High statistics analysis of nucleon form factor in lattice QCD

Eigo Shintani (Mainz) collaborated with Mainz-CLS group

QNP2015 -- Universidad Técnica Federico Santa María, 2-6 March 2015

OUTLINE

Introduction

- Error reduction technique in Wilson-clover fermion
- Lattice result
 - Plateau and summation method for axial charge
 - (iso-)scalar and tensor charge
 - Isovector form factor
- Summary

What is our motivation?

- Lattice QCD is able to determine the nucleon structure function from the first principle of QCD.
- ▶ Compared to experiment, the current precision is not enough. axial charge: Δg_A lattice ~ 10% \Leftrightarrow experiment ~ 0.1% electric charge radius: $\Delta < r_E > lattice \sim 20\% \Leftrightarrow experiment < 0.5%$
- Reducing the uncertainties is essential task for consistency test
 - Monte-Carlo study is rigorous, but there is systematic deviation due to using **unphysical** parameter

$$O_{
m phys} - O_{
m lat}^{
m MC} = \Delta_{
m sys}$$
 $\Delta_{
m sys} = \Delta({
m m-m_{phys}}, {
m V}
eq \infty, \psi_{
m N} + \psi_{
m other \ state}$ etc)

- ▶ Because of stochastic, O^{MC}_{lat} itself has statistical uncertainty.
- Size of $\Delta_{\rm sys}$ and statistical precision are correlated,
 - \Rightarrow increasing statistics in MC make a reduction in the size of $\Delta_{\rm sys}$

"Puzzle" of axial charge

▶ Is g_A determinable from lattice QCD ?

PNDME, PRD89(2014)

- Although there have been many lattice efforts in $N_f=2$, 2+1 (also 2+1+1) with several kinds of lattice action, those values have not been fixed yet.
- There is slight tension from experiment.
- The careful estimate of systematic errors is necessary.

Computation of matrix element

▶ 2pt, 3pt function

$$\langle 0|\mathcal{N}(t)\mathcal{N}^{\dagger}(0)|0\rangle = \langle 0|\mathcal{N}(t_{s},0)J(t,q)\mathcal{N}^{\dagger}(0,p)|0\rangle = \langle 0|\mathcal{N}(t_{s},0)J(t_{s},0)J(t_{s},q)\mathcal{N}^{\dagger}(0,p)|0\rangle = \langle 0|\mathcal{N}(t_{s},0)J(t_{s},q)\mathcal{N}^{\dagger}(0,p)|0\rangle = \langle 0|\mathcal{N}(t_{s},0)J(t_{s},q)\mathcal{N}^{\dagger}(0,p)|0\rangle = \langle 0|\mathcal{N}(t_{s},0)J(t_{s},q)\mathcal{N}^{\dagger}(0,p)|0\rangle = \langle 0|\mathcal{N}(t_{s},0)J(t_{s},q)\mathcal{N}^{\dagger}(0,p)|0\rangle = \langle 0|\mathcal{N}(t_{s},q)\mathcal{N}^{\dagger}(0,p)|0\rangle = \langle 0|\mathcal{N}(t_{s},q)\mathcal{N}^{\dagger}(t_{s$$

$$\langle 0|\mathcal{N}(t)\mathcal{N}^{\dagger}(0)|0\rangle = |\langle 0|\mathcal{N}|N\rangle|^{2}e^{-m_{N}t} + |\langle 0|\mathcal{N}|N'\rangle|^{2}e^{-m'_{N}t} + \cdots$$

$$\langle 0|T\{\mathcal{N}(t_{s},0)J_{\mu}(t,q)\mathcal{N}^{\dagger}(0,p)|0\rangle$$

$$= \langle 0|\mathcal{N}|N\rangle\langle N|J_{\mu}|N\rangle\langle N|\mathcal{N}^{\dagger}|0\rangle e^{-E_{N}t-m_{N}(t_{s}-t)} + \langle 0|\mathcal{N}|N'\rangle\langle N'|J_{\mu}|N'\rangle\langle N'|\mathcal{N}^{\dagger}|0\rangle e^{-E'_{N}t-m'_{N}(t_{s}-t)} + \cdots$$

$$\simeq Z_{N}(0)Z_{N}(p)e^{-E_{N}t-m_{N}(t_{\text{sep}}-t)} \times \left[\{G_{X},g_{A}\} + c_{1}e^{-\Delta(t_{\text{sep}}-t)} + c_{2}e^{-\Delta't}\right]$$

Matrix element of ground state

First excited state contamination $\Delta = m_N' - m_N > 0, \Delta' = E_N' - E_N > 0$

• Matrix element is extracted from ratio of 3pt and 2pt function after removing exponent and amplitude.

What is problem?

Signal-to-noise ratio problem

Noise of nucleon propagator at time-slice t behaves like

$$S/N \sim \sqrt{N} \exp[-(m_N - 3m_\pi/2)t]$$

it means statistics N ~ $\exp[(2m_N-3m_\pi)t]$ are needed for same precision.

Excited state contamination

- Excited state rapidly decays at large t, because of m_N < m_{excited}
- To evaluate ground state mass by fitting with finite t range, precision of nucleon propagator at large t is needed.

Our strategy:

- To reduce statistical error at large t, the <u>all-mode-averaging</u> is efficient way.
- Systematic study of excited state contamination is performed in light pion mass and large volume, $m_{\pi} L > 4$.

2. Error reduction technique

All-mode-averaging

Blum, Izubuchi, ES (2013)

 Effective to reduce statistical error of correlation function without additional computational cost.

$$O^{(\text{imp})} = O^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} O^{(\text{appx}),g}, O^{(\text{rest})} = O - O^{(\text{appx})}$$

- O: 2pt, 3pt function with high precision solver (10-10 residue) ⇒ expensive
- $O^{(appx)}$: 2pt, 3pt function with low precision solver (~10⁻² residue) \Rightarrow cheap
- perform N_g computation of $O^{(appx),g}$ (g:translational shift).

AMA estimator O(imp) whose error supposes to be

$$\frac{\sigma^{\text{imp}}}{\sigma} \simeq \sqrt{\frac{1}{N_G} + 2(1 - r) + \frac{1}{N_g^2} \sum_{g \neq g'} r_{gg'}}$$

$$r = \frac{\langle \Delta O \Delta O^{(\text{appx})} \rangle}{\sigma \sigma^{(\text{appx})}} \qquad r_{gg'} = \frac{\langle \Delta O^{(\text{appx}), g} \Delta O^{(\text{appx}), g'} \rangle}{\sigma^{(\text{appx}), g} \sigma^{(\text{appx}), g'}}$$

r: correlation between O and $O^{(appx)}$

 r_{gg} : correlation between $O^{(appx),g}$ and $O^{(appx),g'}$

• $O^{(appx)}$ has several tuning parameters to control of r and r_{gg} e.g. stopping condition, deflation field, source location

2. Error reduction technique

Performance test of AMA

Reduction of computational cost

- Cost of computing quark propagator is reduced to 1/5 and less.
- Total speed-up is about factor 2 and more. (depending on lattice size and pion mass)

CLS config, $N_f = 2$ Wilson-clover fermion

	Lattice	<i>a</i> (fm)	m_{π} (GeV)	N_{G}	t _s (fm)	#conf	#meas(*)
E 5	64×32^3	0.063	0.456	64	0.82, 0.95, 1.13	~480	~30,000
	$(2.0 \text{ fm})^3$		$(m_{\pi}L=4.7)$		1.32	~1000	~64,000
					1.51	~1600	~102,400
F7	96 × 48 ³	0.063	0.277	64	0.82, 0.95, 1.07	~250	~16,000
	$(3.0 \text{ fm})^3$		$(m_{\pi}L=4.2)$	128	1.20, 1.32	~250	~32,000
				192	1.51	243	~48,000
N6	96 × 48 ³	0.05	0.332	32	0.9	110	3,520
	$(2.4 \text{ fm})^3$		$(m_{\pi}L=4.1)$	32	1.1,1.3	803	25,696
				32	1.5, 1.7	~930	~30,000
G8	128×64^3	0.063	0.193	80	0.88	103	8,240
	$(4.0 \text{ fm})^3$		$(m_{\pi}L=4.0)$	112	1.07	94	10,528
				160	1.26	101	16,160
				64	1.51	170	10,880

^{*} Effective statistics : #mes = $N_G \times \#$ conf

Nucleon mass and its excited state

F(x): Jacobian function with APE smearing link.

- The ground-state dominant, $t/a = 15 \rightarrow t = 0.75$ fm.
- Fitting function

One-state : Ze^{-mt} , Two-state : $Ze^{-mt} + Z'e^{-m't}$

• Good χ^2 value

• Precision, $\Delta m_N/m_N < 1 \%$

Axial charge

Single ratio of 2pt and 3pt with fixed t_s

$$R_A(t,t_s) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)J_3(t,q)\mathcal{N}^{\dagger}(0,0)|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)\mathcal{N}^{\dagger}(0,0)|0\rangle} \simeq g_A + c_1 e^{-\Delta t_s} + c_2 e^{-\Delta'(t_s-t)}$$

N6: $(2.4 \text{ fm})^3$, $a^{-1}=3.95 \text{ GeV}$, $m_{\pi}=0.332 \text{ GeV}$

- Computation of 3pt and 2pt function at zero momentum with spin projection P.
- Signal around t- $t_s/2 >> 1$.
- But the size of excited state (2nd and 3rd terms) are still unknown!
 → significant uncertainty
- Forward and backward averaging

Extraction of g_A

- Ground and excited state ansatz
 - Ground state dominance (Plateau method)

$$R_A(t,t_s) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)J_3(t,q)\mathcal{N}^{\dagger}(0,0)|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_s,0)\mathcal{N}^{\dagger}(0,0)|0\rangle} \simeq g_A, (t_s,t_s-t\gg 1)$$

- Evaluation from constant fitting for t with fixed t_s.
- To suppress the excited state contamination, measurement at large t_s is needed.
- First excited state ansatz

PNDME(2014), RQCD(2014), ...

$$R_A(t,t_s) \simeq g_A + c\left(e^{-\Delta t_s} + e^{-\Delta'(t_s-t)}\right)$$

- Δ is mass difference between ground and Ist excited state.
- Summation method

Capitani et al. PRD86 (2012)

$$R_A^{\text{sum}}(t_s) = \sum_{t=t_{\text{cut}}}^{t_s - t_{\text{cut}}} R_A(t, t_s) \simeq a_0 + t_s (g_A + c_1' e^{-\Delta t_s} + c_2 e^{-\Delta' t_s})$$

- Using summation in $[t_{cut}, t_s-t_{cut}]$ at fixed t_s , the excited state effect is $\sim O(e^{-\Delta t_s})$
- g_A is given from t_s linear part at $t_s >> 1$.

Plateau method

Non-AMA results at t_s < I fm</p>

Plateau method

Non-AMA results at t_s <1.5 fm</p>

Plateau method

▶ AMA results at t_s < 1.5 fm</p>

Plateau method

► AMA results at t_s > 1.5 fm

Excited state ansatz

- Holding in middle point of source-sink separation ⇒ additional averaging
- Fitting the function

$$f(t, t_s) = g_A + c \left(e^{-\Delta t_s} + e^{-\Delta (t_s - t)} \right)$$

- After correction to excited state, g_A increases at $t_s \sim 1$ fm, and in agreement with plateau method in $t_s > 1.5$ fm.
- Mass difference Δ has consistency with two state fit.

Summation method

- Fitting with linear function using $t_{cut} = 1, 3, 5, 8 \Rightarrow$ stability check
- Fitting function is in good agreement with lattice data.
- becomes stable using minimum fit range $t_s > 1$ fm.
- The excited state contribution $O(\exp(-\Delta't_s))$ is not significant in $t_s > 1.5$ fm.

Comparison in $m_{\pi} = 0.19$ and 0.28 GeV

- RQCD collaboration uses $N_f = 2$ Wilson-clover fermion.
- In good agreement with RQCD result in $t_s \sim 1 \text{ fm}$
- It seems large excited state contamination in m_π = 0.19 GeV rather than 0.28 GeV

Systematic error

Central value

Summation method in $t_s > 1$ fm, and maximum value of t_{cut} in $t_s > 1$ fm

Systematic error

- ightharpoonup A) Difference from summation method in $t_s^{min} < 1$ fm
- **B)** Difference from fitting with the first excited state in $t_s > 1$ fm

lattice	g _A	Statistical	Systematic A)	Systematics B)
E5	1.240	0.021(1.7%)	0021(1.7%)	0.022(1.7%)
F7	1.245	0.033(2.7%)	0.003(0.2%)	0.035(2.8%)
N6	1.222	0.024(2.0%)	0.045(3.6%)	0.054(4.4%)
G8	1.246	0.103(8.3%)	0.003(0.2%)	0.062(5%)

m_{π} dependence

Scalar and tensor charge

• There does not appear significant effect of excited state.

3. Preliminary results

Isovector form factor

4. Summary

Summary

- ▶ High statistics calculation of nucleon form factor is performed in N_f =2 Wilson-clover at $Lm_\pi > 4$ with $m_\pi = 0.19$ --0.46 GeV.
- All-mode-averaging technique is working well for reduction of statistical error in Wilson-clover fermion.
- $t_s > 1.5$ fm is required for small contribution of excited state contamination in axial charge, rather than scalar and tensor charge.
- Axial charge is now close to experiment.
- Feasible study for application to $N_f = 2+1$ CLS configurations with open boundary condition.

Thank you for your attention.

3. Preliminary results

Isovector form factor

Ratio with momentum transition

$$R_{G}(t,t_{s}) = Z \frac{\mathcal{P}\langle 0|\mathcal{N}(t_{s},p_{1})J_{\mu}(t,q)\mathcal{N}^{\dagger}(0,p_{0})|0\rangle}{\mathcal{P}\langle 0|\mathcal{N}(t_{s},p_{0})\mathcal{N}^{\dagger}(0,p_{0})|0\rangle} K(p_{1},p_{0}) \simeq G_{X} + d_{1}e^{-\Delta t_{s}} + d_{2}e^{-\Delta'(t_{s}-t)}$$

$$K(p_{1},p_{0}) = \sqrt{\frac{C_{\text{2pt}}^{\text{lc}}(p_{1},t_{s}-t)C_{\text{2pt}}^{\text{sm}}(p_{0},t)C_{\text{2pt}}^{\text{lc}}(p_{0},t_{s})}{C_{\text{2pt}}^{\text{lc}}(p_{0},t_{s}-t)C_{\text{2pt}}^{\text{sm}}(p_{1},t)C_{\text{2pt}}^{\text{lc}}(p_{1},t_{s})}},$$

- The ratio consists of 3pt and 2pt, with combination of local "lc" and smeared "sm" sink.
- Matrix element with Sachs form factor

$$\langle N(\vec{p}_1)|J_{\mu}|N(\vec{p}_0)\rangle = \bar{u}(p_1)\Big[F_1^v(q^2)\gamma_{\mu} + F_2q_{\nu}\sigma_{\mu\nu}/2m_N\Big]u_N(p_0)$$

 $G_E = F_1 - \frac{q^2}{4m_N^2}F_2, G_M = F_1 + F_2$

- Form factor G_X as a function of q^2 , $q = p_1 p_0$, in which $p_1 = (0, m_N) p_0 = (p, E)$ are used.
- Systematic study of excited state contamination with plateau and summation method is necessary.

2. Error reduction technique

Performance test of AMA

Correlation

- $r_{gg'}$: correlation between $O^{(appx)}$ with g and g' transformation.
- 2(1-r): correlation between $O^{(appx)}$ and O.
- At t ~ 24, size of correlation is similar to I/N_G , \Rightarrow maximum point to reduce error