1st future Hadron Collider Workshop CERN

Double Higgs production in gluon fusion^{@ 14 TeV & 100 TeV}

Minho Son EPFL, Lausanne

Work in progress with Azatov, Contino, DelRe, Meridiani, Micheli, Panico

Higgs has been discovered

We were expecting to see new physics coming along with Higgs discovery, e.g. based on Naturalness argument. But we keep seeing nothing. What should we do?

Higgs has been discovered

We were expecting to see new physics coming along with Higgs discovery, e.g. based on Naturalness argument. But we keep seeing nothing. What should we do?

I would just shut up and keep digging for new physics (or any non-Standard things)

Higgs has been discovered

We were expecting to see new physics coming along with Higgs discovery, e.g. based on Naturalness argument. But we keep seeing nothing. What should we do?

I would just shut up and keep digging for new physics (or any non-Standard things)

While one can directly search for new particles, we will stick to the measurement of Higgs couplings which is another place where NP can hide

How to organize?

How to organize?

et multiplicty

Higgs multiplicty

Single h	Double h	Triple H
h	hh	hhh
h+j	hh+j	
h+jj	hh+jj	

- also roughly indicates possible initial states/related kinematics
- Jet multiplicity might be replaced with V=W,Z, top, etc...

How to organize?

et multiplicty

Higgs multiplicty

Single h	Double h	Triple H
h 🗸	hh	hhh
h+j	hh+j	
h+jj 🗸	hh+jj	

- also roughly indicates possible initial states/related kinematics
- Jet multiplicity might be replaced with V=W,Z, top, etc...

How to organize?

et multiplicty

Higgs multiplicty

Single h	Double h	Triple H
h ~ 50 pb ^{gg}	hh ~ 34 fb ^{gg}	hhh ~ 44 ab ^{gg}
$h+j \sim 2 f b^{p_T(j)>100}$	hh+j	
h+jj ~ ^{15 pb^{vbF}}	hh+jj ~ 2 fb ^{vbF}	

- also roughly indicates possible initial states/related kinematics
- Jet multiplicity might be replaced with V=W,Z, top, etc...

What can we learn from gg-hh?

"Practically" speaking ...

The boundary varies with assumptions

 $gg \rightarrow hh \text{ process}$

 $gg \rightarrow hh \text{ process}$

 $gg \rightarrow hh$ process

Five parameters are involved What's the connection of these pars. to NP?

: How do we systematically study the effects of those pars ?

I. Resolving finite top loop makes big differences in differential distributions

II. Cross section is more sensitive to c_{2t} than to c_3

Higgs Effective Field Theory (HEFT)

: Model Independent Approach

Higgs Effective Field Theory (HEFT)

: Model Independent Approach

Assumption: Separation of scale

Higgs Effective Field Theory (HEFT)

: Model Independent Approach

Assumption: Separation of scale

Non-linear Lagrangian

$$\begin{split} L_{HEFT} &= L_{pheno.} + h \text{ d.o.f.} = \\ \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{v^{2}}{4} Tr |D_{\mu}\Sigma|^{2} \left(1 + 2 a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \cdots \right) \\ &- m_{t} \overline{t_{L}} \Sigma \left(1 + c_{t} \frac{h}{v} + c_{2t} \frac{h^{2}}{v^{2}} + \cdots \right) t_{R} + h. c. + \text{ other fermions} \\ &- \frac{g_{s}^{2}}{4\pi^{2} v^{2}} \left(c_{g} v h + \frac{1}{2} c_{gg} h^{2} \right) G_{\mu\nu}^{a} G^{a\mu\nu} \\ &- \frac{1}{2} m_{h}^{2} h^{2} - c_{3} \frac{1}{6} \left(\frac{3 m_{h}^{2}}{v} \right) h^{3} - d_{4} \frac{1}{24} \left(\frac{3 m_{h}^{2}}{v^{2}} \right) h^{4} + \cdots \end{split}$$

Non-linear Lagrangian

$$\begin{split} L_{HEFT} &= L_{pheno.} + h \text{ d.o.f.} = \\ \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{v^{2}}{4} Tr |D_{\mu}\Sigma|^{2} \left(1 + 2 a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \cdots \right) \\ &- m_{t} \overline{t_{L}} \Sigma \left(1 + c_{t} \frac{h}{v} + c_{2t} \frac{h^{2}}{v^{2}} + \cdots \right) t_{R} + h. c. + \text{ other fermions} \\ &- \frac{g_{s}^{2}}{4\pi^{2} v^{2}} \left(c_{g} v h + \frac{1}{6} c_{gg} h^{2} \right) G_{\mu\nu}^{a} G^{a\mu\nu} \\ &- \frac{1}{2} m_{h}^{2} h^{2} \left(c_{3} \frac{h}{6} \left(\frac{3 m_{h}^{2}}{v} \right) h^{3} - d_{4} \frac{1}{24} \left(\frac{3 m_{h}^{2}}{v^{2}} \right) h^{4} + \cdots \end{split}$$

Non-linear Lagrangian

$$\begin{split} L_{HEFT} &= L_{pheno.} + h \text{ d.o.f.} = \\ \frac{1}{2} (\partial_{\mu} h)^{2} + \frac{v^{2}}{4} Tr |D_{\mu}\Sigma|^{2} \left(1 + 2 a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \cdots \right) \\ &- m_{t} \overline{t_{L}} \Sigma \left(1 + c_{t} \frac{h}{v} + c_{2t} \frac{h^{2}}{v^{2}} + \cdots \right) t_{R} + h. c. + \text{other fermions} \\ &- \frac{g_{s}^{2}}{4\pi^{2} v^{2}} \left(c_{g} v h + \frac{1}{2} c_{gg} h^{2} \right) G_{\mu\nu}^{a} G^{a\mu\nu} \\ &- \frac{1}{2} m_{h}^{2} h^{2} - c_{3} \frac{1}{6} \left(\frac{3 m_{h}^{2}}{v} \right) h^{3} - d_{4} \frac{1}{24} \left(\frac{3 m_{h}^{2}}{v^{2}} \right) h^{4} + \cdots \end{split}$$

SM:
$$c_t = 1$$
, $d_3 = 1$, $c_{2t} = 0$, c_g , $c_{gg} = 0$
NDA $\delta c_i \sim 0 \left(\frac{g_*^2 v^2}{m_*^2}\right) \sim O\left(\frac{v^2}{f^2} \equiv \xi\right)$

SILH basis

: useful when we are in the vicinity of SM point

SILH basis

: useful when we are in the vicinity of SM point

Expand around SM point in terms of H $: c_t = 1, c_3 = 1, c_{2t} = 0, c_g, c_{gg} = 0$

SILH basis

1 - - 1 2

: useful when we are in the vicinity of SM point

Expand around SM point in terms of H : $c_t = 1$, $c_3 = 1$, $c_{2t} = 0$, c_g , $c_{gg} = 0$

E.g.
$$L_{dim4} \times \frac{|\mathbf{H}|^2}{f^2} = \frac{\overline{c}_{\mathrm{H}}}{2v^2} \partial_{\mu} |\mathbf{H}|^2 \partial^{\mu} |\mathbf{H}|^2, \quad \frac{\overline{c}_{\mathrm{u}}}{v^2} y_{\mathrm{u}} \overline{\psi} \mathbf{H} \psi |\mathbf{H}|^2, \quad \frac{\overline{c}_{6}}{v^2} |\mathbf{H}|^4 |\mathbf{H}|^2, \quad \frac{\overline{c}_{g} g_{\mathrm{s}}^2}{m_{\mathrm{W}}^2} |\mathbf{H}|^2 \mathrm{G}^{\mathrm{a}\mu\nu} \mathrm{G}_{\mu\nu}^{\mathrm{a}}$$

 $c_{\mathrm{t}} = 1 - \frac{1}{2} \overline{c}_{\mathrm{H}} - \overline{c}_{\mathrm{u}}, \quad c_{2\mathrm{t}} = 0 - \frac{1}{2} \overline{c}_{\mathrm{H}} - \frac{3}{2} \overline{c}_{\mathrm{u}}, \quad c_{3} = 1 + \overline{c}_{6} - \frac{3}{2} \overline{c}_{\mathrm{H}}$
 $\mathsf{NDA} \quad \overline{c}_{6}, \overline{c}_{\mathrm{H}}, \overline{c}_{\mathrm{u}} \sim \left(\frac{v}{f}\right)^2 \equiv \xi, \quad \overline{c}_{g} \times \frac{4\pi^2}{\alpha_2} = \xi \times \frac{y_{t}^2}{g_{*}^2}$

When upgrading Energy $14 \text{TeV} \xrightarrow{7x} 100 \text{ TeV}$

Main kinematics remain same under 7x But there are some changes here and there ...

More radiations, higher jet multiplicity

Zoo of $gg \rightarrow hh$ decay

Consider the best channel or multiple comparable channels

Boosted kinematics could help ??

If your signal rate/kinematics allows,

e.g. Energy-growing VV-hh process, 100TeV

 $gg \rightarrow hh \rightarrow b\bar{b}\gamma\gamma$

In this work we focus on

Acceptance cuts @14TeV

 $p_T(b, \gamma)^{max} > 50 \ GeV,$ $p_T(b, \gamma)^{min} > 30 \ GeV$

 $\Delta R(b,b) < 2, \qquad \Delta R(\gamma,\gamma) < 2$ $\Delta R(b,\gamma) > 1.5$

$$\epsilon_b = 0.7$$
, $\zeta_j = 0.01$

Acceptance cuts @100TeV

$$p_T(b,\gamma)^{max} > 50 \ GeV \rightarrow 60 \ GeV$$
$$p_T(b,\gamma)^{min} > 30 \ GeV \rightarrow 40 \ GeV$$

 $\Delta R(b,b) < 2, \qquad \Delta R(\gamma,\gamma) < 2$ $\Delta R(b,\gamma) > 1.5$

$$\epsilon_b = 0.7$$
, $\zeta_j = 0.01$

Signal mass windows

 $105 \text{GeV} < \text{m}_{bb}^{reco} < 145 \text{ GeV}$ $120 \text{GeV} < \text{m}_{\gamma\gamma}^{reco} < 130 \text{ GeV}$

One more relevant thing ...

Binning $m_{hh} \mbox{ dist. can improve sensitivity }$

gghh^{sм} at LHC14

Other backgrounds are not shown

One more relevant thing ...

Binning $m_{hh}\ \text{dist.}\ \text{can}\ \text{improve}\ \text{sensitivity}$

Sensitivity @ (HL) LHC14 & 100 TeV

Sensitivity @ 14 TeV, using 300/fb

Sensitivity @ 14 TeV, using 3000/fb

Sensitivity @ 100 TeV, using 3000/fb

Evolution of c3 and c2t under 14 TeV \rightarrow 100 TeV

Sensitivity @ 14 TeV, using 300/fb LHC $\sqrt{s} = 14 \text{ TeV} \text{ L} = 300 \text{ fb}^{-1}$ 0.10 Preliminary 0.05 Double h Single h fit 0.00 without tth $c_{\rm g} \times (4\pi/\alpha_2)$ -0.05 -0.10 -0.15 -0.20 tth -0.25 -0.5 0.0 0.5 \overline{c}_{u}

Sensitivity @ 14 TeV, using 3000/fb

Sensitivity @ 100 TeV, using 3000/fb

Evolution of c3bar and cubar under 14 TeV \rightarrow 100 TeV

Summary

All result in this talk is preliminary !

: plots are changing day-by-day

Nevertheless there are some messages

- 1. hh is very challenging, but it still can compete with single Higgs fit, e.g. cubar
- 2. it is the best channel to measure the hhh coupling
- 3. It is very sensitive to tthh coupling

....

Extra Slides

Cross section is saturated by the value at threshold

Upgrading energy while keeping threshold fixed makes the partonic luminosity scales accordingly

 $\rho(\tau, Q^2) \sim 1/\tau^q$ for the τ range of interest