Roberto Mussa INFN Torino #### Charmonium #### Bottomonium ## $\chi_b(3P)$ @ LHCb JHEP 1410 (2014) 88 Excellent resolution, perfect separation between the three Y(nS) states. Amazing statistics from a total of 3 fb⁻¹ (7+8 TeV) Photons detected and measured in ECAL: high stats but low resolution (analysis with converted photons in progress) Goal: quantify the fraction of Y(nS) produced from decays of χ_b states. | Signal yield √ | $\sqrt{s} = 7 \mathrm{TeV}$ | $\sqrt{s} = 8 \mathrm{TeV}$ | |---|------------------------------|------------------------------| | $N_{\Upsilon(1S)}$ 326 | 6300 ± 638 | 747610 ± 969 | | $N_{\Upsilon(2S)}$ 100 | 0620 ± 395 | 229950 ± 576 | | $N_{\Upsilon(3S)}$ 57 | 7613 ± 312 | 129450 ± 459 | | Decay mode | $\sqrt{s} = 7 \mathrm{TeV}$ | $\sqrt{s} = 8 \mathrm{TeV}$ | | $N_{\chi_{\rm b}(1{\rm P})\to \Upsilon(1{\rm S})\gamma}$ | 1908 ± 71 | 4608 ± 115 | | $N_{\chi_{\rm b}(2{\rm P})\to\Upsilon(1{\rm S})\gamma}$ | 390 ± 41 | 904 ± 68 | | $N_{\chi_{\rm b}(3{\rm P})\to\Upsilon(1{\rm S})\gamma}$ | 133 ± 31 | 196 ± 50 | | $N_{\chi_{\rm b}(2{\rm P})\to \Upsilon(2{\rm S})\gamma}$ | 265 ± 30 | 660 ± 46 | | $N_{\chi_{\rm b}(3{\rm P})\to\Upsilon(2{\rm S})\gamma}$ | 48 ± 17 | 73 ± 26 | | $N_{\chi_{\rm b}({\rm 3P}) \to \Upsilon({\rm 3S})\gamma}$ | 56 ± 12 | 126 ± 20 | EPJC74 (2014) 10, 3092 First observation of the radiative transition to Y(3S) ## Best measurement of mass: LHCB 10511.3 \pm 1.7 (mass of χ_{h1} (3P)) #### **Previous:** ATLAS 10530±5±9 PRL108 (2012) 152001 DØ 10551±14±17 (mixed χ_{b1} (3P)+ χ_{b2} (3P)) PRD86 (2012) 031103 More than 30% of the Y(nS) produced at LHC are coming from χ_b (1,2,3P) decays QNP 2015, Valparaiso March 2-6 2015 R.Mussa, Hadron physics at B-factories ## Scan of the Y(5S)-Y(6S) region: Babar Phys.Rev.Lett.102:012001,2009 - 130 points, 25 pb⁻¹ , $\Delta E{=}5$ MeV \sqrt{s} = 10.54-11.2 GeV - $R_{b\overline{b}} = \sigma(b\overline{b})/\sigma(\mu\mu)$ Predicted by Tornqvist, using Phys.Rev.Lett.53:878,1984 the Coupled Channel Model -.5 (Eichten et al.) 5 10.8 √s/GeV 10.6 10.7 R.Mussa, Hadron physics at B-factories ## Y(5-6S) scans: $Y\pi\pi$ vs R_{b} ArXiV:1501.01137 Measurements of $\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)$ and $\sigma(e^+e^- \to b\bar{b})$ in the $\Upsilon(10860)$ and $\Upsilon(11020)$ resonance regions #### Data samples: - 121.4 fb⁻¹ on Y(5S) nominal peak, at \sqrt{s} = 10865 GeV - 61 points, 50 pb⁻¹, $\sqrt{s} = 10.75-11.05 \text{ GeV}$ - 16 points, 1 fb⁻¹, $\sqrt{s} = 10.63-11.02 \text{ GeV}$ - continuum data at $\sqrt{s} = 10520 \text{ GeV}$ #### Selection criteria for Rb: $$E_{\text{tot,ECL}} = (0.1 \text{-} 0.8)^* \sqrt{s}$$ $$E_{vis} > 0.5* \sqrt{s}$$ Fox Wolfram $R_2 < 0.2$ ΔR <1.5 cm; Δz <3.5 cm ## Rb is calculated subtracting the qq (q=u,d,s,c) continuum $$\tilde{R}_{b,i} = \frac{1}{\epsilon_{b\bar{b}}} \left(\frac{N_i}{\mathcal{L}_i \sigma_{\mu\mu,i}^0} - \frac{N_{\rm ct}}{\mathcal{L}_{\rm ct} \sigma_{\mu\mu,\rm ct}^0} \frac{\epsilon_{q\bar{q},i}}{\epsilon_{q\bar{q},\rm ct}} \right)$$ #### Rb' after correcting for ISR $$R'_{b,i} \equiv R_{b,i} - \sum \sigma_{\mathrm{ISR},i}/\sigma^0_{\mu^+\mu^-,i}$$ R.Mussa, Ha ## Rb and Rb' are fitted in the range \sqrt{s} =10.82-11.05 with : $$\mathcal{F} = |A_{\rm nr}|^2 + |A_{\rm r} + A_{5S}e^{i\phi_{5S}}f_{5S} + A_{6S}e^{i\phi_{6S}}f_{6S}|^2$$ ## Y(5-6S) scans: Yππ vs R_b ArXiV:1501.01137 Measurements of $\sigma(e^+e^- \to \Upsilon(nS)\pi^+\pi^-)$ and $\sigma(e^+e^- \to b\bar{b})$ in the $\Upsilon(10860)$ and $\Upsilon(11020)$ resonance regions #### Data samples: - 121.4 fb⁻¹ on Y(5S) nominal peak, at $\sqrt{s} = 10865 \text{ GeV}$ - 61 points, 50 pb⁻¹, $\sqrt{s} = 10.75-11.05 \text{ GeV}$ - 16 points, 1 fb⁻¹, $\sqrt{s} = 10.63-11.02 \text{ GeV}$ - continuum data at $\sqrt{s} = 10520 \text{ GeV}$ #### Selection criteria for Rb: $$N_{tracks}$$ =4 (P_{T} >100 MeV); ΔR <1 cm; Δz <5 cm $|\Delta z_{\pi\pi}^{}2\Delta z_{\mu\mu}^{}|$ < 3mm $|M(\pi\pi\mu\mu)2\sqrt{s}|$ <0.2 GeV ## Rb is calculated subtracting the $q\bar{q}$ (q=u,d,s,c) continuum $$\tilde{R}_{b,i} = \frac{1}{\epsilon_{b\bar{b}}} \left(\frac{N_i}{\mathcal{L}_i \sigma_{\mu\mu,i}^0} - \frac{N_{\text{ct}}}{\mathcal{L}_{\text{ct}} \sigma_{\mu\mu,\text{ct}}^0} \frac{\epsilon_{q\bar{q},i}}{\epsilon_{q\bar{q},\text{ct}}} \right)$$ #### Rb' after correcting for ISR $$R'_{b,i} \equiv R_{b,i} - \sum \sigma_{\mathrm{ISR},i} / \sigma^0_{\mu^+\mu^-,i}$$ # $Z_b \rightarrow \overline{B}B^* + B\overline{B^*}, B^*\overline{B^*}$ ArXiV:1209.6450 | BF[Υ (5S) \rightarrow B ^(*) \overline{B} (*) π] | preliminary
Belle 121.4 fb ⁻¹ | significand | |---|---|-------------| | BB̄ | <0.60 % at 90% C.L. | | | $B\overline{B}* + B\overline{B}*$ | $(4.25 \pm 0.44 \pm 0.69)$ % | 9.3σ | | B* <u>B</u> * | $(2.12 \pm 0.29 \pm 0.36)$ % | 5.7σ | | | 50 | E | |-----------------------------|----|--| | 2/2 | 40 | Z _b 8σ | | nce 🖁 | 30 | phsp Z _b '? | | с/вопелем | 20 | E I I I I I I I I I I I I I I I I I I I | | Never | 10 | | | | 0 | 10.6 10.65 10.7 10.75
rM(π), GeV/c ² | | | 50 | M (B*B*) | | 1/03 | 40 | Z _b ' | | Mev | 30 | Z _b ' 6.8σ | | events/5 MeV/c ² | 20 | phsp | 10.65 10.6 | Channel | Fraction, % | | | |---|-----------------|-----------------|--| | | $Z_b(10610)$ | $Z_b(10650)$ | | | $\Upsilon(1S)\pi^+$ | 0.32 ± 0.09 | 0.24 ± 0.07 | | | $\Upsilon(2S)\pi^+$ | 4.38 ± 1.21 | 2.40 ± 0.63 | | | $\Upsilon(3S)\pi^+$ | 2.15 ± 0.56 | 1.64 ± 0.40 | | | $h_b(1P)\pi^+$ | 2.81 ± 1.10 | 7.43 ± 2.70 | | | $h_b(2P)\pi^+$ | 4.34 ± 2.07 | 14.8 ± 6.22 | | | $B^{+}\bar{B}^{*0} + \bar{B}^{0}B^{*+}$ | 86.0 ± 3.6 | _ | | | $B^{*+}\bar{B}^{*0}$ | - | 73.4 ± 7.0 | | 10.75 ## High energy scans: bb vs cc #### Differences: - Y(5,6S) peaks are well resolved, Y(4.26,4.36) are NOT - Transitions to h_b dominated by Z_b , While only 20% of h_c is reached via Z_c QNP 2015, Valparaiso March 2-6 2015 R.Mussa, Hadro # $Z_b vs Z_c$ BES-III high statistics results are from exclusive analysis of data taken at Ecm = 4.23,4.26,4.36 GeV #### Cannot yet exclude $Z_{c}(3.9) \rightarrow \pi h_{c}!!!$ All Belle results on Zb are from the Y(5S) peak from inclusive analysis Belle analysis on hb from Y(6S) much harder: stay tuned ### The ω transitions Observed by CLEO in 2004 PRL 92,222002 (2004) | $\chi_{b1}(2P) \to \omega \Upsilon(1S)$ | $1.63 ^{~+0.40}_{~-0.34} \%$ | |---|--------------------------------| | $\chi_{b1}(2P) \to \gamma \Upsilon(2S)$ | $.199 \pm .019$ | | $\chi_{b1}(2P) \to \gamma \Upsilon(1S)$ | $9.2 \pm 0.8 \%$ | | $\chi_{b1}(2P) \to \pi\pi\chi_{b1}(1P)$ | $(9.1 \pm 1.3) \times 10^{-3}$ | $$\chi_{b2}(2P) \to \omega \Upsilon(1S)$$ $\chi_{b2}(2P) \to \gamma \Upsilon(2S)$ $\chi_{b2}(2P) \to \gamma \Upsilon(1S)$ $\chi_{b2}(2P) \to \gamma \Upsilon(1S)$ $\chi_{b2}(2P) \to \pi \pi \chi_{b2}(1P)$ In charmonium, ω transitions are observed from X(3872) and Y(3915) ### What about a bottomonium analogue? ## Search for X_b at LHC In charm, $M(D^+)-M(D^0)=4.73~\text{MeV} \rightarrow \text{large isospin violation: } BR(J/\psi\omega) \approx BR(J/\psi\rho)$ In bottom, $M(B^+)-M(B^0)=0.32 \rightarrow \text{no isospin violation} \rightarrow BR(X_b \rightarrow Y\rho) \approx 0$ Belle has searched for $X_b \rightarrow Y\omega$ in Y(5S) decays, as suggested in PRD91,014014 (2015) ## Observation of $\Upsilon(5S) \rightarrow \overline{\omega \chi_b(1P)}$ Sample=118 fb⁻¹ at Y(5S) peak $\chi_{b\Sigma}$ decays to γ ee, $\gamma\mu\mu$ Significant 3π contribution observed also from outside ω peak, stronger at the χ_{h2} | Mode | σ_B (pb) | \mathcal{B} (10 ⁻³) | |--|--------------------------|-----------------------------------| | $\pi^{+}\pi^{-}\pi^{0}\chi_{b0}$ | < 3.1 | < 6.3 | | $\pi^{+}\pi^{-}\pi^{0}\chi_{b1}$ | $0.90 \pm 0.11 \pm 0.13$ | $1.85 \pm 0.23 \pm 0.23$ | | $\pi^{+}\pi^{-}\pi^{0}\chi_{b2}$ | $0.57 \pm 0.13 \pm 0.08$ | $1.17 \pm 0.27 \pm 0.14$ | | $\omega \chi_{b0}$ | < 1.9 | < 3.9 | | $\omega \chi_{b1}$ | $0.76 \pm 0.11 \pm 0.11$ | $1.57 \pm 0.22 \pm 0.21$ | | $\omega \chi_{b2}$ | $0.29 \pm 0.11 \pm 0.08$ | $0.60 \pm 0.23 \pm 0.15$ | | $(\pi^+\pi^-\pi^0)_{\text{non-}\omega}\chi_{b0}$ | < 2.3 | < 4.8 | | $(\pi^+\pi^-\pi^0)_{\text{non-}\omega}\chi_{b1}$ | $0.25 \pm 0.07 \pm 0.06$ | $0.52 \pm 0.15 \pm 0.11$ | | $(\pi^+\pi^-\pi^0)_{\text{non-}\omega}\chi_{b2}$ | $0.30 \pm 0.11 \pm 0.14$ | $0.61 \pm 0.22 \pm 0.28$ | The total contribution of $\omega \chi_b(1P)$ to BR is 0.3%, comparable with the larger hadronic transitions to lower bottomonia $$R = \frac{\sigma(e + e \rightarrow \omega \chi_{b2})}{\sigma(e + e \rightarrow \omega \chi_{b1})} = 0.38 \pm 0.16(stat.) \pm 0.09(syst.)$$ $$R = \frac{\sigma(e + e - \to (\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b2})}{\sigma(e + e - \to (\pi^{+}\pi^{-}\pi^{0})_{non-\omega}\chi_{b1})} = 1.20 \pm 0.55(stat.) \pm 0.65(syst.)$$ PRL 113,142001(2014) PRL 113, 142001 (2014) PHYSICAL REVIEW LETTERS $M(\pi^+\pi^-\pi^0)$ (GeV/c²) $M(\gamma \Upsilon(1S))$ (GeV/c²) # The ω transitions in charmonium BES-III study ArXiV:1410.6538 $$e^+e^- \rightarrow \omega \chi_{c0}$$ With $\chi_{c0} \rightarrow KK$, $\pi\pi$ ArXiV:1410.6538 ## Search for X_b at Belle No evidence of a signal of X_b is observed in the region between 10.5 and 10.6: the broad peak at 10.4 is actually a reflection from the $\omega \chi_b(1P)$ transition. Also, no evidence of radiative transitions to $\chi_{h}(2P)$. Upper limits: $$BR(\Upsilon(5S) \to X_b)BR(X_b \to \gamma \Upsilon(1,2S)) < 2.9*10^{-5}$$ Analysis of $\omega Y(1S)$ transitions on Y(4S) dataset is under way. Results will be available soon ## The η transitions In 2008, Babar found out that transitions from Y(4S) to Y(1S) are MORE INTENSE than $\pi\pi$ transitions. #### Babar PRD78,112002 (2008) B(Y(4S) $\rightarrow \eta Y(1S)$) = $(1.96\pm0.06\pm0.09) \times 10^{-4}$ = $2.5 \times B(Y(4S) \rightarrow \pi\pi Y(1S))$ #### Belle (preliminary) $$\begin{split} B(\Upsilon(5S) &\to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4} \\ &= 0.25 \times B(\Upsilon(5S) \to \pi\pi\Upsilon(1S)) \\ B(\Upsilon(5S) &\to \eta \Upsilon(2S)) = (38 \pm 4 \pm 5) \times 10^{-4} \\ &= B(\Upsilon(5S) \to \pi\pi\Upsilon(2S)) \end{split}$$ All measured η transitions are P-wave. ## The η transitions In 2008, Babar found out that transitions from Y(4S) to Y(1S) are MORE INTENSE than $\pi\pi$ transitions. Babar PRD78,112002 (2008) B(Y(4S) $$\rightarrow \eta Y(1S)$$) = (1.96±0.06±0.09)× 10⁻⁴ = 2.5 x B(Y(4S) $\rightarrow \pi\pi Y(1S)$) #### Belle (preliminary) $$\begin{split} B(\Upsilon(5S) &\to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4} \\ &= 0.25 \times B(\Upsilon(5S) \to \pi\pi\Upsilon(1S)) \\ B(\Upsilon(5S) &\to \eta \Upsilon(2S)) = (38 \pm 4 \pm 5) \times 10^{-4} \\ &= B(\Upsilon(5S) \to \pi\pi\Upsilon(2S)) \end{split}$$ All measured η transitions are P-wave. Why S-wave transitions are not observed? ## The η transitions Residual / 5 MeV $$B(\Upsilon(5S) \to \eta \Upsilon(1D)) = (28\pm7\pm4) \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (21 \pm 7 \pm 3) \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta h_{h}(2P)) < 37 \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta h_h(1P)) < 33 \times 10^{-4}$$ Reconstructed hadrons part ## The η transitions Then, the search for inclusive transitions was extended to Y(4S) Babar PRD78,112002 (2008) B(Y(4S) $\rightarrow \eta Y(1S)$) = $(1.96\pm0.06\pm0.09) \times 10^{-4}$ = $2.5 \times B(Y(4S) \rightarrow \pi\pi Y(1S))$ #### Belle exclusive analysis: $$B(\Upsilon(5S) \to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4}$$ $$= 0.25 \times B(\Upsilon(5S) \to \pi\pi\Upsilon(1S))$$ $$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (38\pm 4\pm 5) \times 10^{-4}$$ $= B(\Upsilon(5S) \to \pi\pi\Upsilon(2S))$ #### Belle inclusive analysis: $$B(\Upsilon(5S) \to \eta \Upsilon(1D)) = (28 \pm 7 \pm 4) \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (21\pm7\pm3) \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta h_{_{h}}(2P)) < 37 \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta h_b(1P)) < 33 \times 10^{-4}$$ ## The largest Y(4S) transition to lower states !!! Then, the search for inclusive transitions was extended to Y(4S) Babar PRD78,112002 (2008) B(Y(4S) $\rightarrow \eta Y(1S)$) = $(1.96\pm0.06\pm0.09) \times 10^{-4}$ = $2.5 \times B(Y(4S) \rightarrow \pi\pi Y(1S))$ #### Belle exclusive analysis: $$B(\Upsilon(5S) \to \eta \Upsilon(1S)) = (7.3 \pm 1.6 \pm 0.8) \times 10^{-4}$$ = 0.25 x B(\U00a8(5S) \to \pi\pi\U00a8(1S)) $$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (38\pm 4\pm 5) \times 10^{-4}$$ = $B(\Upsilon(5S) \to \pi\pi \Upsilon(2S))$ #### Belle inclusive analysis: $$B(\Upsilon(5S) \rightarrow \eta \Upsilon(1D)) = (28 \pm 7 \pm 4) \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta \Upsilon(2S)) = (21 \pm 7 \pm 3) \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta h_b(2P)) < 37 \times 10^{-4}$$ $$B(\Upsilon(5S) \to \eta h_b(1P)) < 33 \times 10^{-4}$$ $$B(\Upsilon(4S) \to \eta h_b(1P)) = (18.3 \pm 1.6 \pm 1.7) \times 10^{-4} > 9xB(\Upsilon(4S) \to \eta \Upsilon(1S))$$ Only one theory prediction: Guo et al, PRL105,162001(2010): $\sim 10^{-3}$ ### The $\pi\pi/\eta$ transitions: TH vs EXP $\pi\pi$ transitions ## A new pathway to η_b 5 amazing years for bottomonium spectroscopy: - 2008 Discovery of η_b (Babar) via M1 transitions from Y(2,3S) - 2011-2:Discovery of the triple cascade (Belle): **Y(5S)** → **P** → **P** $Y(\overline{5}S) \rightarrow Z_b \rightarrow h_b \rightarrow \eta_b$ - 2014: Discovery of the $Y(4S) \rightarrow \eta h_b$ transition (Belle) ## The η transitions in charmonium - good agreement with previous results and more precise - cross sections peaks at ~ 4.2 GeV - higher energy points' analysis on going ### A new Z_{c} from Belle PRD 90, 112009 (2014) $$Z^{\pm}$$ (4200) $\rightarrow \psi \pi^{\pm}$ - Search in $B^0 \to J/\psi K^+\pi^-$ - 4D amplitude analysis for $(M_{K\pi}^2,~M_{J/\psi\pi}^2,~\theta_{J/\psi},~\phi)$ - decay model includes 10 states of K^* ($K_0^*(800)$, $K^*(892)$, $K^*(1410)$, $K_0^*(1430)$, $K_2^*(1430)$, $K^*(1680)$, $K_3^*(1780)$, $K_0^*(1950)$, $K_2^*(1980)$, $K_4^*(2045)$) and $Z_c(4430)^+$ - \Rightarrow new decay channel $Z_c(4430)^+ \rightarrow J/\psi \pi^+$ - and a search with additional Z_c^+ $$^{\dagger}_{O}$$ 22 $^{\dagger}_{O}$ 20 $^{\dagger}_{O}$ 18 $^{\dagger}_{O}$ 16 $^{\dagger}_{O}$ 12 $^{\dagger}_{O}$ 17 $^{\dagger}_{O}$ 17 $^{\dagger}_{O}$ 18 $^{\dagger}_{O}$ 17 $^{\dagger}_{O}$ 18 $^{\dagger}_{O}$ 18 $^{\dagger}_{O}$ 19 $^{\dagger}_{O}$ 19 $^{\dagger}_{O}$ 10 11 $^{\dagger}_{O}$ 10 $^{\dagger}_{O}$ 11 $^{\dagger}_{O}$ 12 $^{\dagger}_{O}$ 12 $^{\dagger}_{O}$ 13 $^{\dagger}_{O}$ 13 $^{\dagger}_{O}$ 15 $$J^{P}=1^{+}$$, sig=6.2 σ $$M = 4196^{+31+17}_{-29-13} \text{ MeV}/c^2, \ \Gamma = 370^{+70+70}_{-70-132} \text{ MeV}$$ QNP 2015, Valparaiso March 2-6 2015 R.Mussa, Hadron physics at B-factories ## Z_c 's in B decays - $Z_c(4430)$ → ψ π Belle:PRL 100(2008)142001 LHB:PRL 112(2014)222002 $$-Z_{c}(4050) \to \chi_{c1}\pi$$ $-Z_{c}(4250) \to \chi_{c1}\pi$ Belle:PRD 78, 072004(2008) $-Z_{c}(4200) \rightarrow \psi \pi$ *PRD 90, 112009 (2014)* QNP 2015, Valparaiso March 2 300 Candidates / $(0.2 \, \text{GeV}^2)$ **LHCb** $200 - 1.0 < m_{K^+\pi^-}^2 < 1.8 \text{ GeV}^2$ $m_{\psi^\prime\pi^-}^2 [GeV^2]$ 20 18 | $Z_{c}(3900)^{\pm}$ | 3899.0±3.6 ±4.9 | 46±10 ±20 | $\pi^{\pm}J/\psi$ | $e^+e^-{\longrightarrow}\pi^+\pi^-J^/\psi$ | |---------------------|--|---|-------------------------------------|---| | $Z_{c}(3900)^{0}$ | 3894.8±2.3±2.7 | 29.6±8.2±8.2 | $\pi^0 J/\psi$ | $e^+e^-{\longrightarrow}\pi^0\pi^0J^/\psi$ | | $Z_{c}(3885)^{\pm}$ | 3883.9±1.5±4.2
[single D tag]
3884.3±1.2±1.5
[double D tag] | 24.8±3.3±11.0
[single D tag]
23.8±2.1±2.6
[double D tag] | D-D*0 | $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$ $e^+e^- \rightarrow \pi^+ D^- D^{*0}$ | | $Z_{c}(4020)^{\pm}$ | 4022.9±0.8 ±2.7 | $7.9\pm2.7\pm2.6$ | $\pi^{\pm}h_{c}$ | $e^+e^-{\longrightarrow}\pi^+\pi^-h_c$ | | $Z_c(4020)^0$ | 4023.9±2.2 ±3.8 | fixed | $\pi^0 \mathbf{h}_{\mathrm{c}}$ | $e^+e^-{\longrightarrow}\pi^0\pi^0h_c$ | | $Z_{c}(4025)^{\pm}$ | 4026.3±2.6±3.7 | 24.8±5.6±7.7 | D * ⁰ D *- | $e^+e^-{ ightarrow}\pi^+(D^*\stackrel{-}{D}^*)^-$ | Belle results $$Z_c(4050)^{\pm}$$ 4051^{+24}_{-40} 82^{+50}_{-28} $\pi^{\pm}\chi_{c1}$ B decays $Z_c(4200)^{\pm}$ $4196^{+31}_{-29-13}^{+17}$ $370^{+70}_{-70-132}^{+70}$ $\pi^{\pm}J/\psi$ B decays $Z_c(4250)^{\pm}$ 4248^{+190}_{-50} 177^{+320}_{-70} $\pi^{\pm}\chi_{c1}$ B decays $Z_c(4430)^{\pm}$ 4485^{+40}_{-25} 200^{+50}_{-60} $\pi^{\pm}\psi'$ B decays ### Bottomonium D waves First observations from Y(3S): CLEO *PRD70,03200 (2010)* BABAR PRD82,111102 (2010) Belle observes 1D both inclusively (PRL108,032001) and exclusively (Proc.EPS-HEP 2013) from Y(5S). Assuming that: - the J=1,2,3 state is produced with ratios 3:5:7, - $B(1^3D_J \rightarrow \gamma \ 1^3P_{J'})$ from Kwong, Rosner PRD 38, 279 (1998) - B(1³P_J $\rightarrow \gamma$ Y(1S)) from measured values (PDG) Belle obtains the production rate of Y(1D): J=1 2 3 10%: 49%: 41% Neglecting the J=1, Belle fits with double gaussian to obtain the upper limit $M(^3D_3)-M(^3D_2)<10$ MeV ### Bottomonium D waves Belle $10164.7 \pm 1.4 \pm 1.0 \text{ MeV}$ BaBar $10164.5 \pm 0.8 \pm 0.5$ MeV CLEO $10161.1 \pm 0.6 \pm 1.6 \text{ MeV}$ Stay tuned on more Belle results on Y(1D) QNP 2015, Valparaiso March 2-6 2015 R.Mussa, Hadron physics at B-factor ### Charmonium D waves Evidence (3.8 σ) of the 3D_2 state of charmonium, in B decays! $M(^3D_2) = 3823.1 \pm 1.8 \pm 0.7 \text{ MeV}/c^2$ #### X(3872) yield : -0.9±5.1 events QNP 2015, Valparaiso March 2-6 2015 ### Charmonium D waves Exclusive evidence of $e^+e^- \rightarrow \pi^+\pi^2\psi'$, $\pi^+\pi^2\psi(1^3D_2)$ at BES-III Analogy with Y(5S) transitions to Y(1D) and Y(2S)? ### Charmonium D waves Exclusive evidence of $e^+e^- \rightarrow \pi^+\pi^2\psi'$, $\pi^+\pi^2\psi(1^3D_2)$ at BES-III $\Psi(4415)$ or $\Upsilon(4360)$? Need more statistics ## Bc spectroscopy $$m_{B_c^*} = 6276.28 \pm 1.44 (stat) \pm 0.36 (syst) MeV/c^2$$ LHCb, 3 fb⁻¹, PRD 87 (2013) 112012 In agreement with world average: $m(B_c^+) = 6274.5 \pm 1.8 \text{ MeV/c}^2$ Polyakov Ivan, Moriond QCD, 24 March 2014 $$N_{\rm sig} = 2835 \pm 58$$ First decay to baryons $$N_{\rm sig} = 23.9 \pm 5.3 \ (7.3 \ \sigma)$$ ## First observation of B_c(2S) ATLAS detects the Bc decaying to $J/\psi\pi$ mode Significance (7+8 TeV data) :5.2 sigma Can be a combination of two transitions: B_c(2¹S₀) $$\rightarrow$$ B_c(1¹S₀)ππ; B_c(2³S₁) \rightarrow B_c(1¹S₀)ππ+(γ)_{not seen}; Q = 288.3 ± 3.5(stat) ± 4.1(syst) $$6841 \pm 4(stat) \pm 5(syst) MeV$$ #### Not confirmed (yet?) by CMS and LHCB QNP 2015, Valparaiso March 2-6 2015 R.Mussa, Hadron phys More results on B** at LHCB (ArXiV: 1502.02638): Williams in Tuesday Parallel Session ## **Heavy Baryons** # Discovery of Ξ_b Λ_c excited states | Notation | Quark | J^{P} | SU(3) | (I, I_3) | S | В | |-------------------|-----------|-----------|-------|-------------|----|---| | | content | | | | | | | Λ_b | b[ud] | $1/2^{+}$ | 3* | (0, 0) | 0 | 1 | | Ξ_b^0 | b[su] | $1/2^{+}$ | 3* | (1/2, 1/2) | -1 | 1 | | Ξ_b^- | b[sd] | $1/2^{+}$ | 3* | (1/2, -1/2) | -1 | 1 | | Σ_b^+ | buu | $1/2^{+}$ | 6 | (1, 1) | 0 | 1 | | Σ_b^0 | $b\{ud\}$ | $1/2^{+}$ | 6 | (1, 0) | 0 | 1 | | Σ_b^- | bdd | $1/2^{+}$ | 6 | (1, -1) | 0 | 1 | | $\Xi_b^{0'}$ | $b\{su\}$ | $1/2^{+}$ | 6 | (1/2, 1/2) | -1 | 1 | | $\Xi_b^{-\prime}$ | $b\{sd\}$ | $1/2^{+}$ | 6 | (1/2, -1/2) | -1 | 1 | | Ω_b^- | bss | $1/2^{+}$ | 6 | (0, 0) | -2 | 1 | | Σ_b^{*+} | buu | $3/2^{+}$ | 6 | (1, 1) | 0 | 1 | | Σ_b^{*0} | bud | $3/2^{+}$ | 6 | (1, 0) | 0 | 1 | | Σ_b^{*-} | bdd | $3/2^{+}$ | 6 | (1, -1) | 0 | 1 | | Ξ_b^{*0} | bus | $3/2^{+}$ | 6 | (1/2, 1/2) | -1 | 1 | | Ξ_b^{*-} | bds | $3/2^{+}$ | 6 | (1/2, -1/2) | -1 | 1 | | Ω_b^{*-} | bss | $3/2^{+}$ | 6 | (0, 0) | -2 | 1 | ## Precise $\Sigma^{(*)}$ masses at Belle PRD 89, 091102(R) (2014) | | ΔM_0 (MeV/ c^2) | Γ (MeV/ c^2) | M_0 (MeV/ c^2) | |-----------------------|-----------------------------|----------------------------------|--------------------------------------| | $\Sigma_c(2455)^0$ | $167.29 \pm 0.01 \pm 0.02$ | $1.76 \pm 0.04^{+0.09}_{-0.21}$ | $2453.75 \pm 0.01 \pm 0.02 \pm 0.14$ | | $\Sigma_c(2455)^{++}$ | $167.51 \pm 0.01 \pm 0.02$ | $1.84 \pm 0.04^{+0.07}_{-0.20}$ | $2453.97 \pm 0.01 \pm 0.02 \pm 0.14$ | | $\Sigma_c(2520)^0$ | $231.98 \pm 0.11 \pm 0.04$ | $15.41 \pm 0.41^{+0.20}_{-0.32}$ | $2518.44 \pm 0.11 \pm 0.04 \pm 0.14$ | | $\Sigma_c(2520)^{++}$ | $231.99 \pm 0.10 \pm 0.02$ | $14.77 \pm 0.25^{+0.18}_{-0.30}$ | $2518.45 \pm 0.10 \pm 0.02 \pm 0.14$ | (*) the mass of $\Sigma^{(*)+}_{c}$, which decay to $\Lambda_{c}\pi^{0}$, was last measured by CLEO in 2001. # Search for $\Sigma^{(*)}_{b0}$ at LHCb $$\sum_{b0}^{(\star)} = b\{ud\}_{J=1}$$ LHCb is challenged to make the first observation of the neutral state, which decays to $\Lambda_b \pi^0$, and is much harder to detect. #### Stay tuned! | Notation | Quark | J^P | SU(3) | (I, I_3) | S | В | |-------------------|-----------|-----------|-------|-------------|----|---| | | content | | | | | | | Λ_b | b[ud] | $1/2^{+}$ | 3* | (0, 0) | 0 | 1 | | Ξ_b^0 | b[su] | $1/2^{+}$ | 3* | (1/2, 1/2) | -1 | 1 | | Ξ_b^- | b[sd] | $1/2^{+}$ | 3* | (1/2, -1/2) | -1 | 1 | | Σ_b^+ | buu | $1/2^{+}$ | 6 | (1, 1) | 0 | 1 | | Σ_b^0 | $b\{ud\}$ | $1/2^{+}$ | 6 | (1, 0) | 0 | 1 | | Σ_b^- | bdd | $1/2^{+}$ | 6 | (1, -1) | 0 | 1 | | $\Xi_b^{0'}$ | $b\{su\}$ | $1/2^{+}$ | 6 | (1/2, 1/2) | -1 | 1 | | $\Xi_b^{-\prime}$ | $b\{sd\}$ | $1/2^{+}$ | 6 | (1/2, -1/2) | -1 | 1 | | Ω_b^- | bss | $1/2^{+}$ | 6 | (0, 0) | -2 | 1 | | Σ_b^{*+} | buu | $3/2^{+}$ | 6 | (1, 1) | 0 | 1 | | Σ_b^{*0} | bud | $3/2^{+}$ | 6 | (1, 0) | 0 | 1 | | Σ_b^{*-} | bdd | $3/2^{+}$ | 6 | (1, -1) | 0 | 1 | | Ξ_b^{*0} | bus | $3/2^{+}$ | 6 | (1/2, 1/2) | -1 | 1 | | Ξ_b^{*-} | bds | $3/2^{+}$ | 6 | (1/2, -1/2) | -1 | 1 | | Ω_b^{*-} | bss | $3/2^{+}$ | 6 | (0, 0) | -2 | 1 | Charged partners observed by CDF with 6fb⁻¹ at 2TeV PRD85 (2012) 092011 | State | Q value, MeV/ c^2 | Absolute mass m , MeV/ c^2 | Natural width Γ , MeV/ c^2 | | |--|--|--------------------------------|-------------------------------------|--| | Σ_b^- | $56.2{}^{+0.6}_{-0.5}{}^{+0.1}_{-0.4}$ | $5815.5^{+0.6}_{-0.5}\pm1.7$ | $4.9^{+3.1}_{-2.1}\pm1.1$ | | | \varSigma_b^{*-} | $75.8\pm 0.6^{+0.1}_{-0.6}$ | $5835.1\ \pm0.6^{+1.7}_{-1.8}$ | $7.5^{+2.2+0.9}_{-1.8-1.4}$ | | | \varSigma_b^+ | $52.1{}^{+0.9}_{-0.8}{}^{+0.1}_{-0.4}$ | $5811.3^{+0.9}_{-0.8}\pm1.7$ | $9.7^{+3.8+1.2}_{-2.8-1.1}$ | | | \varSigma_b^{*+} | $72.8\pm 0.7^{+0.1}_{-0.6}$ | $5832.1\pm 0.7^{+1.7}_{-1.8}$ | $11.5_{-2.2-1.5}^{+2.7+1.0}$ | | | | | Isospin mass splitting, N | ${ m MeV}/c^2$ | | | $m(\varSigma_b^+) - m(\varSigma_b^-)$ | $-4.2^{+1.1}_{-1.0}\pm0.1$ | | | | | $\frac{m(\Sigma_b^{*+}) - m(\Sigma_b^{*-})}{}$ | $-3.0^{+1.0}_{-0.9}\pm0.1$ | | | | ### Observation of Ξ_{b}^{+} and Ξ_{b}^{*} #### More details: talk by Williams in Tuesday Parallel Session #### **Ground State Splittings** ### The intriguing success of CQM continues ... $\Delta M(\overline{q} \rightarrow \{qq\}_{I=1}) = 523(c) \text{ vs } 512(b) \text{ MeV } : -2\% \text{ variation going from c to b}$ ### The intriguing success of CQM continues ... # P-wave baryons: Λ_c^* , Λ_b^* Λ*:the result of CDF, PRD84,012003, published in 2011, is still the best. Neither Babar nor Belle updated it. Λ*:Bottom counterpart, observed by LHCb with 1fb⁻¹ *PRL104*,172003(2012) $$\Delta M_{A_h^{*0}(5912)} = 292.60 \pm 0.12 \text{(stat)} \pm 0.04 \text{(syst)} \text{ MeV}/c^2$$ $$\Delta M_{A_h^{*0}(5920)} = 300.40 \pm 0.08 \text{(stat)} \pm 0.04 \text{(syst)} \text{ MeV}/c^2$$ $$M_{\Lambda_h^{*0}(5912)} = 5911.97 \pm 0.12 \pm 0.02 \pm 0.66 \,\text{MeV}/c^2$$ $$M_{\Lambda_h^{*0}(5920)} = 5919.77 \pm 0.08 \pm 0.02 \pm 0.66 \,\text{MeV}/c^2$$ soon after, evidence of 5920 at CDF Further studies underway with the larger samples at LHCb, to search for higher excitations. ### Summary Bottomonium and Charmonium bound state spectroscopy is approaching completion: progress mainly on 1D and 3P states Now it's time to study Bc excited states: go LHCb! Close to thresholds, analogies and differences are puzzling: - no X(3872) analogue in bottomonium - Zb and Zc exhibit different BR patterns - Upsilon(5S,6S) phenomenology is different from Y(4.26,4.36) Since 2008, study of hadronic transitions between broad and narrow states have produced an amazing variety of results, but a unified pattern is still missing Many interesting results from eta transitions in bottomonium, hopefully More results will come from charmonium Heavy meson and baryon spectroscopy: LHC-b has just started to show its huge potential a plethora of results are still buried in Belle+Babar data, though LHCB and Belle-II future data taking promise new and even more exciting results ### Charged Σ_{c} splittings from CDF Superseded by: Belle: PRD 89, 091102(R) (2014) | Backup | | |--------|--| |--------|--| | Hadron | $M [{ m MeV}/c^2]$ | $\Gamma \left[\text{MeV}/c^2 \right]$ | |------------------------|-----------------------------|--| | $\Sigma_c(2455)^{++}$ | $2453.90 \pm 0.13 \pm 0.14$ | 2.34 ± 0.47 | | $\Sigma_{c}(2455)^{0}$ | $2453.74 \pm 0.12 \pm 0.14$ | 1.65 ± 0.50 | | $\Sigma_c(2520)^{++}$ | $2517.19 \pm 0.46 \pm 0.14$ | 15.03 ± 2.52 | | $\Sigma_{c}(2520)^{0}$ | $2519.34 \pm 0.58 \pm 0.14$ | 12.51 ± 2.28 | | $\Lambda_c(2595)^+$ | $2592.25 \pm 0.24 \pm 0.14$ | $h_2^2 = 0.36 \pm 0.08$ | | $\Lambda_c(2625)^+$ | $2628.11 \pm 0.13 \pm 0.14$ | $<0.97\mathrm{at}$ 90% C.L. | # Rediscovery of η_{\cap} #### Phys.Rev.Lett. 109 (2012) 232002 #### Babar 2008: PRL 101,071801(2008) PRL 103,161801(2009) ### Belle results on $\eta_{\cap}(1\Delta)$ #### Phys.Rev.Lett. 109 (2012) 232002 ### Yields from Y(5S) VIA Z_b states: | | $N, 10^3$ | Mass, MeV/c^2 | |---|------------------------------|---------------------------| | $\Upsilon(5S) \rightarrow h_b(1P)$ | $70.3 \pm 3.3^{+1.9}_{-0.7}$ | $9899.1 \pm 0.4 \pm 1.0$ | | $\Upsilon(3S) \rightarrow \Upsilon(1S)$ | 13 ± 7 | 9973.0 | | $\Upsilon(5S) \rightarrow \Upsilon(2S)$ | 61.3 ± 4.1 | 10021.3 ± 0.5 | | $\Upsilon(5S) \rightarrow \Upsilon(1D)$ | 14 ± 7 | 10169 ± 3 | | $\Upsilon(5S) \rightarrow h_b(2P)$ | $89.5 \pm 6.1^{+0.0}_{-5.8}$ | $10259.8 \pm 0.5 \pm 1.1$ | | $\Upsilon(2S) \rightarrow \Upsilon(1S)$ | 97 ± 12 | 10305.6 ± 1.2 | | $\Upsilon(5S) \rightarrow \Upsilon(3S)$ | 58 ± 8 | 10357.7 ± 1.0 | #### Measured $\eta_{0}(1S)$ parameters: | Transition | $h_b(1P) \rightarrow \eta_b$ | $h_b(2P) \rightarrow \eta_b$ | |---------------------------------------|------------------------------|----------------------------------| | $Yield \times 10^{-3}$ | 23.5 ± 2.0 | 10.3 ± 1.3 | | $\mathrm{BR}{\times}10^2$ | $49.2 \pm 5.7^{+5.6}_{-3.3}$ | $22.3 \pm 3.8 {}^{+3.1}_{-3.3}$ | | Significance | 15σ | 9σ | | $m_{\eta_b}({ m MeV}/c^2)$ | $9402.4 \pm 1.5 \pm 1.8$ | (joint fit) | | $\Delta m_{hf} \; (\; {\rm MeV}/c^2)$ | 57.9 ± 2.3 | (joint fit) | First measurement $\Gamma = 10.8^{+4.0}_{-3.7}^{+4.5}_{-2.0} \text{ MeV}$ Tension with earlier Babar and CLEO results: asymmetric lineshape, like in charmonium? ### Doubly charmed baryons Babar: PRD74,011103 (2006) LHCB: ArXiV:1310.2538 (2013) Belle: PRD89,052003(2014)