'$ ,  $\pi^+\pi^2\psi(1^3D_2)$  at BES-III



 $\Psi(4415)$  or  $\Upsilon(4360)$ ? Need more statistics

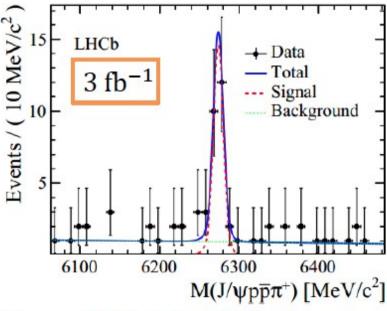
## Bc spectroscopy



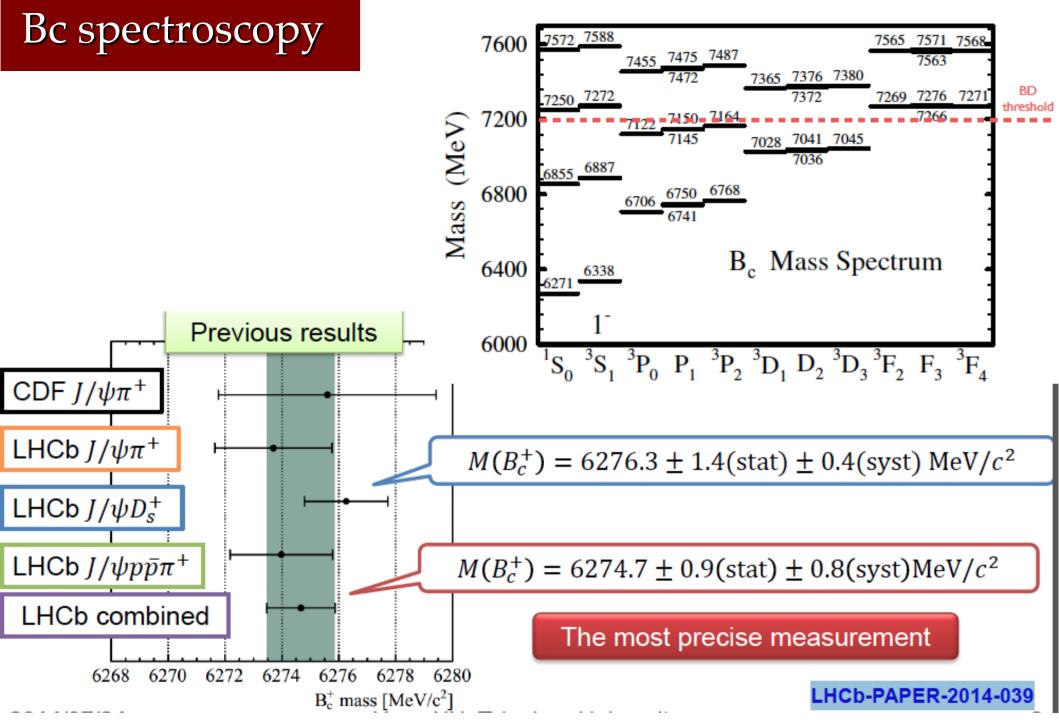

$$m_{B_c^*} = 6276.28 \pm 1.44 (stat) \pm 0.36 (syst) MeV/c^2$$

LHCb, 3 fb<sup>-1</sup>, PRD 87 (2013) 112012

In agreement with world average:  $m(B_c^+) = 6274.5 \pm 1.8 \text{ MeV/c}^2$ 


Polyakov Ivan, Moriond QCD, 24 March 2014





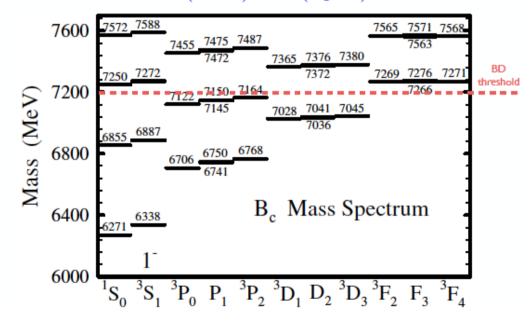

$$N_{\rm sig} = 2835 \pm 58$$

First decay to baryons



$$N_{\rm sig} = 23.9 \pm 5.3 \ (7.3 \ \sigma)$$

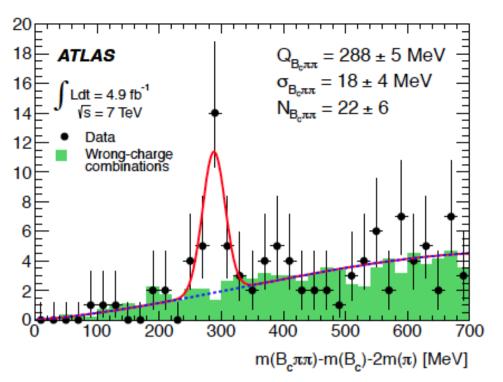


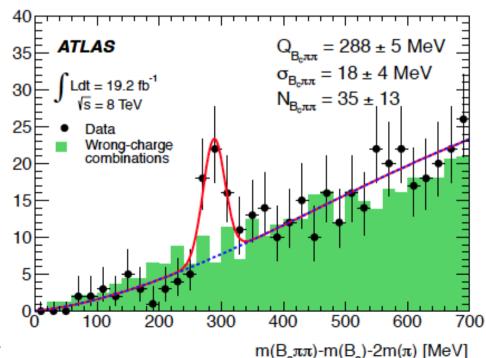

## First observation of B<sub>c</sub>(2S)

ATLAS detects the Bc decaying to  $J/\psi\pi$  mode Significance (7+8 TeV data) :5.2 sigma

Can be a combination of two transitions:

B<sub>c</sub>(2<sup>1</sup>S<sub>0</sub>) 
$$\rightarrow$$
 B<sub>c</sub>(1<sup>1</sup>S<sub>0</sub>)ππ;  
B<sub>c</sub>(2<sup>3</sup>S<sub>1</sub>)  $\rightarrow$  B<sub>c</sub>(1<sup>1</sup>S<sub>0</sub>)ππ+(γ)<sub>not seen</sub>;  
Q = 288.3 ± 3.5(stat) ± 4.1(syst)


$$6841 \pm 4(stat) \pm 5(syst) MeV$$




#### Not confirmed (yet?) by CMS and LHCB

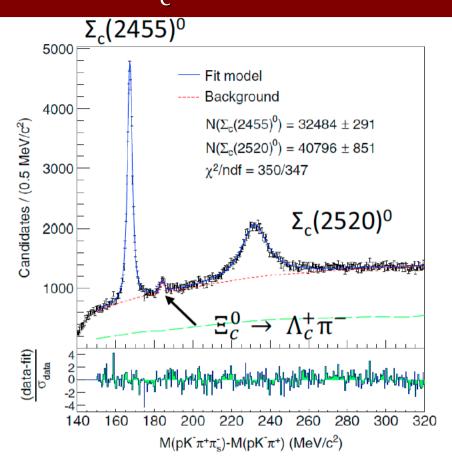
QNP 2015, Valparaiso March 2-6 2015

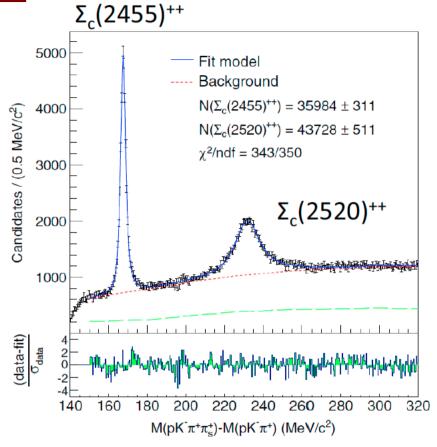
R.Mussa, Hadron phys





More results on B\*\* at LHCB (ArXiV: 1502.02638): Williams in Tuesday Parallel Session


## **Heavy Baryons**


# Discovery of $\Xi_b$ $\Lambda_c$ excited states

| Notation          | Quark     | $J^{P}$   | SU(3) | $(I, I_3)$  | S  | В |
|-------------------|-----------|-----------|-------|-------------|----|---|
|                   | content   |           |       |             |    |   |
| $\Lambda_b$       | b[ud]     | $1/2^{+}$ | 3*    | (0, 0)      | 0  | 1 |
| $\Xi_b^0$         | b[su]     | $1/2^{+}$ | 3*    | (1/2, 1/2)  | -1 | 1 |
| $\Xi_b^-$         | b[sd]     | $1/2^{+}$ | 3*    | (1/2, -1/2) | -1 | 1 |
| $\Sigma_b^+$      | buu       | $1/2^{+}$ | 6     | (1, 1)      | 0  | 1 |
| $\Sigma_b^0$      | $b\{ud\}$ | $1/2^{+}$ | 6     | (1, 0)      | 0  | 1 |
| $\Sigma_b^-$      | bdd       | $1/2^{+}$ | 6     | (1, -1)     | 0  | 1 |
| $\Xi_b^{0'}$      | $b\{su\}$ | $1/2^{+}$ | 6     | (1/2, 1/2)  | -1 | 1 |
| $\Xi_b^{-\prime}$ | $b\{sd\}$ | $1/2^{+}$ | 6     | (1/2, -1/2) | -1 | 1 |
| $\Omega_b^-$      | bss       | $1/2^{+}$ | 6     | (0, 0)      | -2 | 1 |
| $\Sigma_b^{*+}$   | buu       | $3/2^{+}$ | 6     | (1, 1)      | 0  | 1 |
| $\Sigma_b^{*0}$   | bud       | $3/2^{+}$ | 6     | (1, 0)      | 0  | 1 |
| $\Sigma_b^{*-}$   | bdd       | $3/2^{+}$ | 6     | (1, -1)     | 0  | 1 |
| $\Xi_b^{*0}$      | bus       | $3/2^{+}$ | 6     | (1/2, 1/2)  | -1 | 1 |
| $\Xi_b^{*-}$      | bds       | $3/2^{+}$ | 6     | (1/2, -1/2) | -1 | 1 |
| $\Omega_b^{*-}$   | bss       | $3/2^{+}$ | 6     | (0, 0)      | -2 | 1 |

## Precise $\Sigma^{(*)}$ masses at Belle

PRD 89, 091102(R) (2014)

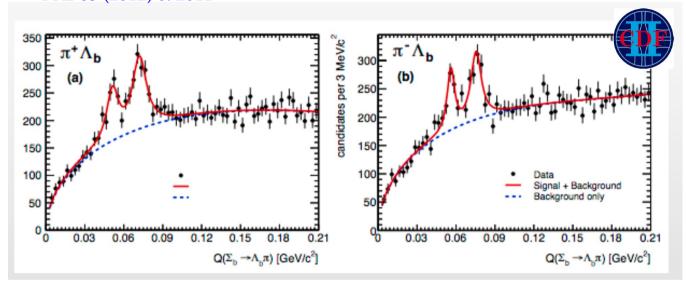




|                       | $\Delta M_0$ ( MeV/ $c^2$ ) | $\Gamma$ ( MeV/ $c^2$ )          | $M_0$ ( MeV/ $c^2$ )                 |
|-----------------------|-----------------------------|----------------------------------|--------------------------------------|
| $\Sigma_c(2455)^0$    | $167.29 \pm 0.01 \pm 0.02$  | $1.76 \pm 0.04^{+0.09}_{-0.21}$  | $2453.75 \pm 0.01 \pm 0.02 \pm 0.14$ |
| $\Sigma_c(2455)^{++}$ | $167.51 \pm 0.01 \pm 0.02$  | $1.84 \pm 0.04^{+0.07}_{-0.20}$  | $2453.97 \pm 0.01 \pm 0.02 \pm 0.14$ |
| $\Sigma_c(2520)^0$    | $231.98 \pm 0.11 \pm 0.04$  | $15.41 \pm 0.41^{+0.20}_{-0.32}$ | $2518.44 \pm 0.11 \pm 0.04 \pm 0.14$ |
| $\Sigma_c(2520)^{++}$ | $231.99 \pm 0.10 \pm 0.02$  | $14.77 \pm 0.25^{+0.18}_{-0.30}$ | $2518.45 \pm 0.10 \pm 0.02 \pm 0.14$ |

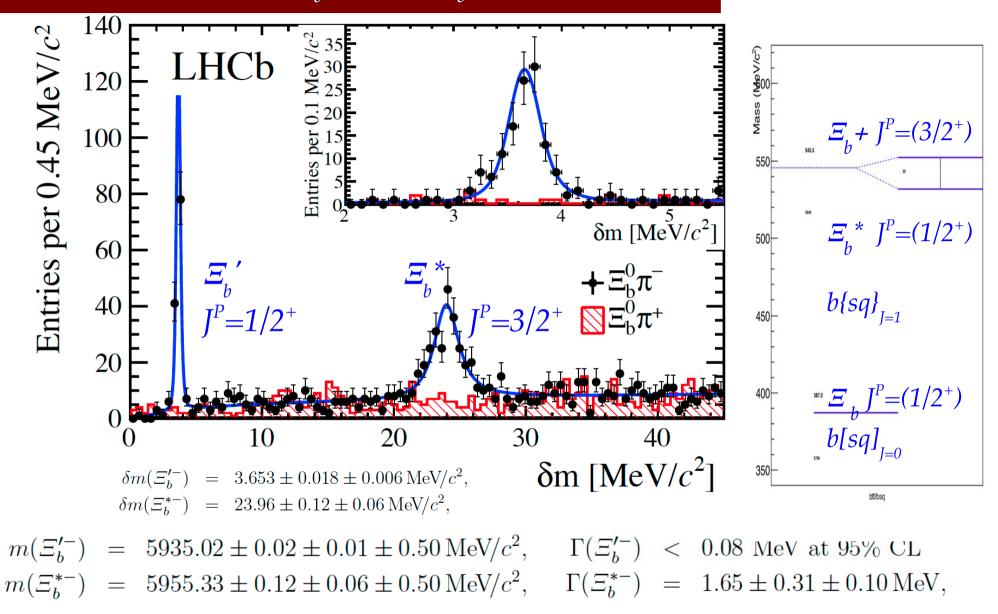
(\*) the mass of  $\Sigma^{(*)+}_{c}$ , which decay to  $\Lambda_{c}\pi^{0}$ , was last measured by CLEO in 2001.

# Search for $\Sigma^{(*)}_{b0}$ at LHCb


$$\sum_{b0}^{(\star)} = b\{ud\}_{J=1}$$

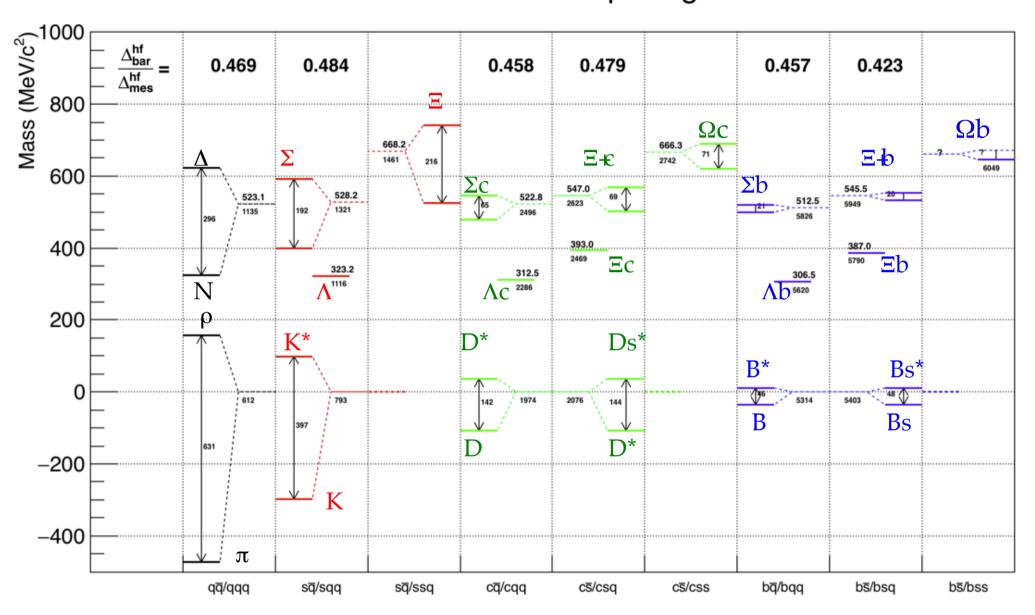
LHCb is challenged to make the first observation of the neutral state, which decays to  $\Lambda_b \pi^0$ , and is much harder to detect.

#### Stay tuned!

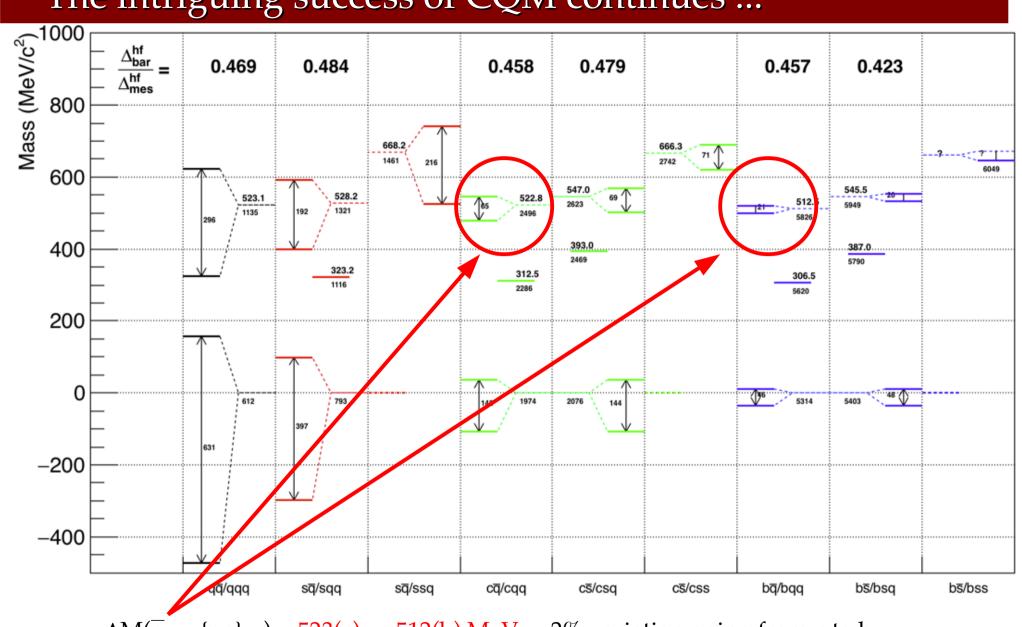

| Notation          | Quark     | $J^P$     | SU(3) | $(I, I_3)$  | S  | В |
|-------------------|-----------|-----------|-------|-------------|----|---|
|                   | content   |           |       |             |    |   |
| $\Lambda_b$       | b[ud]     | $1/2^{+}$ | 3*    | (0, 0)      | 0  | 1 |
| $\Xi_b^0$         | b[su]     | $1/2^{+}$ | 3*    | (1/2, 1/2)  | -1 | 1 |
| $\Xi_b^-$         | b[sd]     | $1/2^{+}$ | 3*    | (1/2, -1/2) | -1 | 1 |
| $\Sigma_b^+$      | buu       | $1/2^{+}$ | 6     | (1, 1)      | 0  | 1 |
| $\Sigma_b^0$      | $b\{ud\}$ | $1/2^{+}$ | 6     | (1, 0)      | 0  | 1 |
| $\Sigma_b^-$      | bdd       | $1/2^{+}$ | 6     | (1, -1)     | 0  | 1 |
| $\Xi_b^{0'}$      | $b\{su\}$ | $1/2^{+}$ | 6     | (1/2, 1/2)  | -1 | 1 |
| $\Xi_b^{-\prime}$ | $b\{sd\}$ | $1/2^{+}$ | 6     | (1/2, -1/2) | -1 | 1 |
| $\Omega_b^-$      | bss       | $1/2^{+}$ | 6     | (0, 0)      | -2 | 1 |
| $\Sigma_b^{*+}$   | buu       | $3/2^{+}$ | 6     | (1, 1)      | 0  | 1 |
| $\Sigma_b^{*0}$   | bud       | $3/2^{+}$ | 6     | (1, 0)      | 0  | 1 |
| $\Sigma_b^{*-}$   | bdd       | $3/2^{+}$ | 6     | (1, -1)     | 0  | 1 |
| $\Xi_b^{*0}$      | bus       | $3/2^{+}$ | 6     | (1/2, 1/2)  | -1 | 1 |
| $\Xi_b^{*-}$      | bds       | $3/2^{+}$ | 6     | (1/2, -1/2) | -1 | 1 |
| $\Omega_b^{*-}$   | bss       | $3/2^{+}$ | 6     | (0, 0)      | -2 | 1 |

Charged partners observed by CDF with 6fb<sup>-1</sup> at 2TeV PRD85 (2012) 092011



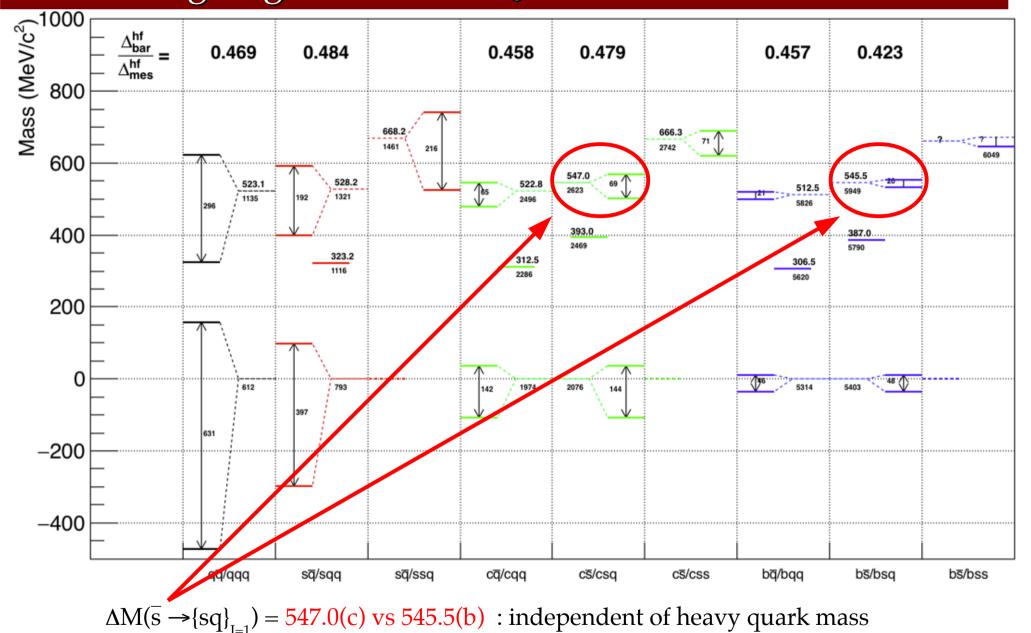

| State                                          | $Q$ value, MeV/ $c^2$                  | Absolute mass $m$ , MeV/ $c^2$ | Natural width $\Gamma$ , MeV/ $c^2$ |  |
|------------------------------------------------|----------------------------------------|--------------------------------|-------------------------------------|--|
| $\Sigma_b^-$                                   | $56.2{}^{+0.6}_{-0.5}{}^{+0.1}_{-0.4}$ | $5815.5^{+0.6}_{-0.5}\pm1.7$   | $4.9^{+3.1}_{-2.1}\pm1.1$           |  |
| $\varSigma_b^{*-}$                             | $75.8\pm 0.6^{+0.1}_{-0.6}$            | $5835.1\ \pm0.6^{+1.7}_{-1.8}$ | $7.5^{+2.2+0.9}_{-1.8-1.4}$         |  |
| $\varSigma_b^+$                                | $52.1{}^{+0.9}_{-0.8}{}^{+0.1}_{-0.4}$ | $5811.3^{+0.9}_{-0.8}\pm1.7$   | $9.7^{+3.8+1.2}_{-2.8-1.1}$         |  |
| $\varSigma_b^{*+}$                             | $72.8\pm 0.7^{+0.1}_{-0.6}$            | $5832.1\pm 0.7^{+1.7}_{-1.8}$  | $11.5_{-2.2-1.5}^{+2.7+1.0}$        |  |
|                                                |                                        | Isospin mass splitting, N      | ${ m MeV}/c^2$                      |  |
| $m(\varSigma_b^+) - m(\varSigma_b^-)$          | $-4.2^{+1.1}_{-1.0}\pm0.1$             |                                |                                     |  |
| $\frac{m(\Sigma_b^{*+}) - m(\Sigma_b^{*-})}{}$ | $-3.0^{+1.0}_{-0.9}\pm0.1$             |                                |                                     |  |

### Observation of $\Xi_{b}^{+}$ and $\Xi_{b}^{*}$




#### More details: talk by Williams in Tuesday Parallel Session

#### **Ground State Splittings**




### The intriguing success of CQM continues ...



 $\Delta M(\overline{q} \rightarrow \{qq\}_{I=1}) = 523(c) \text{ vs } 512(b) \text{ MeV } : -2\% \text{ variation going from c to b}$ 

### The intriguing success of CQM continues ...

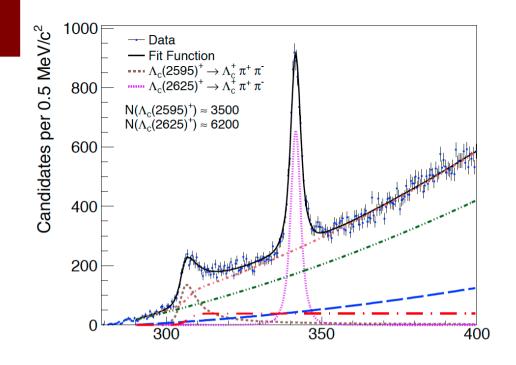


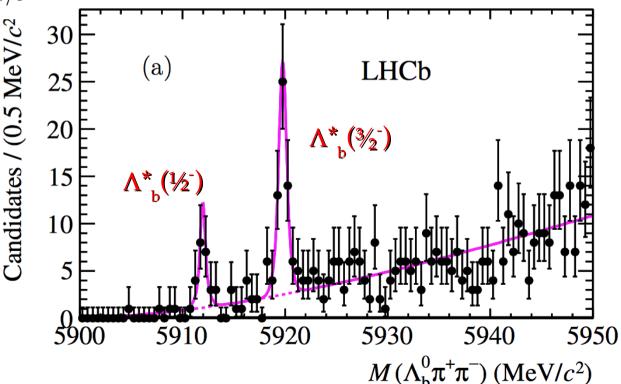
# P-wave baryons: $\Lambda_c^*$ , $\Lambda_b^*$

Λ\*:the result of CDF, PRD84,012003,
published in 2011, is still the best.
Neither Babar nor Belle updated it.
Λ\*:Bottom counterpart, observed by

LHCb with 1fb<sup>-1</sup> *PRL104*,172003(2012)

$$\Delta M_{A_h^{*0}(5912)} = 292.60 \pm 0.12 \text{(stat)} \pm 0.04 \text{(syst)} \text{ MeV}/c^2$$


$$\Delta M_{A_h^{*0}(5920)} = 300.40 \pm 0.08 \text{(stat)} \pm 0.04 \text{(syst)} \text{ MeV}/c^2$$


$$M_{\Lambda_h^{*0}(5912)} = 5911.97 \pm 0.12 \pm 0.02 \pm 0.66 \,\text{MeV}/c^2$$

$$M_{\Lambda_h^{*0}(5920)} = 5919.77 \pm 0.08 \pm 0.02 \pm 0.66 \,\text{MeV}/c^2$$

soon after, evidence of 5920 at CDF

Further studies underway with the larger samples at LHCb, to search for higher excitations.





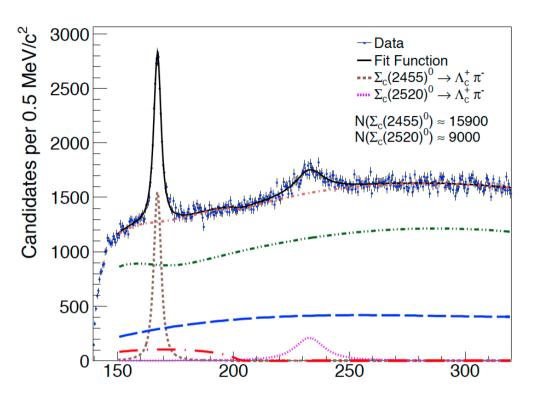
### Summary

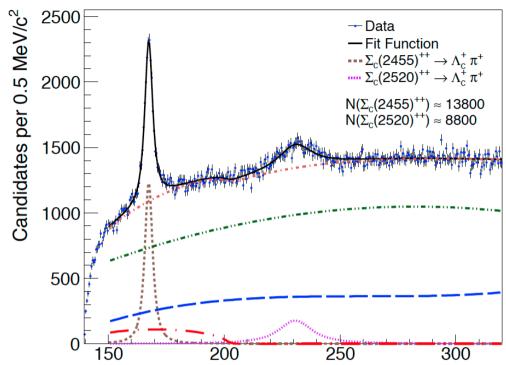
Bottomonium and Charmonium bound state spectroscopy is approaching completion: progress mainly on 1D and 3P states

Now it's time to study Bc excited states: go LHCb!

Close to thresholds, analogies and differences are puzzling:

- no X(3872) analogue in bottomonium
- Zb and Zc exhibit different BR patterns
- Upsilon(5S,6S) phenomenology is different from Y(4.26,4.36)


Since 2008, study of hadronic transitions between broad and narrow states have produced an amazing variety of results, but a unified pattern is still missing


Many interesting results from eta transitions in bottomonium, hopefully More results will come from charmonium

Heavy meson and baryon spectroscopy: LHC-b has just started to show its huge potential a plethora of results are still buried in Belle+Babar data, though

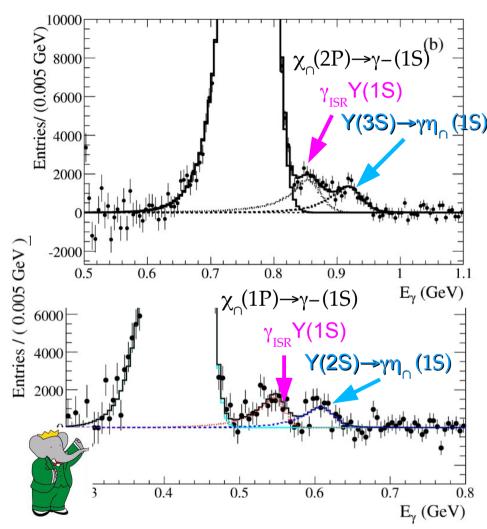
LHCB and Belle-II future data taking promise new and even more exciting results

### Charged $\Sigma_{c}$ splittings from CDF

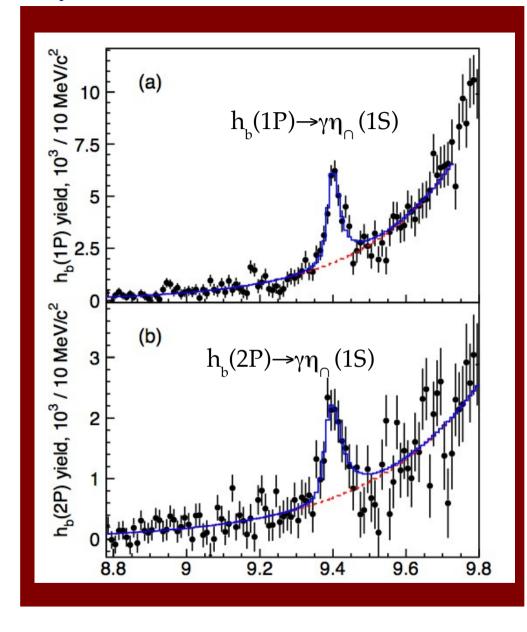




Superseded by:
Belle: PRD 89, 091102(R) (2014)


| Backup |  |
|--------|--|
|--------|--|

| Hadron                 | $M  [{ m MeV}/c^2  ]$       | $\Gamma \left[ \text{MeV}/c^2 \right]$ |
|------------------------|-----------------------------|----------------------------------------|
| $\Sigma_c(2455)^{++}$  | $2453.90 \pm 0.13 \pm 0.14$ | $2.34 \pm 0.47$                        |
| $\Sigma_{c}(2455)^{0}$ | $2453.74 \pm 0.12 \pm 0.14$ | $1.65 \pm 0.50$                        |
| $\Sigma_c(2520)^{++}$  | $2517.19 \pm 0.46 \pm 0.14$ | $15.03 \pm 2.52$                       |
| $\Sigma_{c}(2520)^{0}$ | $2519.34 \pm 0.58 \pm 0.14$ | $12.51 \pm 2.28$                       |
| $\Lambda_c(2595)^+$    | $2592.25 \pm 0.24 \pm 0.14$ | $h_2^2 = 0.36 \pm 0.08$                |
| $\Lambda_c(2625)^+$    | $2628.11 \pm 0.13 \pm 0.14$ | $<0.97\mathrm{at}$ 90% C.L.            |


# Rediscovery of $\eta_{\cap}$

#### Phys.Rev.Lett. 109 (2012) 232002

#### Babar 2008:

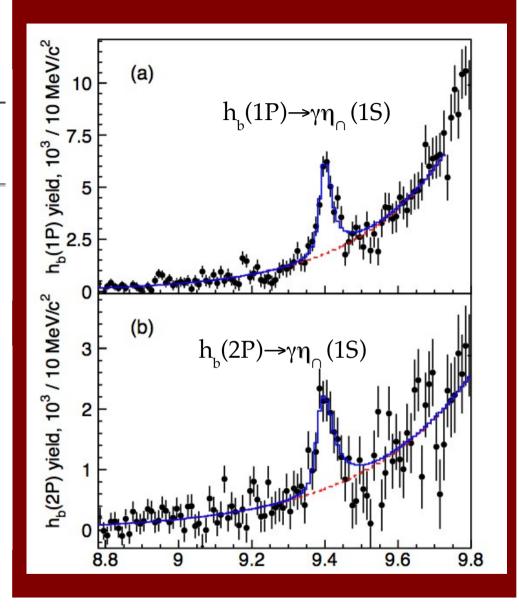


PRL 101,071801(2008) PRL 103,161801(2009)



### Belle results on $\eta_{\cap}(1\Delta)$

#### Phys.Rev.Lett. 109 (2012) 232002


### Yields from Y(5S) VIA Z<sub>b</sub> states:

|                                         | $N, 10^3$                    | Mass, $MeV/c^2$           |
|-----------------------------------------|------------------------------|---------------------------|
| $\Upsilon(5S) \rightarrow h_b(1P)$      | $70.3 \pm 3.3^{+1.9}_{-0.7}$ | $9899.1 \pm 0.4 \pm 1.0$  |
| $\Upsilon(3S) \rightarrow \Upsilon(1S)$ | $13 \pm 7$                   | 9973.0                    |
| $\Upsilon(5S) \rightarrow \Upsilon(2S)$ | $61.3 \pm 4.1$               | $10021.3 \pm 0.5$         |
| $\Upsilon(5S) \rightarrow \Upsilon(1D)$ | $14 \pm 7$                   | $10169 \pm 3$             |
| $\Upsilon(5S) \rightarrow h_b(2P)$      | $89.5 \pm 6.1^{+0.0}_{-5.8}$ | $10259.8 \pm 0.5 \pm 1.1$ |
| $\Upsilon(2S) \rightarrow \Upsilon(1S)$ | $97 \pm 12$                  | $10305.6 \pm 1.2$         |
| $\Upsilon(5S) \rightarrow \Upsilon(3S)$ | $58 \pm 8$                   | $10357.7\pm1.0$           |

#### Measured $\eta_{0}(1S)$ parameters:

| Transition                            | $h_b(1P) \rightarrow \eta_b$ | $h_b(2P) \rightarrow \eta_b$     |
|---------------------------------------|------------------------------|----------------------------------|
| $Yield \times 10^{-3}$                | $23.5 \pm 2.0$               | $10.3 \pm 1.3$                   |
| $\mathrm{BR}{\times}10^2$             | $49.2 \pm 5.7^{+5.6}_{-3.3}$ | $22.3 \pm 3.8  {}^{+3.1}_{-3.3}$ |
| Significance                          | $15\sigma$                   | $9\sigma$                        |
| $m_{\eta_b}({ m MeV}/c^2)$            | $9402.4 \pm 1.5 \pm 1.8$     | (joint fit)                      |
| $\Delta m_{hf} \; (\; {\rm MeV}/c^2)$ | $57.9 \pm 2.3$               | (joint fit)                      |

First measurement  $\Gamma = 10.8^{+4.0}_{-3.7}^{+4.5}_{-2.0} \text{ MeV}$ 



Tension with earlier Babar and CLEO results: asymmetric lineshape, like in charmonium?

### Doubly charmed baryons

Babar: PRD74,011103 (2006)

LHCB: ArXiV:1310.2538 (2013)

Belle: PRD89,052003(2014)