

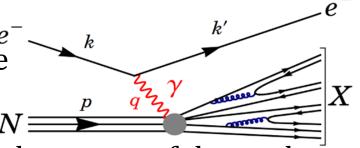
Outline

§ Lattice QCD for Nucleon Structure

A brief introduction and selected results near physical pion mass

§ Spotlight on New Calculations

Work in progress with great future prospects


§ Applications to New-Physics Searches

nEDM, neutron beta decays, ...

Nucleon Structure

- § Study nucleon structure since '60s
 e Deep inelastic scattering @ SLAC, more
- § Fundamental QCD property

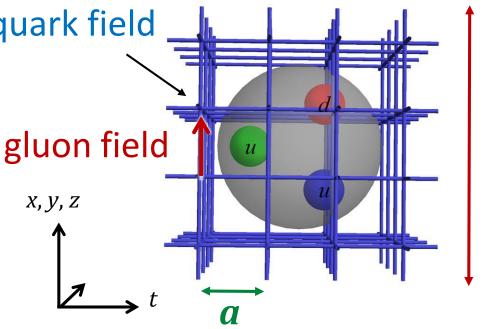
> Exploration of the valence and sea-quark content of the nucleon

§ Important for BSM searches

Provides SM cross-section prediction for LHC new-physics search
 § Still limited knowledge

Many on-going/planned experiments: (Jlab, J-PARC, GSI, EIC, LHeC, ...)

This conference: McKeown, Nagae, Foka, ...

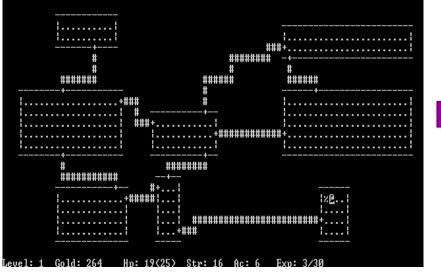


How Can LQCD Help?

 § Lattice QCD is an ideal theoretical tool for investigating strong-coupling regime of quantum field theories
 >> Great for studying nonperturbative hadron structure

§ Physical observables are calculated from the path integral $\langle 0 | O(\bar{\psi}, \psi, A) | 0 \rangle = \frac{1}{Z} \int DA D\bar{\psi} D\psi e^{iS(\bar{\psi}, \psi, A)} O(\bar{\psi}, \psi, A)$ quark field in Euclidian space

 Impose a UV cutoff discretize spacetime
 Impose an infrared cutoff finite volume


Are We There Yet?

§ Lattice gauge theory was proposed in the 1970s by Wilson

Why haven't we solved QCD yet?

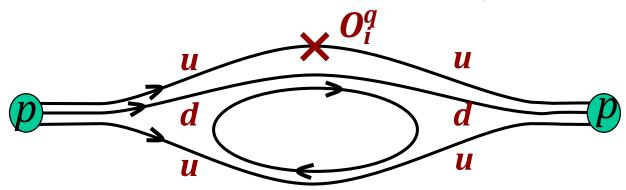
- § Progress is limited by computational resources
- Evolution of technology

80's

Today

§ Greatly assisted by advances in algorithms

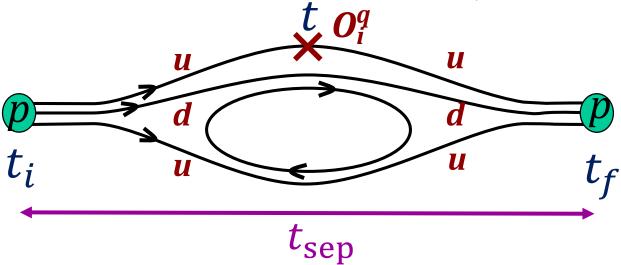
§ From "quenched" to "dynamical" QCD vacuum


Include quark loops in vacuum
 Degenerate up/down quarks 2f
 Add strange (2+1f)
 Add charm 2+1+1f
 MILC (HISQ), ETMC (TMW), ...
 Some now include isospin
 breaking (1+1+...) with QED
 PACS-CS, BMWc, RBC/UKQCD

§ Physical pion-mass ensembles are not uncommon!
§ Generate QCD vacuum closer to real world

Nucleon Matrix Elements

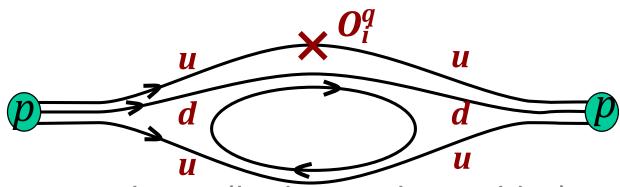
Lattice-QCD calculation of $\langle N | \overline{q} \Gamma q | N \rangle$


§ Construct correlators (hadronic observables)

Requires "quark propagator" Invert Dirac-operator matrix (rank O(10¹²))

Nucleon Matrix Elements

Lattice-QCD calculation of $\langle N | \overline{q} \Gamma q | N \rangle$


§ Analysis (extract couplings)

$$\begin{split} \mathcal{C}^{2\text{pt}}\big(t_{f},t_{i}\big) &= |\mathcal{A}_{0}|^{2}e^{-M_{0}\left(t_{f}-t_{i}\right)} + |\mathcal{A}_{1}|^{2}e^{-M_{1}\left(t_{f}-t_{i}\right)} + \mathcal{C}^{3\text{pt}}\big(t_{f},t,t_{i}\big) &= |\mathcal{A}_{0}|^{2}\langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_{0}\left(t_{f}-t_{i}\right)} \\ &+ \mathcal{A}_{0}\mathcal{A}_{1}^{*}\langle 0|\mathcal{O}_{\Gamma}|1\rangle e^{-M_{0}\left(t-t_{i}\right)}e^{-M_{1}\left(t_{f}-t\right)} \\ &+ \mathcal{A}_{0}^{*}\mathcal{A}_{1}\langle 1|\mathcal{O}_{\Gamma}|0\rangle e^{-M_{1}\left(t-t_{i}\right)}e^{-M_{0}\left(t_{f}-t\right)} \\ &+ |\mathcal{A}_{1}|^{2}\langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_{1}\left(t_{f}-t_{i}\right)} \end{split}$$

Nucleon Matrix Elements

Lattice-QCD calculation of $\langle N | \overline{q} \Gamma q | N \rangle$

- § Construct correlators (hadronic observables)
- ✤ Invert Dirac-operator matrix (rank $O(10^{12})$)
- § Analysis (extract couplings)
- § Extrapolate to continuum limit
- \sim Take $m_{\pi} \rightarrow m_{\pi}^{\text{phys}}$, $a \rightarrow 0$, $L \rightarrow \infty$
- § Control all systematic errors:
- Choice of extrapolation (e.g. dipole for form factors), renormalization to 2 GeV MS scheme, etc.

Progress

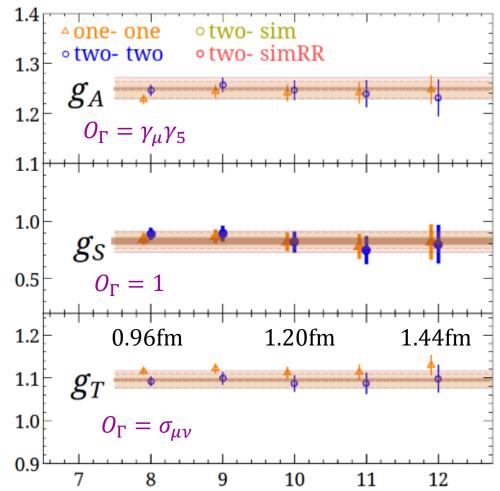
§ Much effort has been devoted to controlling systematics

- Characteristics
- § Lighter pion masses
- More measurements at the physical pion mass!
- § More intense systematics study
- **∼** Remove assumptions in the simulation (*a*, *L*, m_q)
- $\gg 10^4$ measurements not uncommon
- § Investigate previously difficult calculations
- ✤ Such as disconnected diagrams, etc.

Progress

§ Much effort has been devoted to controlling systematics§ For example, PNDME's calculations

<i>a</i> (fm)	V	$M_{\pi}L$	M_{π} (MeV)	t _{sep}	# Meas.
0.12	$24^3 \times 64$	4.54	310	8,9,10,11,12	8104
0.12	$24^3 \times 64$	3.21	220	8,10,12	24000
0.12	$32^3 \times 64$	4.29	220	8,10,12	7664
0.12	$40^3 \times 64$	5.36	220	10	8080
0.09	$32^3 \times 96$	4.50	310	10,12,14	7048
0.09	$48^3 \times 96$	4.73	220	10,12,14	7120
0.09	$64^3 \times 96$	3.80	130	10,12,14	7064
0.06	$48^3 \times 144$	4.53	310	16,20,22,24	4000
0.06	64 ³ × 144	4.28	220	16,20,22,24	2400
0.06	96 ³ × 192	3.80	130		0



§ Much effort has been devoted to controlling systematics § For example, PNDME's calculations a = 0.12 fm, 310-MeV pion

Move the
 excited-state systematic
 into the statistical error

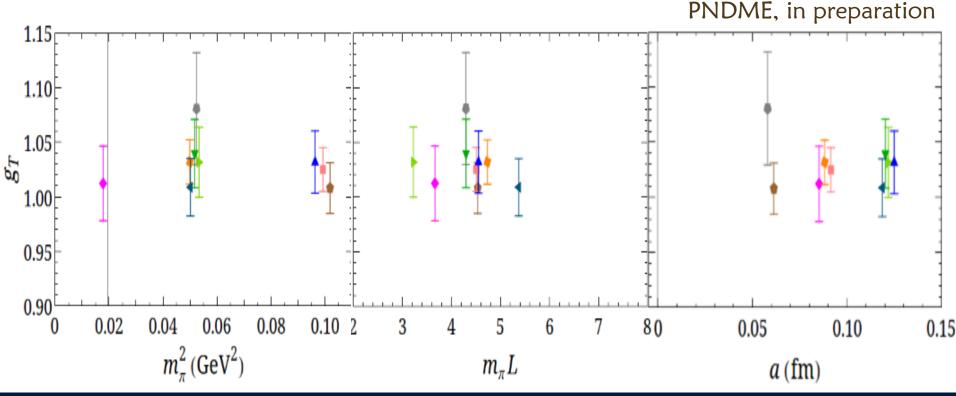
$$\begin{split} \mathcal{C}^{3\text{pt}}\big(t_f, t, t_i\big) &= |\mathcal{A}_0|^2 \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f - t_i)} \\ &+ \mathcal{A}_0 \mathcal{A}_1^* \langle 0|\mathcal{O}_{\Gamma}|1\rangle e^{-M_0(t - t_i)} e^{-M_1(t_f - t)} \\ &+ \mathcal{A}_0^* \mathcal{A}_1 \langle 1|\mathcal{O}_{\Gamma}|0\rangle e^{-M_1(t - t_i)} e^{-M_0(t_f - t)} \\ &+ |\mathcal{A}_1|^2 \langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_1(t_f - t_i)} \end{split}$$

No obvious contamination between 0.96 and 1.44 fm separation

§ Much effort has been devoted to controlling systematics § For example, PNDME's calculations a = 0.09 fm, 310-MeV pion

Move the excited-state systematic into the statistical error

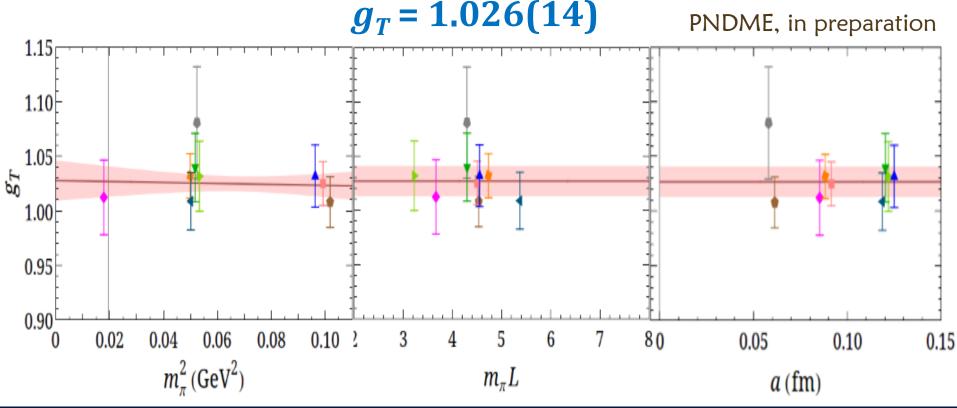
$$\begin{split} \mathcal{C}^{3\text{pt}}\big(t_f, t, t_i\big) &= |\mathcal{A}_0|^2 \langle 0|\mathcal{O}_{\Gamma}|0\rangle e^{-M_0(t_f - t_i)} \\ &+ \mathcal{A}_0 \mathcal{A}_1^* \langle 0|\mathcal{O}_{\Gamma}|1\rangle e^{-M_0(t - t_i)} e^{-M_1(t_f - t)} \\ &+ \mathcal{A}_0^* \mathcal{A}_1 \langle 1|\mathcal{O}_{\Gamma}|0\rangle e^{-M_1(t - t_i)} e^{-M_0(t_f - t)} \\ &+ |\mathcal{A}_1|^2 \langle 1|\mathcal{O}_{\Gamma}|1\rangle e^{-M_1(t_f - t_i)} \end{split}$$


 Much stronger effect at finer lattice spacing!
 Needs to be studied case by case

△one- one ∘two- sim •two- simRR two- two 1.3 g_A 1.2 1.11.0 g_{S} 0.5 1.2 0.90fm 1.08fm 1.26fm 1.1 1.0 0.9 12 9 10 11 13 14

§ Much effort has been devoted to controlling systematics § For example, PNDME's g_{τ} calculations

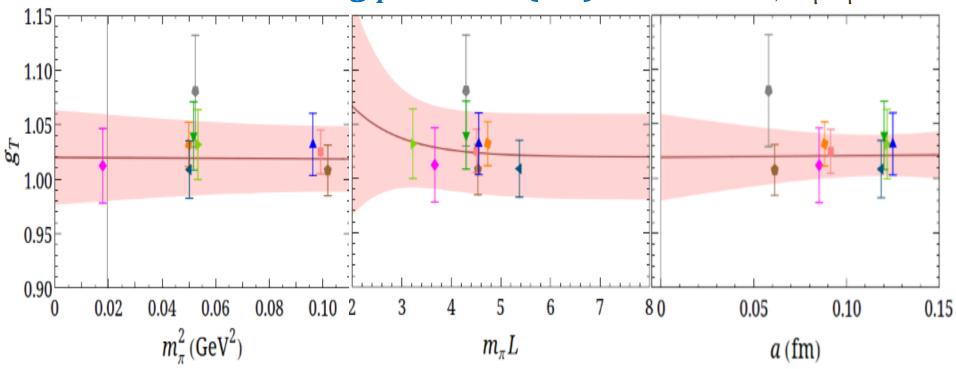
Study the pion-mass, volume and lattice spacing dependences (sometimes they are mild)



§ Much effort has been devoted to controlling systematics § For example, PNDME's g_{τ} calculations

> Extrapolate to physical limit

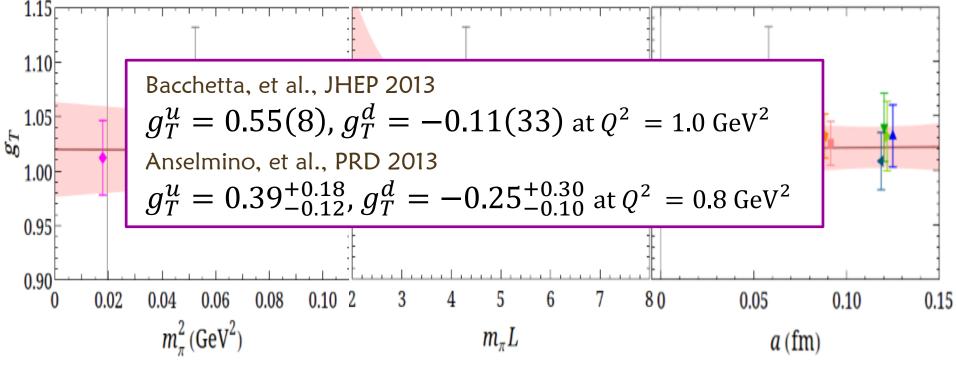
(assume no dependence on *L* or *a*)



§ Much effort has been devoted to controlling systematics § For example, PNDME's g_T calculations

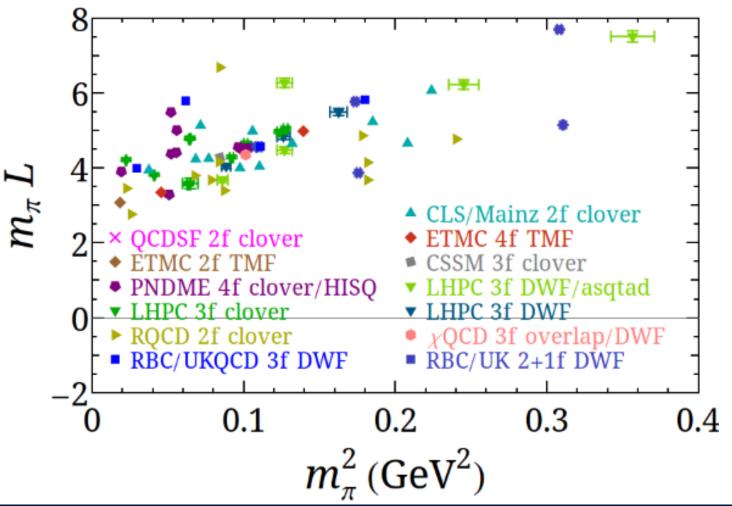
> Extrapolate to physical limit

 $g_T(a, m_{\pi}, L) = c_1 + c_2 a + c_3 m_{\pi}^2 + c_4 e^{-m_{\pi}L}$ $g_T = 1.018(42)$ PNDME, in preparation



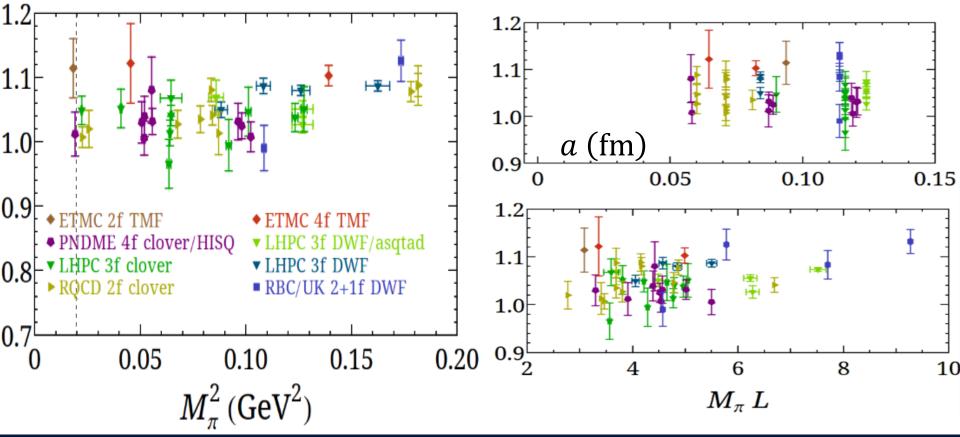
§ Much effort has been devoted to controlling systematics § For example, PNDME's g_{τ} calculations

> Extrapolate to physical limit

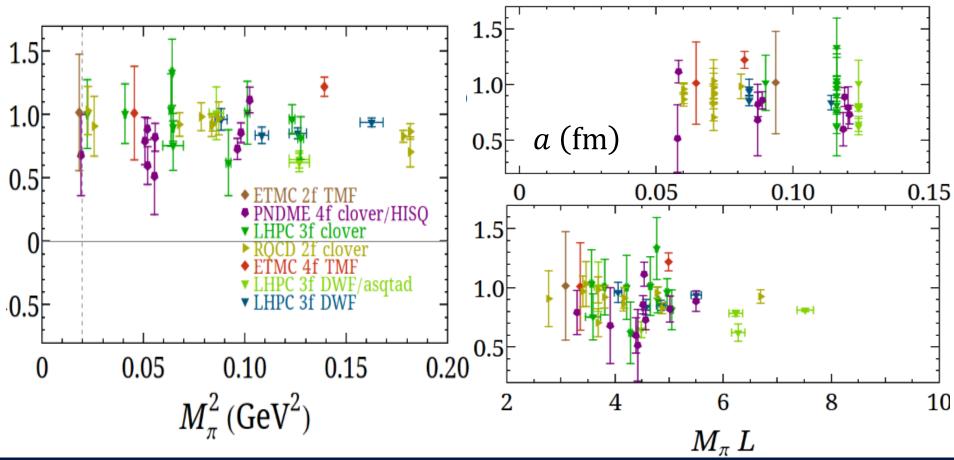

$$g_T(a, m_\pi, L) = c_1 + c_2 a + c_3 m_\pi^2 + c_4 e^{-m_\pi L}$$

$$g_T = 1.018(42)$$
 PNDM

PNDME, in preparation


Progress

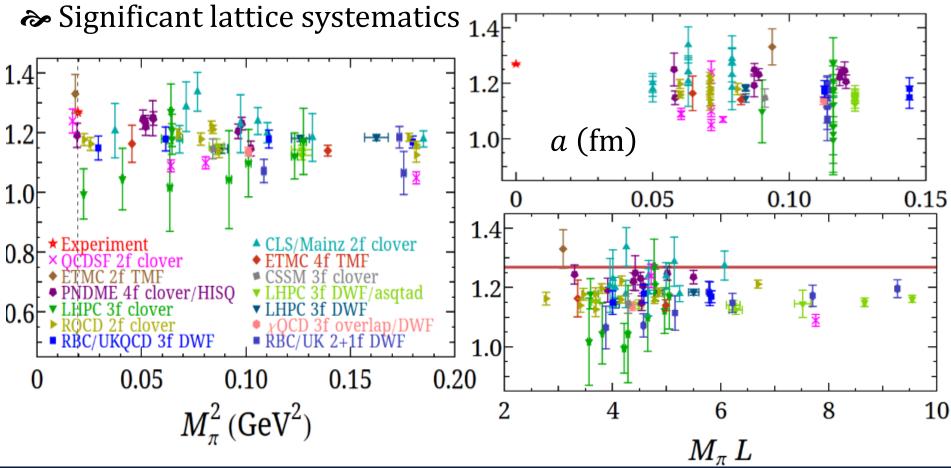
§ Tensor charge: the zeroth moment of transversity
>> Experimentally, probed through SIDIS, ...
>> Poor determination so far



Progress

§ Scalar charge

Hadronic inputs in nucleon(nuclear) beta decay BSM search
 Related CP-violating pion-nucleon coupling in nEDM EFT



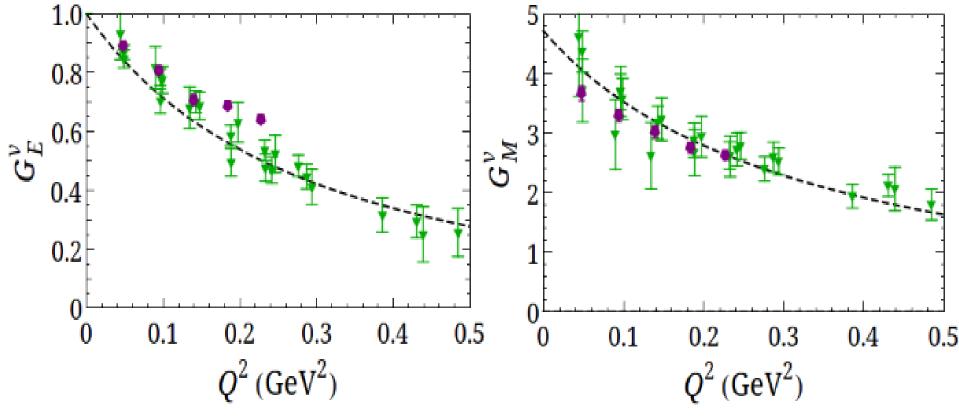
Progress

§ Axial charge

Most well-known coupling with subpercent errors
 Important to the rate of *pp* fusion, *n*-lifetime, ...

Form Factors

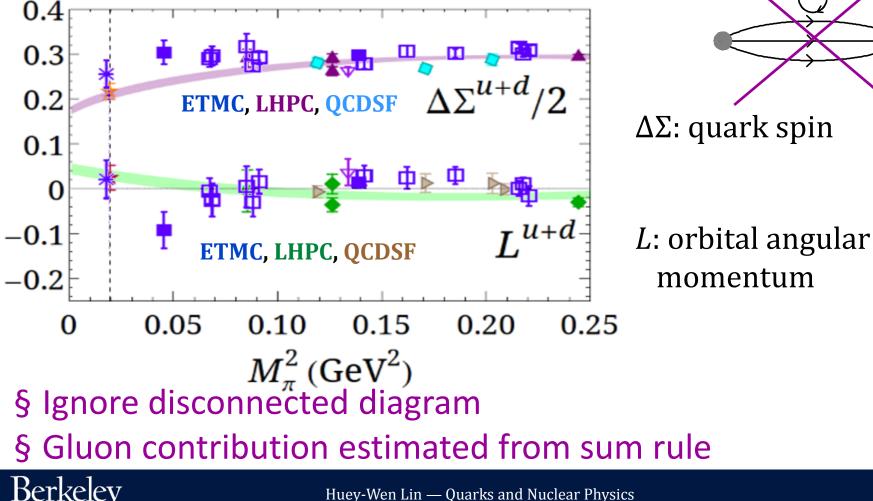
§ Form factors ✤ Elastic scattering $\approx F_1(Q^2), F_2(Q^2), G_A(Q^2), G_P(Q^2)$ Ν N> For example, octet baryons p $\langle B | V_{\mu} | B \rangle(q) = \overline{u}_B(p') \left| \gamma_{\mu} F_1(q^2) + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2M_P} \right| u_B(p)$ Dirac Pauli $\langle B | A_{\mu} | B \rangle(q) = \overline{u}_B(p') \left| \gamma_{\mu} \gamma_5 G_A(q^2) + \gamma_5 q_{\nu} \frac{G_P(q^2)}{2M_R} \right| u_B(p)$ Induced Pseudoscalar Axial Sachs: $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M_B^2}F_2(Q^2), \ G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$ ectric Magnetic


Electric

Form Factors

§ EM form factors very close to physical pion mass ✤ Examples from LHPC and PNDME J. Green et al, 1404.4029

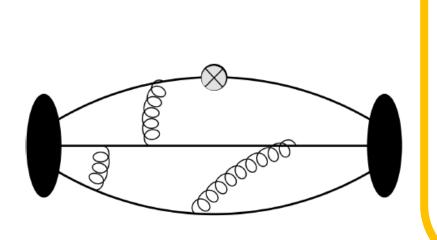
PNDME, in preparation

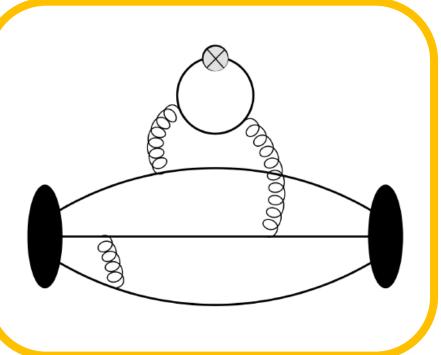

§ Expecting more precise results in the next couple years

Orígín of Proton Spín

§ What is the makeup of the nucleon?

 \gg The origin of the nucleon's spin (the "spin crisis") ➢ Results from LHPC, QCDSF, ETMC

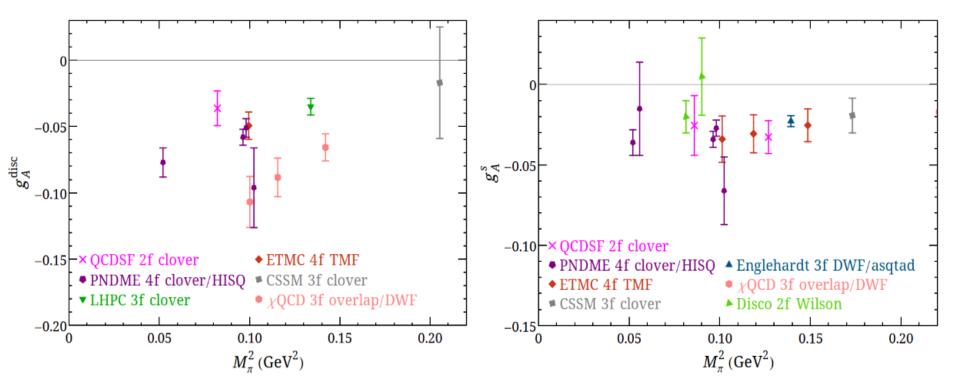




Disconnected Diagrams

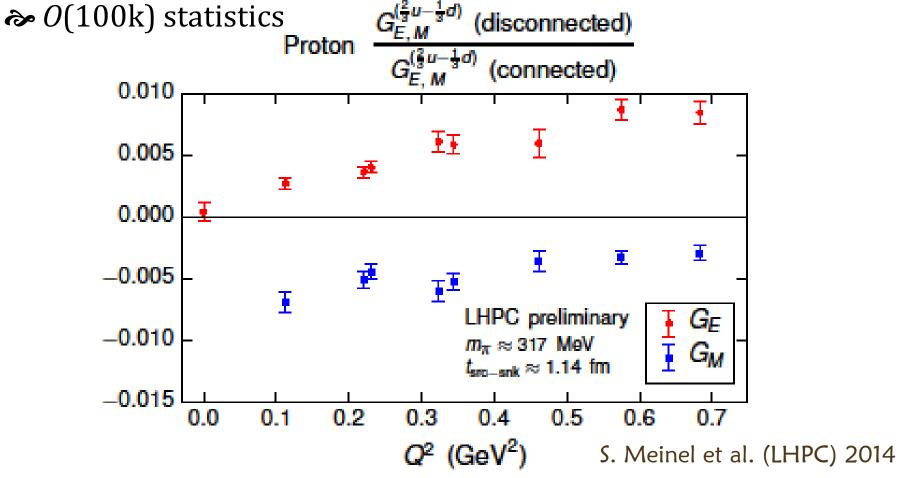
§ Disconnected diagram

 Multiple ways to calculate this notorious contribution...
 Truncated solver, hopping-parameter expansion, hierarchical probing, ...



Disconnected Diagrams

§ High statistics reveals the previously neglected contribution
 ➢ Reduces total quark contribution to nucleon spin by O(0.1)


More work needs to be done on disconnected OAM

Disconnected Diagrams

§ Disconnected diagram in form factors

For example, LHPC work using clover fermions

PDFs on the Lattice

§ Lattice calculations rely on operator product expansion, only provide moments most well known spin-averaged/unpolarized $\langle x^{n-1} \rangle_q = \int_{-1}^{1} dx \ x^{n-1} q(x)$ spin-dependent longitudinally polarized $\langle x^{n-1} \rangle_{\delta q} = \int_{-1}^{1} dx \, x^{n-1} \delta q(x)$ spin-dependent very poorly known transversely polarized

§ True distribution can only be recovered with all moments

PDFs on the Lattice

§ Limited to the lowest few moments

For higher moments, all ops mix with lower-dimension ops
 No practical proposal yet to overcome this problem

§ Relative error grows in higher moments

- Calculation would be costly
- ✤ Cannot separate valence contrib. from sea

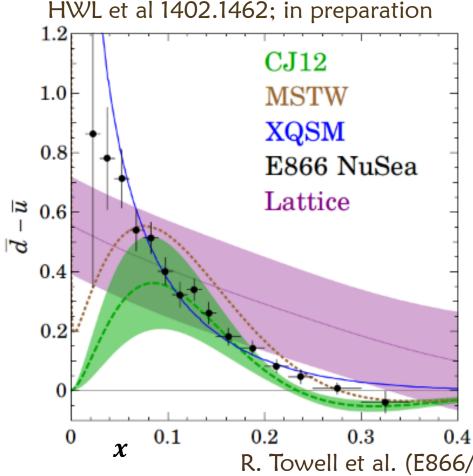
PDFs on the Lattice

§ Limited to the lowest few moments

For higher moments, all ops mix with lower-dimension ops
 No practical proposal yet to overcome this problem

§ Relative error grows in higher moments

- Calculation would be costly
 Cannot separate valence contrib. from sea
 New Strategy: Xiangdong Ji, PRL 111, 039103 (2013); this conference
- § Adopt lightcone description for PDFs
- § Calculate finite-boost quark distribution
- Solution For finite P_z , corrections are applied through effective theory


§ Demonstration: Feasible with today's resources!

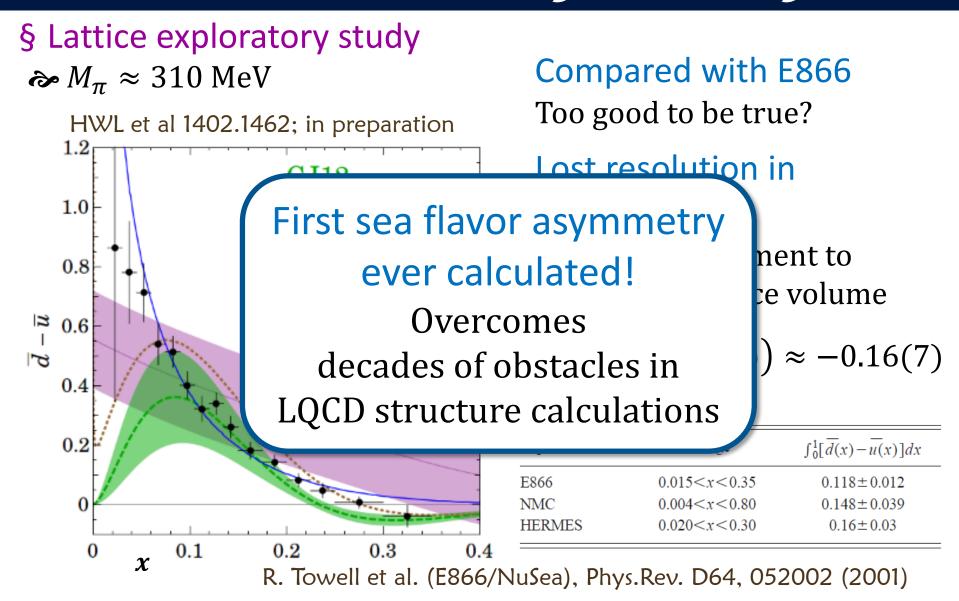
x

Sea Flavor Asymmetry

§ Lattice exploratory study $\gg M_{\pi} \approx 310 \text{ MeV}$

Compared with E866 Too good to be true?

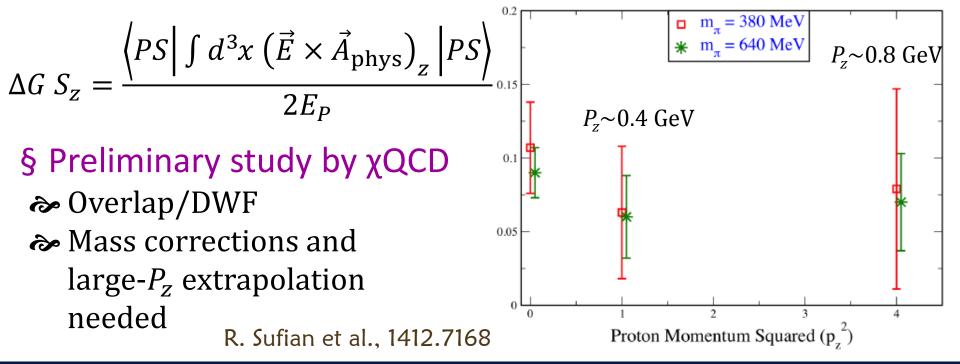
Lost resolution in small-x region Future improvement to have larger lattice volume


$$dx\left(\bar{u}(x)-\bar{d}(x)\right)\approx -0.16(7)$$

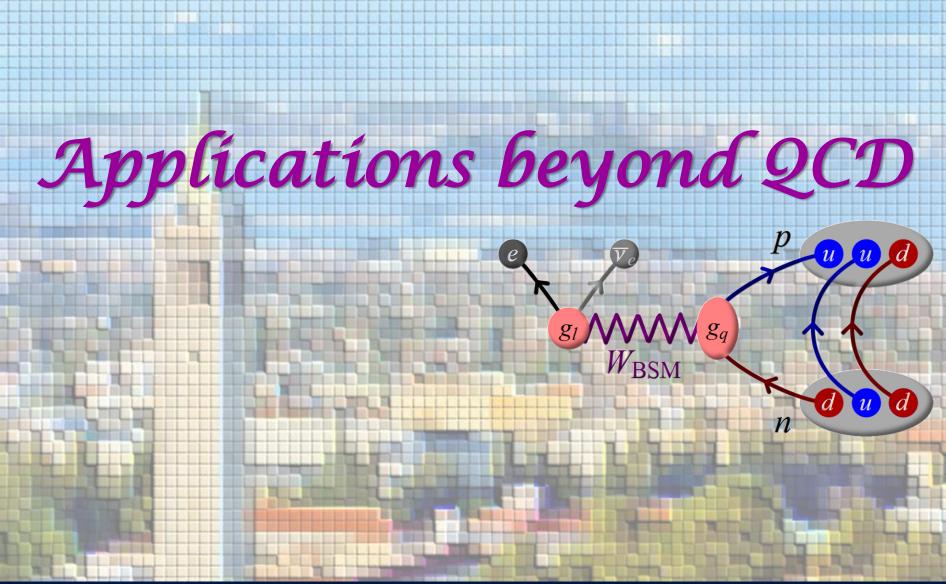
Experiment	x range	$\int_0^1 [\overline{d(x)} - \overline{u(x)}] dx$
E866	0.015< <i>x</i> <0.35	0.118 ± 0.012
NMC	0.004 < x < 0.80	0.148 ± 0.039
HERMES	0.020< <i>x</i> <0.30	0.16 ± 0.03

R. Towell et al. (E866/NuSea), Phys.Rev. D64, 052002 (2001)

Sea Flavor Asymmetry


Gluon Helicity

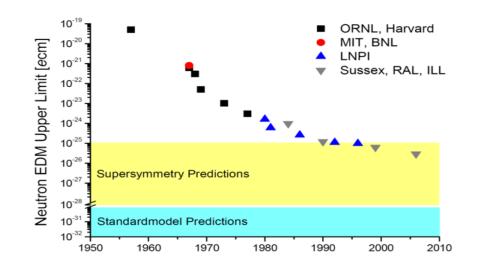
§ Gluon helicity in long. pol. proton $\Delta G = \int_0^1 dx \,\Delta g(x)$


$$\Delta g(x) = \frac{i}{4\pi x P_{+}^{2}} \int d\lambda \, e^{ix\lambda} \left\langle PS \left| F_{+}^{\alpha}(\lambda n) \mathcal{P}e^{ig \int_{0}^{\lambda} A_{+}(\eta n)d\eta} \tilde{F}_{+\alpha}(0) \right| PS \right\rangle$$

§ It can be calculated through large-momentum frame

X. Ji et al., PRL. 111 (2013) 112002; 110 (2013) 262002; PRD 89, 085030 (2014)

Low-Precision Experiments


Many opportunities to probe BSM with LQCD

§ Dark-Matter Searches ➢ Nucleon (nuclear) sigma terms, strangeness

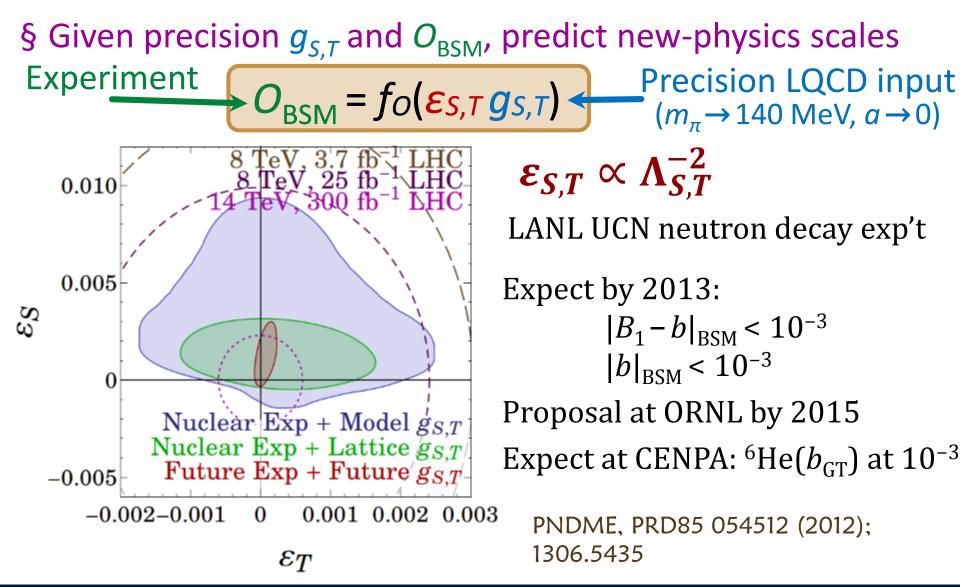
§ Nucleon beta decay
 Susan Gardner, this conference
 ➢ Probing non-V−A (e.g. isovector scalar and tensor) interactions

§ Electric dipole moment

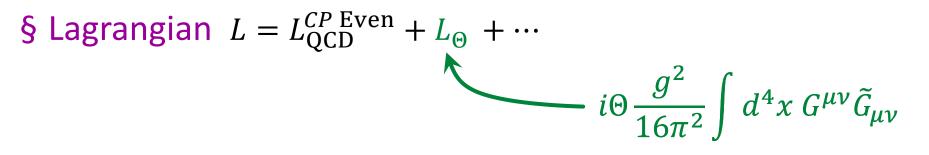
 ➢ CP-violating effect
 ➢ Extremely small in SM: ≈ 10⁻³⁰ e-cm
 ➢ Best SUSY model killer

BSM Interactions

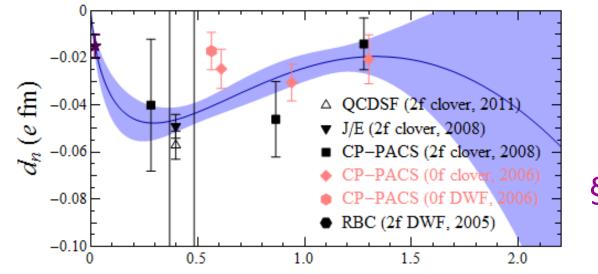
§ Neutron beta decay could be related to new interactions: the scalar and tensor



Beta Decays & BSM

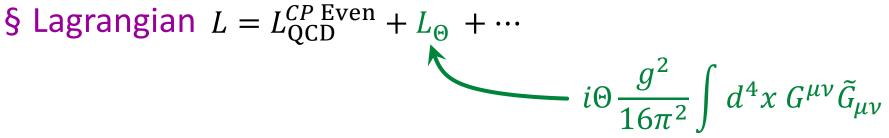

§ Given precision $g_{S,T}$ and O_{BSM} , predict new-physics scales Experiment $O_{\text{BSM}} = f_0(\varepsilon_{S,T} g_{S,T}) \leftarrow Precision LQCD input$ $(m_{\pi} \rightarrow 140 \text{ MeV}, a \rightarrow 0)$ $\varepsilon_{S,T} \propto \Lambda_{S,T}^{-2}$ 0.010 LANL UCN neutron decay exp't 0.005 Expect by 2013: \mathcal{S} $|B_1 - b|_{\rm BSM} < 10^{-3}$ $|b|_{RSM} < 10^{-3}$ 0 Proposal at ORNL by 2015 Nuclear Exp + Model $g_{S,T}$ Nuclear Exp + Lattice $g_{S,T}$ Future Exp + Future $g_{S,T}$ Expect at CENPA: ${}^{6}\text{He}(b_{CT})$ at 10^{-3} -0.005 $0.001 \ 0.002 \ 0.003$ -0.002 - 0.0010 PNDME, PRD85 054512 (2012); 1306.5435 \mathcal{E}_T

Beta Decays & BSM



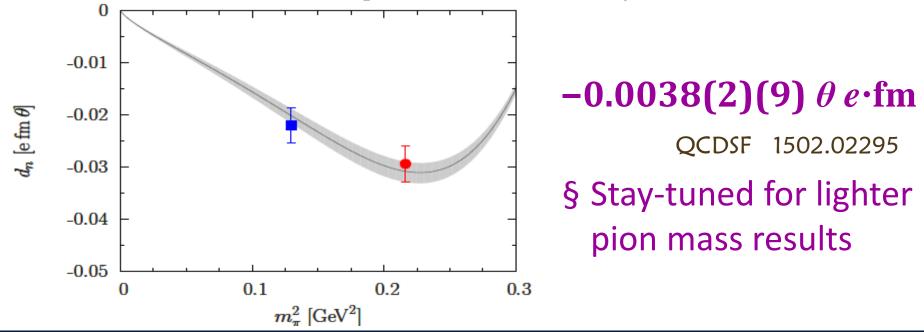
§ Leading contribution

Solution CP-even QCD vacuum with θ-term expansion RBC, J/E, CP-PACS(2005), CP-PACS(2006, 2010), QCDSF(2011), ...



Chiral extrapolation K. Ottnad et al., 2010

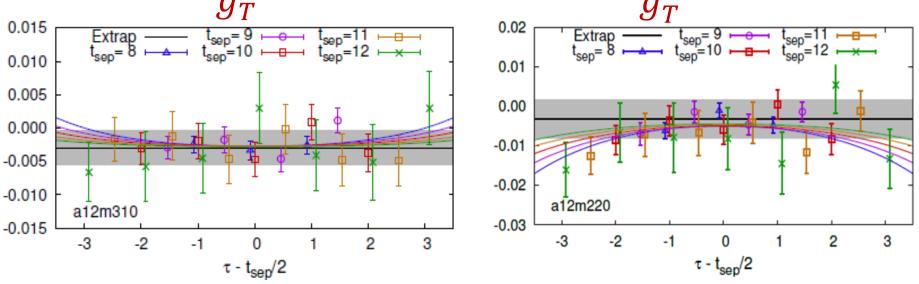
-0.015(5) θ e·fm
 HWL, 1112.2435
 Plenty of room for
 improvement



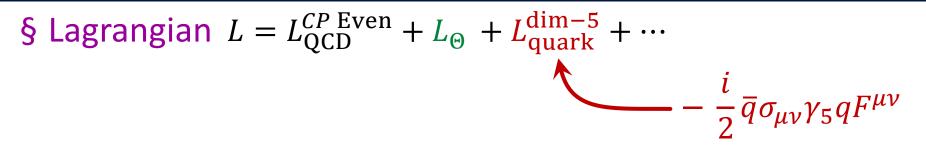
n E D M

§ Leading contribution

≫ CP-odd QCD vacuum in dynamical quarks by QCDSF *≫* Demonstrated of concept at 3f clover at $M_{\pi} \approx 360$ and 465 MeV



§ Lagrangian $L = L_{QCD}^{CP \text{ Even}} + L_{\Theta} + L_{quark}^{\dim-5} + \cdots$ $-\frac{i}{2} \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu}$ & Hadronic contribution: $(N | \bar{\sigma} \sigma = \sigma | N)$


§ Hadronic contribution: $\langle N | \bar{q} \sigma_{\mu\nu} q | N \rangle$ § Quark EDM

PNDME, in preparation

Strange/light disconnected contributions consistent with zero a^{s}

§ Quark EDM

> Quark tensor charge analysis 0.95 0.950.950.90 0.90 0.90 0.85 0.85 0.85 **F** 망 뭆 ⊐⊑ 00 0.80 0.80 0.80 0.75 0.75 0.75 0.70 0.70 0.70 0.03 0.06 0.09 0.12 0 0.05 0.10 0.15 3 4 5 6 0.00 M_{π}^2 (GeV²) a (fm) M_πL -0.16-0.16-0.16-0.18-0.18-0.18ф -0.20-0.20-0.20〒 -0.22 ₽55 -0.22 ₩ -0.22 -0.24-0.24-0.24-0.26-0.26-0.26-0.28-0.28-0.280.03 0.06 0.09 0.12 0 0.00 0.05 0.10 0.15 3 5 4 6 7 M_{π}^2 (GeV²) a (fm) M_πL

PNDME, in preparation

§ Lagrangian
$$L = L_{QCD}^{CP \text{ Even}} + L_{\Theta} + L_{quark}^{\dim-5} + \cdots$$

 $-\frac{i}{2} \bar{q} \sigma_{\mu\nu} \gamma_5 q F^{\mu\nu}$

§ Quark EDM

Quark tensor charge analysis (at 2 GeV, MS scheme)

$$g_T^u = 0.788(75)$$

 $g_T^d = -0.223(25)$

Assuming this is only source, gives constraint

PNDME, in preparation 10 less [90% CL] 8 6 4 d_u [×10⁻²⁵e·cm] 2 0 -2 -4 -6 -8 -10 high -2 2 -3 3 4 -1 n $d_d [\times 10^{-25} e \cdot cm]$

§ Lagrangian
$$L = L_{QCD}^{CP \text{ Even}} + L_{\Theta} + L_{quark}^{\dim-5} + L_{chromo-quark}^{\dim-5} + \cdots$$

 $\bar{q}\sigma_{\mu\nu}\gamma_5\lambda^A G^{\mu\nu A} q$

§ Chromo-quark operators

 Complicated quark/gluon structure, non-trivial mixings at non-zero lattice spacing, symmetry breaking, and further problems
 Work progressing in understanding these issues and preliminary numerical simulations are on the way

T. Bhattacharya et al, 1403.2445

- § Exciting era using LQCD to study nucleon structure
- ➢ Well-studied systematics → precision inputs
 ➢ Ensembles with physical pion masses

§ Overcoming longstanding obstacles

Address neglected contributions to many quantities
 Bjorken-x dependence of parton distribution functions
 First lattice study on gluon helicity

§ Precision low-*E* exp'ts to probe BSM physics

Probe high-energy (TeV) physics at low energy (GeV)
Combined effort from experiment and theory sides
More work devoted to the intensity frontier, e.g. nEDM

Gluoníc Momentum Fractíon

- § Exploratory stage: quenched results $O_{\mu\nu} = -\text{tr}_c F_{\mu\alpha} F_{\nu\alpha}$ \Rightarrow Quenched, heavy pion masses, linear chiral extrapolation § QCDSF ('97) and LHPC ('07)
- ➢ Direct matrix-element calculation: $\langle x \rangle_g = 0.53(23)$ QCDSF
 ➢ HYP-smearing, study pion: $\langle x \rangle_g = 0.6(2)(1)$

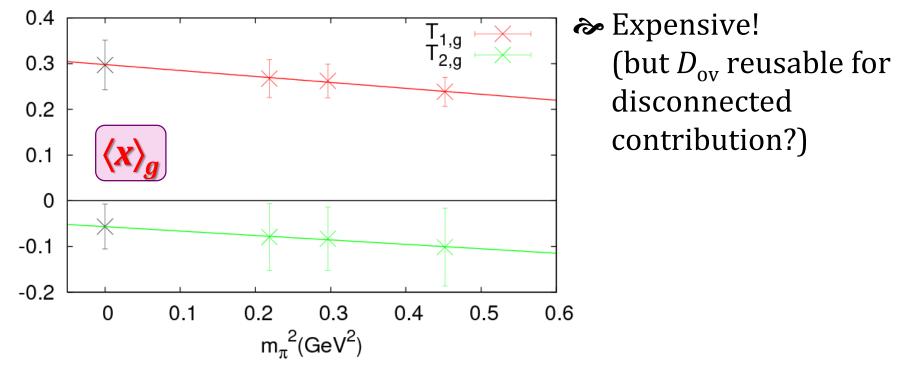
§ χQCD K.F. Liu et al., 1203.6388

➢ Rewrite gluonic observables with massless overlap kernel $tr_s(\sigma_{\mu\nu}D_{ov}) ∝ a^2 F_{\mu\nu}$

§ QCDSF R. Horseley et al., 1205.6410

> Feynman-Hellmann theorem with modification of the action

$$S \to S + \lambda S_{\mathcal{O}} \longrightarrow \beta \lambda \frac{1}{3} \left(\sum_{\vec{x}, i} \operatorname{Re} \operatorname{tr}_{c} [1 - P_{i4}(\vec{x})] - \sum_{\vec{x}, i < j} \operatorname{Re} \operatorname{tr}_{c} [1 - P_{ij}(\vec{x})] \right)$$

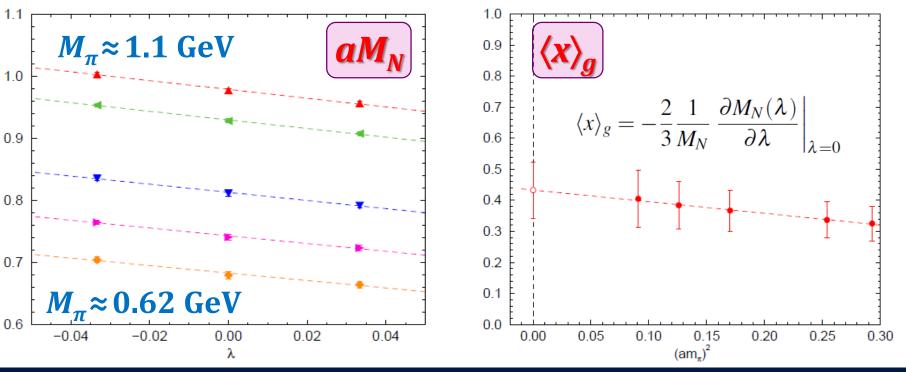


Gluoníc Momentum Fraction

§ χQCD K.F. Liu et al., 1203.6388 & private communication

➢ Rewrite gluonic observables as tr_s(σ_{µν}D_{ov}) ∝ a²F_{µν}
➢ Use Z₄ noise sources to estimate D_{ov} stochastically
➢ a ≈ 0.1 fm, 16³ Wilson + Wilson, M_π≈ 480–650 MeV,

500 confs, $\langle x \rangle_g = 0.313(56)$



Gluoníc Momentum Fraction

§ QCDSF R. Horseley et al., 1205.6410

➢ Feynman-Hellmann theorem (absorbed operators in the action)
➢ a ≈ 0.1 fm, 24³ Wilson + NP clover, $M_{\pi} \approx 1100-600$ MeV
O(500) confs, $\langle x \rangle_g = 0.43(7)$

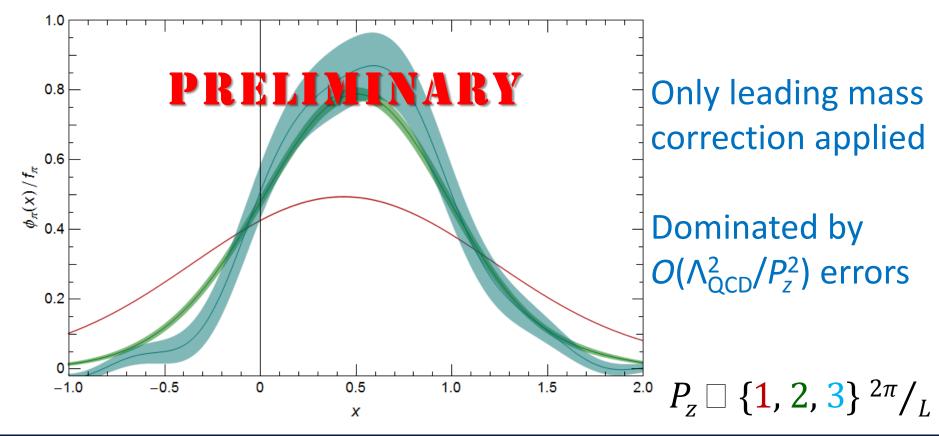
> Cheap, operator by operator; reweighting for dynamical lattices

Orígín of Proton Spín

§ What is the makeup of the nucleon?

XQCD, 1203.6388 [hep-ph] and private communication w/ Y. Yang

§ Breakdown:

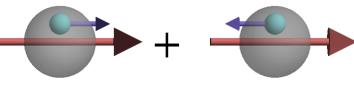

 $\Delta \Sigma_q = 50(2)\%, L_q = 25(12)\%$ (mostly DI), $J_g = 25(8)\%$ § Looking forward to χQCD (overlap/DWF), QCDSF (clover)

Pion Distribution Amplitude

§ Exploratory study

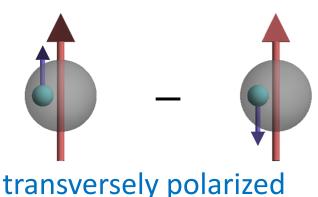
$$\int \frac{dz}{2\pi} e^{-izk_z} \left\langle 0 \left| \overline{d}(z) \gamma_z \gamma_5 \exp\left(-ig \int_0^z dz' A_z(z')\right) u(0) \right| \pi^+(P) \right\rangle$$

Parton Distribution Functions


§ Quark distribution

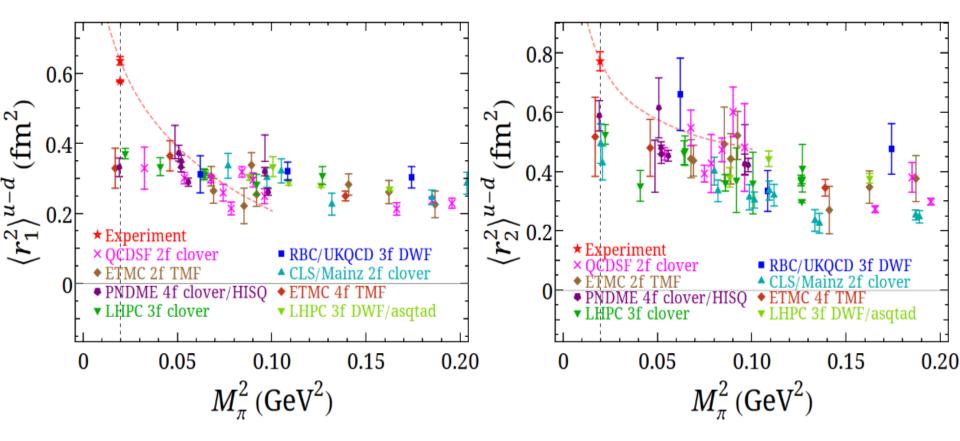
Processes: DIS (F_2 , σ), Drell-Yan, *W*-asymmetry, *Z*-rapidity, (γ+) jet, ...

Experiments: BCDMS, NMC, SLAC, JLab, HERA, E866, CDF, DØ,...


§ Helicity distribution

- Processes: polarized DIS, semi-inclusive DIS, photo- and electroproduction of hadrons and spin-dep./long. polarized charm, pp collisions
- Experiments: EMC, HERMES, Hall A, CLAS, COMPASS, STAR, PHENIX, ...
- § Transversity distribution
- Process: single-spin asymmetry in SIDIS, ...
- ➢ Experiments: HERMES, COMPASS, Belle...

spin-averaged/unpolarized



Form Factors

§ Charge radii

✤ Lattice data way too low

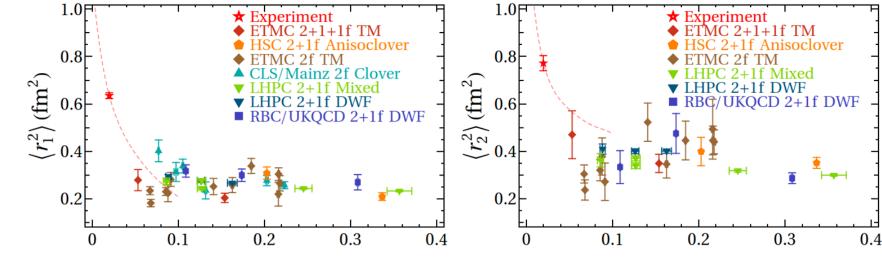
>> No help for the proton-radius puzzle

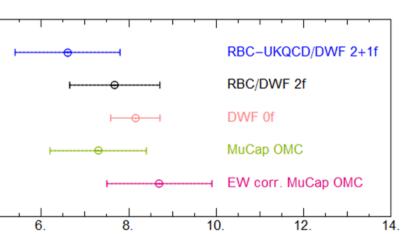
Generalized Parton Distribution

$$\mathcal{O}_{V}^{\mu_{1}\dots\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}i} \stackrel{\leftrightarrow}{D}{}^{\mu_{2}}\dots i \stackrel{\leftrightarrow}{D}{}^{\mu_{n}\}}\psi$$
$$\mathcal{O}_{A}^{\mu_{1}\dots\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}i} \stackrel{\leftrightarrow}{D}{}^{\mu_{2}}\dots i \stackrel{\leftrightarrow}{D}{}^{\mu_{n}\}}\gamma_{5}\psi$$

$$\langle N(p',s')|\mathcal{O}_{\#\gamma_5}^{\mu\nu}|N(p,s)\rangle = \bar{u}_N(p',s') \Big[\tilde{A}_{20}(q^2)\,\gamma^{\{\mu}P^{\nu\}}\gamma^5 + \tilde{B}_{20}(q^2)\,\frac{q^{\{\mu}P^{\nu\}}}{2m}\gamma^5\Big] u_N(p,s)\,.$$

§ Generalized Parton Distribution \Rightarrow Deeply virtual Compton scattering (DVCS) $\Rightarrow \langle x^{n-1} \rangle_q = A_{n0}(0), \langle x^{n-1} \rangle_{\Delta q} = \tilde{A}_{n0}(0), \langle x^n \rangle_{\delta q} = A_{Tn0}(0)$ $\Rightarrow F_1(Q^2) = A_{10}(Q^2), F_2(Q^2) = B_{10}(Q^2), G_A(Q^2) = \tilde{A}_{10}(Q^2), G_P(Q^2) = \tilde{B}_{10}(Q^2)$ \Rightarrow Nucleon spin $A_{20}(0), B_{20}(0)$




Form Factors

§ Charge radii

> Lattice data way too low; no help for the proton-radius puzzle

§ Induced-pseudoscalar
g*_P = [m_µG_p(0.88m²_µ) / 2m_N]
➢ Poor constraints
(DWF numbers so far)
➢ Important for muon physics

