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MINERVA 
COLLABORATION

Located underground at 
Fermilab, Chicago USA. 

Institutions from 9 countries 
with over 60 collaborators.
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NUMI BEAM

120 GeV/c protons from Main 
Injector on graphite target 
producing pions which decay. 

Horns focus negative or positive 
pions to produce ν or anti-ν (lower 
flux) beam. 

Medium Energy (ME) run started in 
September 2013 (in progress).

figure courtesy Z. Pavlović
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FLUX

Understanding the neutrino 
flux is difficult. 

Currently flux is simulated in 
GEANT4 and then reweighted 
to match hadron production 
data from NA49. Recent 
MIPP data will help a lot. 

Using Nu-E scattering to 
constraint the flux (important 
for ME data)
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MINERVA DETECTOR

120 (CH) modules for tracking and calorimetry 
(32k readout channels) 

Tracker surrounded by electromagnetic and 
hadronic calorimetry

Nucl. Inst. and Meth. A743 (2014) 130

The MINOS near detector serves as a muon 
spectrometer 

Nuclear targets of C (166 kg), Fe (653 kg), and Pb 
(750 kg)
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NEUTRINO NUCLEUS 
SCATTERING

The observed measurement (c-like topology at Ed observed energy) depends 
on the initial reaction but is convoluted due to flux and nuclear effects. 

Current flux uncertainties are ~10%, possibly to be improved to ~5%. 

σc,d,e,…(E’) is the measured energy dependent neutrino cross section off a 
nucleon within the nucleus. 

Nucc,d,e,…(E’) are nuclear effects which takes the interaction of a neutrino 
with energy E’ and channel c,d,e and then appear in our detector as an event 
of energy Ed and channel c.

Yc�like(Ed) / �⌫(E
0 � Ed)⌦ �c,d,e,...(E

0 � Ed)⌦Nucc,d,e,...(E
0 � Ed)
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NUCLEAR EFFECTS

Nucleon is in motion - classical Fermi gas model or spectral functions. 

Nucleon-nucleon correlations such as Meson Exchange Currents 
imply multi-nucleon initial states. 

Cross sections, form factors, and structure functions are modified 
within the nuclear environment and parton distribution functions 
(pdfs) within a nucleus are different than in an isolated nucleon. 

Produced topologies are modified by final-state interactions (FSI). 

Convolution of σ⊗formation zone model⊗π-exchange/absorption
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Same physics different description



NUCLEON NUCLEON 
CORRELATIONS

In electron scattering 
measurements on 12C indicate 
20% correlated nucleons. 

In neutrino scattering, initial 
produced state may be nn in 
antineutrino and pp in neutrino 
CC scattering due to scattering 
off np correlated state. 

Final observed channel and 
energy topology will be 
modified by FSI.

R. Subedi et al., Science 320, 1476 (2008)10



FINAL STATE 
INTERACTIONS (FSI)

Interaction between products of initial state and 
the rest of the nucleus, changing the final state 
configuration and energy (currently cascade 
models). 

Example 1: initial pion can charge exchange or 
be absorbed by pair of nucleons or nucleon can 
scatter producing pion. 

Example 2: Δ production where Δ scatters 
before decay. Pion is absorbed releasing 2 
neutrons which may not be detected. Proton 
scatters and comes out of nucleus. Final 
observed states is a observed as QE-like with a 
lower energy than that of the neutrino.

11



GENERATORS

MINERvA observed events are convolutions if the interaction and nuclear effects, modelled in 
event generators. 

Key to the interpretation of MINERvA measurements, giving systematic uncertainties and 
comparisons for background and signal if the given model is correct. 

Current Generators used by experimental community (some with many models) 

GENIE - ArgoNeut, MicroBooNE, MINOS, MINERvA, NOvA, T2K, LBNE, IceCube 

NEUT - SuperKamiokande, K2K, SciBooNE, T2K 

GiBUU - Nuclear Transport Model used to check models in other generators 

NuWRO - K2K, MINERvA as check of models in other generators

Yc�like(Ed) / �⌫(E
0 � Ed)⌦ �c,d,e,...(E

0 � Ed)⌦Nucc,d,e,...(E
0 � Ed)
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3.98e20 POT neutrinos 
1.70e20 POT antineutrinos

Muon Published Phys. Rev. Lett. 111, 
022502 (2013). and Phys. Rev. Lett. 

111, 022501 (2013).
Hadron Published on arXiv:1409.4497



MUON EVENT SELECTION

For Muons 

Single track with matching 
track in MINOS. 

No more than 1 (2) 
additional blobs for anti-ν 
(ν). 

Sum recoil energy 
calorimetrically, not 
including energy near vertex.

14

Q2
QE,1�track = 2E⌫ (Eµ � pµ cos ✓µ)�m2

µ

E⌫ =

m2
n � (mp � Eb)

2 �m2
µ + 2(mp � Eb)Eµ

2(mp � Eb � Eµ) + pµ cos ✓µ

QE Signal QE Background



EVENT SELECTION

For Protons 

Require 2 or more 
tracks 

Reject events with 
any pion 

Muon does not need 
to be in MINOS
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Q2
QE,2�track = (Mn � ✏B)

2 �M2
p + 2 (Mn � ✏B) (Tp �Mn � ✏B)

Broader dataset



MUON SELECTION 
RESULTS

Basic relativistic Fermi gas 
model disfavored. 

Increasing axial mass 
disfavored. 

Relativistic Fermi gas model 
plus Transverse 
Enhancement Model 
favored (neutrino interacts 
with pair of nucleons, TEM 
only includes vector 
component of axial current).
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MUON VERTEX RESULTS

Compare energy in vertex to 
proton simulation 
(assumption that additional 
energy is due to protons). 

Neutrino data suggests that 
25% of events have 
additional proton. 

Antineutrino data suggests 
that -10% of events have an 
additional proton

17
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HADRON SELECTION 
RESULTS

Data favors the simple 
relativistic Fermi gas 
model. 

Data should be more 
sensitive to FSI. 

Models should explain both 
final state lepton and 
hadron. 

Discrepancy!
18
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3.04e20 POT neutrinos

Publication forthcoming 
on arXiv:1406.6415
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CHARGED PION EVENT 
SELECTION

Events contain one muon 
matched in MINOS and exactly 
one charged pion. 

Only tracks which stop in the 
electromagnetic calorimeter or 
tracker region are accepted. 

Pions are identified by dE/dx, and 
the existence of a Michel electron 
at the end of the pion track.
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CHARGED PION RESULTS

The shape only distributions 
favor GENIE with FSI 
included. 

The magnitude does not favor 
investigated GENIE models. 

Difference between 
MiniBooNE and MINERvA 
results below 100 MeV not 
understood. 

Energy dependence of GENIE 
FSI models not well modeled.
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3.04e20 POT neutrinos 
2.01e20 POT antineutrinos

Phys. Rev. Lett. 113, 261802 (2014) 
on arXiv:1409.3835

Existence of pion and muon with 
no nucleon breakup (quiet vertex) 
and low momentum transferred 

between nucleus and pion.



2 (GeV/c)2)
π

Reconstructed |t| = (q-p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
Ev

en
ts

 / 
0.

02
5 

(G
eV

/c
)

0

100

200

300

400

500

600

700 DATA
COH
QE
RES W<1.4
1.4<W<2.0
W> 2.0
Other

A PreliminaryνMINER

POT Normalized
2.01e+20 POT

All Background Tuned

 + A-π + +µ → + A µν

COHERENT PION EVENT 
SELECTION

Events have almost no vertex 
energy. 

Muon enters MINOS. 

Separation of coherent 
scattering from incoherent 
background by slope of |t| due to 
the slope being different for 
diffractive and resonant 
processes. 

Sideband is selected as the 
incoherent background, is tuned 
to MC to minimize χ2
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COHERENT PION 
RESULTS

Data shows a harder and 
more forward pion 
distribution than in GENIE. 

The selection of low |t| 
events allows a model 
independent measurement 
of coherent pion 
production. 

Disagreement at high θπ 

1628 neutrino and 770 anti-
neutrino events
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2.94e20 POT neutrinos

Phys. Rev. Lett. 112, 231801 (2014) 
son arXiv:1403.2103 
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INCLUSIVE EVENT 
SELECTION

Events must have a 
muon in MINOS. 

Target vertex must be in 
passive target or 
neighbouring scintillator. 

Neutrino energy between 
2 and 20 GeV. 

Muon angle < 17 deg.

Target 5
Target 4

Target 3
Target 2

1” Pb  / 1” Fe 
266kg / 323kg

3” C / 1” Fe / 1” Pb 
166kg / 169kg / 121kg

.5” Fe / .5” Pb 
161kg/ 135kg
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0.3” Pb 
228kg

Gives MINOS acceptance (restricts kinematics). 
Gives estimate of contamination from scintillator.



INCLUSIVE ENERGY 
RESULTS

No tension in shape 
between data and 
GENIE model.
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INCLUSIVE BJORKEN 
RESULTS

Tension between data and 
GENIE at low x. 

Deficit that increases with 
the size of the nucleus. 

The neutrino is sensitive to 
xF3 and axial component 
of F2. 

Requires theory input to 
understand inclusive, non-
DIS ratios.
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INCLUSIVE BJORKEN 
RESULTS

Tension between data and 
GENIE at high x. 

Excess that increases with 
the size of the nucleus. 

High x data is ~66% quasi-
elastic. 

Nuclear model in GENIE 
based on electron results and 
not neutrino predictions 
(ignores axial vector current).
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FUTURE

In the ME configuration, 
multiple passive targets (Pb, Fe, 
C) will allow a measurement of A 
dependence in coherent pion 
production. 

ME gives high statistics for DIS 
allowing A-dependent structure 
functions. 

Water and Helium target 
analyses and exclusive target 
ratio analyses. 

Captain MINERvA: extension of 
MINERvA to include LAr target.

32

Simulation GENIE 2.6.2

DIS

Soft DIS

LE Data

Quasi-elastic



FUTURE

Possibly distinguish 
between different 
GPD 
parameterizations in 
selected processes. 

GPD models give 
clear expectations 
for the coherent pion 
production 
dependence on A.
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SUMMARY

No single nuclear model fits all the data. 

Advancements require close work between experimentalists and theorists: NuSTEC 

Next meeting in 2015 after NuINT. 

Nuclear effects mixes channels and changes energy between produced and final states 
requiring measurements to depend on the nuclear models considered. 

These nuclear models require further input from theorists and should be able to serve as 
a generator for all lepton on hadron data. 

MINERvA has already produced exciting and challenging results about neutrino nucleus 
scattering, what will we show next! 

Expect CCπ0, K, NuE elastic later this year.
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BACKUP
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LOW ENERGY DATA 
QUALITY

Data was collected for the 
low energy data run in a 
number of different 
configurations. 

Special runs existed to 
provide tests and 
calibrations.
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OUTLINE

Introduction to MINERvA 

Neutrino Nucleus Scattering 

Quasi-Elastic Scattering 

Pion Production 

Charged, Neutral, and Coherent 

Inclusive Charged Scattering 

Summary and Conclusions
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NEUTRAL PION RESULTS

Data favours GENIE 
generator with FSI in both 
magnitude and shape. 

Analysis details 
forthcoming.
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NUE CROSS SECTION

We see a discrepancy between the model predictions 
for the NuE and NuMu ratios and observation. 

We have ruled out that this discrepancy mostly 
depends on the neutrino flux or on the existence of a 
sterile neutrino. 

Under further study. 

No further comments.
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