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INTRODUCTION

* Most of the discoveries of the past 45 years
anticipated by arguments or indirect
evidence:

- Toffe&Shabalin, GIM: NP (charm) @ GeV

- Unitarization of Fermi theory: NP at 102
GeV

- KM: 3" generation
- Flavour, EW fit: m ~170 GeV

- EW fit: m_=100:30 GeV



INTRODUCTION II

* Now we are left with arguments only:

- Hierarchy problem: NP close to EW scale
- WIMP miracle: NP close to EW scale

- gauge coupling unification: NP (SUSY) close
to EW scale

* In parallel with increasing the energy probed
by direct search, seek for indirect evidencel



WHY FLAVOUR?

* No tree-level flavour changing neutral
currents in the SM

* GIM suppression of FCNC @ the loop level

* Tiny CP violation in K and D mesons due to
small CKM angles

* Unobservable LFV & EDM's

= Flavour & CP violation ideal places to get
indirect evidence of NP
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ROLE OF FLAVOUR

* In the framework of future experimental
developments, Flavour physics should:

* Guarantee that the flavour structure of any
directly discovered NP can be efficiently
probed, and/or

* Push the NP scale that can be indirectly
probed up by (at least) one order of
magnitude (¢, now at 5 10° TeV)
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* A generic FCNC amplifude has the form

v F Fo
A +A =K " +K yp L—5
SM NP SM4J‘E M A

where L is a possible loop factor, F, denotes

the NP flavour coupling and K, > K,

* For any directly observed NP, we know A and
L and can extract F,

» Assuming a value for L>a, /4w and F>F_,,

we canh extract the NP scale A

e Need to improve A & Ag w (Where present)
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PRESENT BOUNDS ON NP

Bounds from AF=2 processes * Best bound frome,,

dominated by CKM error
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AF=2 processes scale as 1/A? params
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INTERPRETING THE BOUNDS

* generic case (no loop, no flavour suppression,
all chiral structures): A>3 10° TeV

* Extra-Dim case (no loop suppression, CKM
suppression, all chiral structures): A>70 TeV

* MFV case (no loop suppression, CKM
suppression, only left-handed): A>7 TeV

* weakly-interacting MFV case (EW loop &
CKM suppression, left-handed): A>200 GeV
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COMPLEMENTARITY WITH
DIRECT SEARCHES

o The Weakly IhTZI"GCTmQ (% 900 ATLAS é;mufafmn F’ref:mmar}r !

s=14 TeV

MFV case provides a lower 2%
bound on NP contribution fo e
flavour observables (worst-
case scenario)

* This often corresponds to oF 4
worst-case scenarios for
direct searches as well

* Keep the two reaches in

T. Lari

sync so that we can see LTS
flavour effects of any Elba
directly visible NP
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NEAR FUTURE

* Belle II/SuperB scenario has been studied in
detail, for example for the UT analysis in the
NP scenario one has an order-of-magnitude
improvement, leading to a factor of three in
the NP scale = worst-case A>600 GeV

Parameter New Physics fit today New Physics fit at SuperB

D 0.187 £ 0.056 +0.005
7 0.370 = 0.036 +0.005
a (%) 92 4 9 +0.85
3 (°) 24.4 + 1.8 +0.4

v (°) 63 + 8 +0.7
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PROSPECTS FOR HI-LUM

* A very interesting possibility has been put
forward: collect 100x the LHCb upgrade
luminosity

* A detailed study of the impact of such
possibility should be carried out to assess its
full physics potential.

e T'II |

ust briefly flash a few items to make

you interested
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ASSESSING THE IMPACT OF A
HI-LUM FLAVOUR EXP

* Determine expected exp and th
uncertainties on the widest spectrum of

observables

* Extrapolate accuracy in CKM determination
in the presence of NP

 Assess the NP reach in all sectors and
various scenarios
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I follow Vittorio Lubicz's

Appendix in the SuperB CDR (2007 -> 2015)
(and Stephen Sharp's talk at Lattice QCD: Present and Future (Orsay, 2004))

Values of the simulation parameters (N, a, m;, L)
to achieve a certain accuracy (1%, 0.5%, 0.1%)

!

Computational cost of the corresponding simulation |

|

Comparison to the expected future computational power
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History (and prediction) of the computational power
from Moore's Law (1965):
The number of transistors on integrated circuits doubles approximately every two years
(thanks to miniaturization)

L= Performance improvement of O(103) every 10 years

PERFORMANCE DEVELOPMENT PROECTED 100-500 Pflop/s
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Lattice collaborations typically have at hand per year
a computational power similar to the 500° most powerful computer
(0.1-0.5 Pflops-years in 2014 — 100-500 Pflops-years in 2025)
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Computational cost of a Lattice Simulation as a function of the parameter values
(e.g. Wilson-like fermions, N:=2)

0.03 —0.1 [Ns=2+1]
—0.05 [O(a)-improved]
—0.3-1.0 [Ginsparg-Wilson]

x3 of overhead (less expensive simulations
to perform continuum extrapolation...)

(We will see if a more detailed study of recent
simulations provides a more optimistic estimate)
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The wall fall (1/m2 — 1/m)) is an important example of how unpredictable
(theoretical and algorithmic) developments can have a significant impact




Therefore, my tentative (INACCURATE!) estimates are:

Hadronic L.Lellouch FLAG 2013 2025
parameter ICHEP 2002 [1310.8555] | [What Next]
[hep-ph/0211359]

Fo©)  forletie joan) [0.1%
[0.9%]
B, [17%] [1.3%] [0.1-0.5%]
fas [13%] [2%] [0.5%]
fo/fs [6%] [1.8%] [0.5%]
By, [9%] [5%] [0.5-1%]
Bp./B; [3%] [10%] [0.5-1%]
Fo~(1) [3%] [1.8%)] [0.5%]
C. Tarantino
Bon [207%] [10%] [$1%)] LTS1
Elba 2014

More unpredictable but more surprising progresses can occur for the observables

that today are very difficult (or infeasible): K -nvV,K— = I* |-, K— =&, Am




CHARM CPV EXTRAPOLATED

« SM contribution to ¢,,, negligible, while one
O(1°) due to LD penguins

could envisage ¢_.,

* Present fit:
- 0,,, = [-4,12]° @ 95% prob., no reach on ¢
- A>3.5 104 TeV

I'12

* LHCb upgrade / t-c factory:
- 80, =+ 1°and &¢_,= + 2° @ 95% prob.
- A>10° TeV
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CHARM CPV EXTRAPOLATED

* HI-LUM (very preliminary and very ndive:
just scaled LHCb upgrade estimates for K_nm

andy,, A.):
- 80, = +0.1°and &¢_,= + 0.2° @ 95% prob.

- A>3 10° TeV, close to the bound from ¢,

12

1* Future Hadron Collider Workshop, 26/5/14 L. Silvestrini 18



By H W

: BR(Bg — pp)
* One could reach an uncertainty on
Y O T BR(B, — )

at the level of few percent, allowing for a
very stringent test of NP and of its flavour
structure, without hitting the th error wall

» A time-dependent analysis of the B_channel
also very interesting with very high accuracy

* Very clean probe of NP
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CONCLUSIONS

* In a global strategy for NP searches,
improving the accuracy on FCNC and CPV
processes has a key role to ensure that:

- we are able to determine the flavour
structure of any NP directly seen, and
hopefully understand its origin; roughly 3x
in M, < 10x inexp & th & 100x in L

- we increase the sensitivity of indirect
searches (flavour has the lead in this field)
and maybe detect an indirect NP signal
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CONCLUSIONS ITI

* A global assessment of the physics potential
of a very HI-LUM flavour experiment
requires extensive studies, including, on the

theory side:
- extrapolation of lattice errors;
- evaluation of uncertainties in the UTA;

- projection of NP sensitivities in all sectors

* A very interesting and exciting perspective
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EXP INPUT FOR CHARM MIXING

* LHCb upgrade:
- dx=1.5 10*, 8y=10"*, 5|q/p|=10?, 66=3° (from
K nm); 8y ,=0A =4 10-° (from K*K’)
* Cabibbo-Lab t-c factory:
- 5x=3 10, dy=3 10+, §|q/p|=9 103, 5¢=8°
(from K_rr);
* HI-Lumi (LHCb upgrade lumi x 100):

- 8x=1.5 10, 8y=10?, 8|q/p|=10-3, 60=.3° (from
K wm); oy ,=0A =4 10 (from K'K’)
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Parameter 95% allowed range Lower limit on A (TeV) Lower limit on A (TeV)
(GeV~—2) for arbitrary NP for NMFV
ReC'} [—6.8,7.5] - 10~ 13 1.2-103 0.4
ReC3 [—5.0,4.6] - 1071° 14.2 - 10° 3.9
ReC% [—1.7,1.8] - 10714 7.4-103 2.0
ReCy [—1.0,1.1] - 1071° 30.3 - 10° 7.3
ReC3, [—3.1,3.3] - 10— 1° 17.4- 103 4.1
ImiC5 [—1.9,2.6] - 10715 19.5- 103 6.4
ImC% [—1.8,1.3] - 10717 237.0 - 103 60.5
ImC3, [—4.8,6.6] - 10717 123.5- 10° 31.%
ImC% [—2.9,3.9] - 1018 506.1 - 103 113.2
ImC3 [—8.8,11.8] - 10718 291.2 - 10? 64.5
ImC}, [—8.7,25.2] - 10~15 6.3 - 10° 2.0
ImC?, 28.2,9.7)- 10~1° 18.8 - 10° 4.6
ImC3, [—3.0,8.6] - 10~ 14 3.4-103 1.1
ImC?%, [—2.7,8.0] - 1016 35.4 - 103 8.5
ImC?, [-3.6,10.6] - 10~1° 0.7:.10° 2.7
ICL,| <1.4-10712 833.3 Tl
IC3 | <29-10713 1.8-10° 13.0
IC3 | g ¢ 1552 954.8 6.7
1Cg,| <9.3.1071 3.3 107 20.9
IC3,| 6 1~ 2.0 - 103 12.8
IC5. <1.8-1071 235.8 9.5
IC% | <3.9-10712 506.4 17.1
1C3, | <1.4-10711 262.6 8.9
ICE | 2.8 . 1§12 877.1 27.0
IC3 | o O 529.3 16.8
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