OPPORTUNITIES FOR FLAVOUR PHYSICS @ HI-LUM/HI-ENERGY HADRON COLLIDERS

Luca Silvestrini INFN, Rome

- Introduction
- First ideas on the impact of a flavour experiment with ab-1 @ a hadron collider
- Conclusions and Outlook

erc

INTRODUCTION

- Most of the discoveries of the past 45 years anticipated by arguments or indirect evidence:
	- Ioffe&Shabalin, GIM: NP (charm) @ GeV
	- Unitarization of Fermi theory: NP at 10² GeV
	- KM: 3rd generation
	- Flavour, EW fit: m_†~170 GeV
	- EW fit: m_H=100±30 GeV

INTRODUCTION II

- Now we are left with arguments only:
	- Hierarchy problem: NP close to EW scale
	- WIMP miracle: NP close to EW scale
	- gauge coupling unification: NP (SUSY) close to EW scale
- In parallel with increasing the energy probed by direct search, seek for indirect evidence!

WHY FLAVOUR?

- No tree-level flavour changing neutral currents in the SM
- GIM suppression of FCNC @ the loop level
- Tiny CP violation in K and D mesons due to small CKM angles
- Unobservable LFV & EDM's

 \Rightarrow Flavour & CP violation ideal places to get indirect evidence of NP

1st Future Hadron Collider Workshop, 26/5/14 L. Silvestrini 4

ROLE OF FLAVOUR

- In the framework of future experimental developments, Flavour physics should:
- Guarantee that the flavour structure of any directly discovered NP can be efficiently probed, and/or
- Push the NP scale that can be indirectly probed up by (at least) one order of magnitude ($\varepsilon_{\rm k}$ now at 5 10 5 TeV)

• A generic FCNC amplitude has the form $A_{_{SM}}$ + $A_{_{NP}}$ $=$ $K_{_{SM}}$ α_{W} 4π $\mathsf{F}_{\mathsf{CKM}}$ M_W^2 $\frac{N}{2}$ + K $_{NP}$ L F_{NP} Λ 2

where L is a possible loop factor, F_{NP} denotes the NP flavour coupling and $K_{NP} \geq K_{SM}$.

- For any directly observed NP, we know Λ and L and can extract F_{NP}
- Assuming a value for $L \geq \alpha_{_{\text{W}}}/4\pi$ and $\mathsf{F}_{_{\text{NP}}}\geq \mathsf{F}_{_{\text{SM}}}.$ we can extract the NP scale Λ
- 1st Future Hadron Collider Workshop, 26/5/14 L. Silvestrini **1. Silvestrini** 6 • Need to improve $A_{\text{exp}}^{\text{max}}$ & $A_{\text{SM}}^{\text{max}}$ (where present)

PRESENT BOUNDS ON NP

Bounds from Δ F=2 processes

- Best bound from $\varepsilon_{\rm K}$, dominated by CKM error
- CPV in charm mixing follows, exp error dominant
- Best CP conserving from Δ m $_{\textrm{\tiny{K}}}$, dominated by long distance
- B_d and B_s behind, error from both CKM and B-

INTERPRETING THE BOUNDS

- generic case (no loop, no flavour suppression, all chiral structures): ^>3 10⁵ TeV
- Extra-Dim case (no loop suppression, CKM suppression, all chiral structures): Λ >70 TeV
- MFV case (no loop suppression, CKM suppression, only left-handed): Λ >7 TeV
- weakly-interacting MFV case (EW loop & CKM suppression, left-handed): Λ >200 GeV

COMPLEMENTARITY WITH DIRECT SEARCHES

- The weakly-interacting MFV case provides a lower bound on NP contribution to flavour observables (worstcase scenario)
- This often corresponds to worst-case scenarios for direct searches as well
- Keep the two reaches in sync so that we can see flavour effects of any directly visible NP

NEAR FUTURE

• Belle II/SuperB scenario has been studied in detail, for example for the UT analysis in the NP scenario one has an order-of-magnitude improvement, leading to a factor of three in the NP scale \Rightarrow worst-case \land >600 GeV

 $1st$ Future Hac

PROSPECTS FOR HI-LUM

- A very interesting possibility has been put forward: collect 100x the LHCb upgrade luminosity
- A detailed study of the impact of such possibility should be carried out to assess its full physics potential.
- I'll just briefly flash a few items to make you interested

ASSESSING THE IMPACT OF A HI-LUM FLAVOUR EXP

- Determine expected exp and th uncertainties on the widest spectrum of observables
- Extrapolate accuracy in CKM determination in the presence of NP
- Assess the NP reach in all sectors and various scenarios

I follow Vittorio Lubicz's Appendix in the SuperB CDR (2007 -> 2015) (and Stephen Sharp's talk at Lattice QCD: Present and Future (Orsay, 2004))

st Future Hadron Collider Workshop, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 20
The collider Workshop, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000, 200 C. Tarantino @ LTS1 Elba 2014

History (and prediction) of the computational power from Moore's Law (1965): The number of transistors on integrated circuits doubles approximately every two years (thanks to miniaturization)

Performance improvement of $O(10^3)$ every 10 years

Lattice collaborations typically have at hand per year a computational power similar to the 500° most powerful computer $(0.1 - 0.5$ Pflops-years in 2014 \rightarrow 100-500 Pflops-years in 2025)

st Future Hadron Collider Workshop, 26/5/14 L. Silvestrini 14 L. Silvestrini 14 L. Silvestrini 14 L. Silvestri
14 L. Silvestrini 14 C. Tarantino @ LTS1 Elba 2014

The wall fall $(1/m_{\rm l}^3 \rightarrow 1/m_{\rm l})$ is an important example of how unpredictable (theoretical and algorithmic) developments can have a significant impact

Therefore, my tentative (INACCURATE!) estimates are:

 $\overline{17}$

More unpredictable but more surprising progresses can occur for the observables that today are very difficult (or infeasible): $K \to \pi \vee \overline{\vee}, K \to \pi l^+ l^-$, $K \to \pi \pi, \Delta m_k$

CHARM CPV EXTRAPOLATED

- SM contribution to ϕ_{M12} negligible, while one could envisage ϕ_{12} , $O(1^{\circ})$ due to LD penguins
- Present fit:

 $-\phi_{M12} = [-4.12]$ ^o @ 95% prob., no reach on ϕ_{m12} \triangle > 3.5 10⁴ TeV

 \cdot LHCb upgrade / τ -c factory:

 $-\delta\phi_{M12} = \pm 1^\circ$ and $\delta\phi_{F12} = \pm 2^\circ$ @ 95% prob.

 Λ >10⁵ TeV

CHARM CPV EXTRAPOLATED

- HI-LUM (very preliminary and very naïve: just scaled LHCb upgrade estimates for $\mathsf{K}_\mathsf{S}\pi\pi$ and $\bm{\mathsf{y}}_{\text{\tiny CP}}$, $\bm{\mathsf{A}}_{_{\Gamma}}$):
	- $-\delta\phi_{M12}$ = \pm 0.1° and $\delta\phi_{T12}$ = \pm 0.2° @ 95% prob. Λ >3 10⁵ TeV, close to the bound from $\varepsilon_{\rm K}$

 $B_{d,s} \rightarrow \mu^+\mu^-$

- One could reach an uncertainty on $\frac{\text{BR}(B_d \rightarrow \mu\mu)}{\text{BR}(B_s \rightarrow \mu\mu)}$ at the level of few percent, allowing for a very stringent test of NP and of its flavour structure, without hitting the th error wall
- A time-dependent analysis of the B_s channel also very interesting with very high accuracy
- Very clean probe of NP

CONCLUSIONS

- In a global strategy for NP searches, improving the accuracy on FCNC and CPV processes has a key role to ensure that:
	- we are able to determine the flavour structure of any NP directly seen, and hopefully understand its origin; roughly 3x in $M_{NP} \Leftrightarrow 10x$ in exp & th \Leftrightarrow 100x in L

– we increase the sensitivity of indirect searches (flavour has the lead in this field) and maybe detect an indirect NP signal

1st Future Hadron Collider Workshop, 26/5/14 L. Silvestrini 20

CONCLUSIONS II

- A global assessment of the physics potential of a very HI-LUM flavour experiment requires extensive studies, including, on the theory side:
	- extrapolation of lattice errors;
	- evaluation of uncertainties in the UTA;
	- projection of NP sensitivities in all sectors
- A very interesting and exciting perspective

1st Future Hadron Collider Workshop, 26/5/14 L. Silvestrini 22

EXP INPUT FOR CHARM MIXING

● LHCb upgrade:

 $-$ δx=1.5 10⁻⁴, δy=10⁻⁴, δ|q/p|=10⁻², δφ=3° (from $K_{s}\pi\pi$); $\delta y_{CP} = \delta A_{\Gamma} = 4$ 10⁻⁵ (from K⁺K⁻)

 \cdot Cabibbo-Lab τ -c factory:

 $-$ δx=3 10⁻⁴, δy=3 10⁻⁴, δ|q/p|=9 10⁻³, δφ=.8° (from $\mathsf{K}_{\!s} \pi\pi$);

• HI-Lumi (LHCb upgrade lumi x 100):

 $-$ δx=1.5 10⁻⁵, δy=10⁻⁵, δ|q/p|=10⁻³, δφ=.3° (from

1st Future Hadron Collider Workshop, 26/5/14 $\frac{1}{2}$ st Future Hadron Collider Workshop, 26/5/14 L. Silvestrini 23 $K_{\text{S}}\pi\pi$); $\delta y_{\text{CP}} = \delta A_{\text{F}} = 4 10^{-6}$ (from K⁺K⁻)

1

DIRECT EWKINO SEARCHES

- Dark Matter requires a weakly interacting lightest supersymmetric particle. 命 Natural models have light higgsinos (related to Higgs mass at tree level).
- 瘿 Hadron collider can look for neutralino to gravitino + X, with $X = Z$, h, or γ . If neutralino LSP, they can see heavier ewkinos decay, like N2C1 to WZN1N1 or hZNINI. Luminosity significantly extends the reach
- For the natural spectrum with light Higgsinos (nearly degenerate N_I, N_2, C_I) ۰ and out-of-reach heavier winos/zinos lepton colliders would be best. With high luminosity, theory papers suggest LHC should have sensitivity to higgsino production with ISR monojet or with VBF production for 100-200 GeV

