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Proton Size Puzzle
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eight standard-deviation discrepancy (7.9 σ) !!!
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finite-size contribution: 


• a tiny, non-smoothness of the electric form factor              at 
scales comparable to the inverse Bohr radius can break 
down this expansion


• missing “soft” physics to explain the puzzle ?!   

How Does the Proton Structure 
Affect the Hydrogen Lamb Shift?
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μH Spectroscopy

A. Antognini et al., Science 339, 417 (2013).

Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.
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one-photon exchange correction to the Coulomb 
potential:


  

electromagnetic vertex:          


 

where photon propagator:                       


in Coulomb gauge

Finite-Size Effects

l
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Pauli & Dirac form factors:


Sachs form factors:

Form Factors

once- subtracted dispersion relation:                                 
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charge distribution:


Zemach moments:                                with


Zemach radius:                           with

Moments of Charge Distribution
⇢E(r) =

Z
d~q

(2⇡)3
GE(~q

2)e�i~q~r

⇢E(2)(r) =

Z
d~q

(2⇡)3
G2

E(~q
2)e�i~q~r

⇢Z(r) =

Z
d~q

(2⇡)3
GE(~q

2)GM (~q 2)e�i~q~r

7QNP 2015, 05.03.2015 Franziska Hagelstein

hrN iE(2) ⌘
Z

d~r rN⇢E(2)(r)

hriZ ⌘
Z

d~r r⇢Z(r)

hrN iE ⌘
Z

d~r rN⇢E(r)

=
(N + 1)!

⇡

Z 1

t0

dt
Im GE(t)

t1+N/2

hr2iE = �6 lim
Q2!0

d

dQ2
GE(Q

2)

hr3iE =
48

⇡

Z 1

0

dQ

Q4

⇢
GE(Q

2)� 1 +
1

6
hr2iE Q2

�



S-Wave Potentials
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FH, VP: in preparation
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Structure of 
Hydrogen Spectra
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Fig. 4. Structure of the S- and P -wave energy levels in
muonic hydrogen for n = 2.

with the aid of relations (14) and (17). The results are
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Omitting further details of the calculations that can
be performed by means of a procedure similar to
that which was used to derive the results in (20)
and (23), we present in Table 2 the numerical values
of the contributions that are determined by the poten-
tials (39) and (40). Yet another part of the α2(Zα)4
two-loop corrections to the hyperfine structure in the
second order of perturbation theory is illustrated by
the diagrams in Fig. 3. In Table 2, we also included
the numerical values of the contributions from these
amplitudes to the hyperfine structure of the P-wave
states.

The respective off-diagonal matrix element is of
importance for reaching a high precision in calcu-
lating the structure of the P-wave levels in the (µp)
atom. We represent this matrix element in the form

γ = ⟨3P1/2|∆V hfs|3P3/2⟩ = EF

(

−
√

2
48
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(41)

×
[
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m3

1

µ3
Crel(Zα)2 + CVPα

]
,

where, for the sake of simplicity, we have restricted
ourselves to terms of fifth order in α in considering
vacuum-polarization effects, terms of fifth and higher
orders in the muon anomalous magnetic moments,
relativistic effects of order (Zα)6, and recoil effects.
The first three terms on the right-hand side of (41)
result from employing the potential (24). In Dirac’s
theory, relativistic corrections are determined by the
off-diagonal radial integrals

R1/23/2 =
∞∫

0

(
g1/2(r)f3/2(r) + g3/2(r)f1/2(r)

)
dr.

(42)

By using the explicit expressions for the wave func-
tions f1/2,3/2(r) and g1/2,3/2(r) from [43] in order to
calculate this integral, we obtain Crel = 9/16. In order
to calculate vacuum-polarization effects, we employ

PHYSICS OF ATOMIC NUCLEI Vol. 71 No. 1 2008

Martynenko, Physics of Atomic Nuclei 71, 1, 125-135 (2008)

Lamb shift
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contribution of          at                                                
1st order perturbation theory (PT): 

Lamb Shift (1)
Yukawa potential:            


electric form factor (FF) 

correction to the 

Coulomb potential

11
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convergence radius 

of the expansion 

is limited by  t0



Lamb Shift (2)
2nd order PT Lamb shift, to         :
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Lamb shift: To expand or not ?!
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large cancellations around the Bohr radius scale


• small variation in the FF around Bohr radius scale may 
lead to significant effects !!!

14

w(Q) = � 4

⇡
(Z↵)5m4

r Q
2 (Z↵mr)2 �Q2

[(Z↵mr)2 +Q2]4

arXiv:1502.03721

GEp = (1 +Q2/0.71GeV2)�2

Dipole FF:
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• decompose FF into the “smooth” and “non-smooth” part

• missing effect in the FF between 0 and 50 MeV ???




We assume the electric FF to have a smooth part   
and a non-smooth part      :


• chain-fraction fit of Arrington and Sick:                                
J. Arrington and I. Sick, Phys. Rev. C76: 035201 (2007).  

• fluctuation:                                                     


     Breit-Wigner type of peak around      with width given by 

A Toy Model “Resolving the Puzzle”
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chain-fraction fit of Arrington and Sick [17]:

GE(Q
2) =

1

1 + 3.478Q2

1� 0.140Q2

1� 1.311Q2

1+ 1.128Q2

1�0.233Q2

(25)

The other two parameters parametrising the fluctuation, A
and ✏, are fixed by requiring our FF to yield the empirical
Lamb shift contribution, in both normal and muonic hydro-
gen, i.e.:

E
FF(exp.)
2P�2S (eH) = �0.62250(724) neV, (26a)

E
FF(exp.)
2P�2S (µH) = �3650(2)µeV. (26b)

These are not the experimental Lamb shifts, but only the
finite-size contributions, described by Eqs. (2), (4), with the
corresponding empirical values for the radii. In the eH
case we have taken the CODATA value of the proton radius,
Eq. (3a), which is obtained as an weighted average over sev-
eral hydrogen spectroscopy measurements, and hr3iE(2) =
2.78(14) fm [9]. In the µH case we have taken the values
from Ref. [4], i.e.: Eq. (3b) for the radius and the aforemen-
tioned third Zemach moment.

The Fig. 3 shows at which A and ✏ our FF complies with
either eH (dot-dashed curve) or µH (solid curve) Lamb shift.
For A = 5.6 ⇥ 10�6 MeV2 and ✏ = 0.245 MeV, our FF
complies with both of them!
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FIG. 3: Parameters of eGE for which the eH and µH Lamb shifts of
Eq. (26) are reproduced, given Q0 set by Eq. (24).

The effect of the fluctuation on the FF is extremely tiny,

�

� eGE

�

� < 3 ⇥ 10�5, (27)

for any Q2. Nevertheless, it obviously has a profound effect
on µH Lamb shift, and on the moments of charge distribution.

Eq. GE
eGE GE

hr2iE [fm2] (6a) (0.9014)2 �(0.1945)2 (0.8802)2

hr3iE [fm3] (13) (1.052)3 (6.369)3 (6.379)3

Lamb-shift, expanded (12)
EFF(1)

2P�2S(eH)[neV] �0.65690 0.03452 �0.62238

EFF(1)
2P�2S(µH)[µeV] �4202 4913 711

Lamb-shift, exact (21a)
EFF(1)

2P�2S(eH)[neV] �0.65691 0.03451 �0.62239

EFF(1)
2P�2S(µH)[µeV] �4202 551 �3651

TABLE I: Lamb shift and moments corresponding to our model FF,
with ✏ = 0.245MeV, A = 5.6 ⇥ 10�6 MeV2, and Q0 set by
Eq. (24).

Its effect on the second and third moment is given by:
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The numerical values of these moments, together with their
“would be” effect on the Lamb shift and the non-expanded
Lamb result, are given in Table I. We observe that the expan-
sion in moments breaks down for the fluctuation contribution
to µH.

To summarise, introducing a tiny (less than 30 ppm) bump
on an empirical FF used to fit the ep scattering data, we are
able to reconcile the eH and µH Lamb shift results. The bump
is localised near the inverse Bohr radius of µH, and as such
affects mostly the µH result. It has a small effect on the charge
radius and the eH Lamb shift, and certainly no effect on the fit
of ep data.

Of course, until one finds a physical justification for such a
structure at low Q, one should take this model only as a word
of caution against the very optimistic view of uncertainties in
the charge radius extractions.

IV. CONCLUSION

We have shown that the effect of the nuclear charge distri-
bution on the hydrogenic Lamb shift is not always expandable
in the moments of charge distribution — a very small fluctu-
ation in the charge distribution located near the Bohr radius
of the atomic system may invalidate the expansion. The exact
(non-expanded) expression for the finite-size effect is given
by Eq. (21).

An example of charge density which invalidates the expan-
sion of the µH Lamb shift in the moments is provided by the
toy model of de Rújula [10]. Applying Eq. (21) shows no sig-
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Outlook & Conclusion
We reproduce the standard finite-size corrections to hydrogen 
spectra, applying a dispersive formalism.


We show that the finite-size effects of the nuclear charge 
distribution on the Lamb shift is not always expandable.


• convergence radius of the Taylor expansion of              has to be 
much larger than the inverse Bohr radius of the given hydrogen-
like system


We show how tiny, milli-percent changes in the proton electric  
form factor at a MeV scale would be able to explain the puzzle.


• one needs to know all the “soft” (below several MeV) 
contributions to proton electric form factor to pcm accuracy
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