OPPORTUNITIES FOR FLAVOUR PHYSICS @ HI-LUM/HI-ENERGY HADRON COLLIDERS

Luca Silvestrini INFN, Rome

- Introduction
- First ideas on the impact of a flavour experiment with ab-1@ a hadron collider
- Conclusions and Outlook

INTRODUCTION

- Most of the discoveries of the past 45 years anticipated by arguments or indirect evidence:
 - Ioffe&Shabalin, GIM: NP (charm) @ GeV
 - Unitarization of Fermi theory: NP at 10²
 GeV
 - KM: 3rd generation
 - Flavour, EW fit: m₊~170 GeV
 - EW fit: $m_{\mu} = 100 \pm 30 \, GeV$

INTRODUCTION II

- Now we are left with arguments only:
 - Hierarchy problem: NP close to EW scale
 - WIMP miracle: NP close to EW scale
 - gauge coupling unification: NP (SUSY) close to EW scale
- In parallel with increasing the energy probed by direct search, seek for indirect evidence!

WHY FLAVOUR?

- No tree-level flavour changing neutral currents in the SM
- GIM suppression of FCNC @ the loop level
- Tiny CP violation in K and D mesons due to small CKM angles
- Unobservable LFV & EDM's
- ⇒ Flavour & CP violation ideal places to get indirect evidence of NP

ROLE OF FLAVOUR

- In the framework of future experimental developments, Flavour physics should:
- Guarantee that the flavour structure of any directly discovered NP can be efficiently probed, and/or
- Push the NP scale that can be indirectly probed up by (at least) one order of magnitude ($\epsilon_{\rm k}$ now at 5 10 TeV)

· A generic FCNC amplitude has the form

$$A_{SM} + A_{NP} = K_{SM} \frac{\alpha_W}{4\pi} \frac{F_{CKM}}{M_W^2} + K_{NP} L \frac{F_{NP}}{\Lambda^2}$$

where L is a possible loop factor, F_{NP} denotes the NP flavour coupling and $K_{NP} \geq K_{SM}$.

- For any directly observed NP, we know Λ and L and can extract F_{NP}
- Assuming a value for $L \ge \alpha_W / 4\pi$ and $F_{NP} \ge F_{SM}$, we can extract the NP scale Λ
- Need to improve A & A SM (where present)

 1st Future Hadron Collider Workshop, 26/5/14

 E. Silvestrini

 6

PRESENT BOUNDS ON NP

Bounds from $\Delta F=2$ processes

• Best bound from $\epsilon_{\rm K}$, dominated by CKM error

- CPV in charm mixing follows, exp error dominant
- Best CP conserving from Δm_K , dominated by long distance
- B_d and B_s behind, error from both CKM and B-params

INTERPRETING THE BOUNDS

- generic case (no loop, no flavour suppression, all chiral structures): $\Lambda>3$ 10⁵ TeV
- Extra-Dim case (no loop suppression, CKM suppression, all chiral structures): Λ >70 TeV
- MFV case (no loop suppression, CKM suppression, only left-handed): Λ >7 TeV
- weakly-interacting MFV case (EW loop & CKM suppression, left-handed): Λ >200 GeV

COMPLEMENTARITY WITH DIRECT SEARCHES

- The weakly-interacting MFV case provides a lower bound on NP contribution to flavour observables (worstcase scenario)
- This often corresponds to worst-case scenarios for direct searches as well
- Keep the two reaches in sync so that we can see flavour effects of any directly visible NP

1st Future Hadron Collider Workshop, 26/5/14

NEAR FUTURE

 Belle II/SuperB scenario has been studied in detail, for example for the UT analysis in the NP scenario one has an order-of-magnitude improvement, leading to a factor of three in the NP scale ⇒ worst-case Λ>600 GeV

Parameter	New Physics fit today	New Physics fit at $Super B$
$\overline{ ho}$	0.187 ± 0.056	± 0.005
$\overline{\eta}$	0.370 ± 0.036	± 0.005
α (°)	92 ± 9	± 0.85
β (°)	24.4 ± 1.8	± 0.4
γ (°)	63 ± 8	± 0.7

PROSPECTS FOR HI-LUM

- A very interesting possibility has been put forward: collect 100x the LHCb upgrade luminosity
- A detailed study of the impact of such possibility should be carried out to assess its full physics potential.
- I'll just briefly flash a few items to make you interested

ASSESSING THE IMPACT OF A HI-LUM FLAVOUR EXP

- Determine expected exp and th uncertainties on the widest spectrum of observables
- Extrapolate accuracy in CKM determination in the presence of NP
- Assess the NP reach in all sectors and various scenarios

I follow Vittorio Lubicz's Appendix in the SuperB CDR (2007 -> 2015)

(and Stephen Sharp's talk at Lattice QCD: Present and Future (Orsay, 2004))

Values of the simulation parameters (N_{conf}, a, m_I, L) to achieve a certain accuracy (1%, 0.5%, 0.1%)

Computational cost of the corresponding simulation

Comparison to the expected future computational power

History (and prediction) of the computational power from Moore's Law (1965):

The number of transistors on integrated circuits doubles approximately every two years (thanks to miniaturization)

Performance improvement of O(103) every 10 years

Lattice collaborations typically have at hand per year a computational power similar to the 500° most powerful computer (0.1-0.5 Pflops-years in $2014 \rightarrow 100\text{-}500$ Pflops-years in 2025)

C. Tarantino @ LTS1 Elba 2014

Computational cost of a Lattice Simulation as a function of the parameter values (e.g. Wilson-like fermions, $N_f=2$)

Del Debbio, Giusti, Luscher, Petronzio, Tantalo, hep-lat/0610059

TFlops – years
$$\simeq 0.03 \left(\frac{N_{\text{conf}}}{100}\right) \left(\frac{L_s}{3 \text{ fm}}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{\hat{m}/m_s}\right) \left(\frac{0.1 \text{ fm}}{a}\right)^6$$

$$0.03 \rightarrow 0.1 [N_f=2+1]$$

 \rightarrow 0.05 [O(a)-improved]

→0.3-1.0 [Ginsparg-Wilson]

x3 of overhead (less expensive simulations to perform continuum extrapolation...)

(We will see if a more detailed study of recent simulations provides a more optimistic estimate)

C. Tarantino @ LTS1 Elba 2014

The wall fall $(1/m_l^3 \rightarrow 1/m_l)$ is an important example of how unpredictable (theoretical and algorithmic) developments can have a significant impact

Therefore, my tentative (INACCURATE!) estimates are:

Hadronic parameter	L.Lellouch ICHEP 2002 [hep-ph/0211359]	FL <i>AG</i> 2013 [1310.8555]	2025 [What Next]
f ₊ ^{Kπ} (0)	- First Lattice result in 2004 [0.9%]	[0.4%]	[0.1%]
Ĝ _K	[17%]	[1.3%]	[0.1-0.5%]
f _{Bs}	[13%]	[2%]	[0.5%]
f _{Bs} /f _B	[6%]	[1.8%]	[0.5%]
B _{Bs}	[9%]	[5%]	[0.5-1%]
B _{Bs} /B _B	[3%]	[10%]	[0.5-1%]
F _{D*} (1)	[3%]	[1.8%]	[0.5%]
$B{ ightarrow}\pi$	[20%]	[10%]	[>1%]

More unpredictable but more surprising progresses can occur for the observables that today are very difficult (or infeasible): $K \to \pi \nu \overline{\nu}$, $K \to \pi I^+ I^-$, $K \to \pi \pi$, Δm_K

C. Tarantino

Elba 2014

LTS1

CHARM CPV EXTRAPOLATED

- SM contribution to ϕ_{M12} negligible, while one could envisage $\phi_{\Gamma12}$ $O(1^{\circ})$ due to LD penguins
- Present fit:
 - $\phi_{M12} = [-4,12]^{\circ} @ 95\% \text{ prob., no reach on } \phi_{\Gamma12}$
 - Λ>3.5 10⁴ TeV
- LHCb upgrade / τ-c factory:
 - $-\delta \phi_{M12} = \pm 1^{\circ}$ and $\delta \phi_{\Gamma12} = \pm 2^{\circ}$ @ 95% prob.
 - Λ>10⁵ TeV

CHARM CPV EXTRAPOLATED

• HI-LUM (very preliminary and very naïve: just scaled LHCb upgrade estimates for $K_s\pi\pi$ and y_{CP} , A_{Γ}):

- $-\delta\phi_{M12}$ = ± 0.1° and $\delta\phi_{\Gamma12}$ = ± 0.2° @ 95% prob.
- Λ >3 10⁵ TeV, close to the bound from $\epsilon_{\rm K}$

$$B_{d,s} \rightarrow \mu^+ \mu^-$$

- One could reach an uncertainty on $\frac{BR(B_d \to \mu\mu)}{BR(B_s \to \mu\mu)}$ at the level of few percent, allowing for a very stringent test of NP and of its flavour structure, without hitting the th error wall
- A time-dependent analysis of the B_s channel also very interesting with very high accuracy
- Very clean probe of NP

CONCLUSIONS

- In a global strategy for NP searches, improving the accuracy on FCNC and CPV processes has a key role to ensure that:
 - we are able to determine the flavour structure of any NP directly seen, and hopefully understand its origin; roughly 3x in $M_{NP} \Leftrightarrow 10x$ in exp & th $\Leftrightarrow 100x$ in L
 - we increase the sensitivity of indirect searches (flavour has the lead in this field) and maybe detect an indirect NP signal

CONCLUSIONS II

- A global assessment of the physics potential of a very HI-LUM flavour experiment requires extensive studies, including, on the theory side:
 - extrapolation of lattice errors;
 - evaluation of uncertainties in the UTA;
 - projection of NP sensitivities in all sectors
- A very interesting and exciting perspective

BACKUP SLIDES

EXP INPUT FOR CHARM MIXING

- LHCb upgrade:
 - $-\delta x=1.5\ 10^{-4}$, $\delta y=10^{-4}$, $\delta |q/p|=10^{-2}$, $\delta \phi=3^{\circ}$ (from $K_{\epsilon}\pi\pi$); $\delta y_{CP} = \delta A_{\Gamma} = 4 \cdot 10^{-5} \text{ (from } K^+K^-\text{)}$
- Cabibbo-Lab τ-c factory:
 - $-\delta x=3\ 10^{-4}$, $\delta y=3\ 10^{-4}$, $\delta |q/p|=9\ 10^{-3}$, $\delta \phi=.8^{\circ}$ (from $K_e \pi \pi$);
- HI-Lumi (LHCb upgrade lumi x 100):
- $-\delta x=1.5\ 10^{-5}$, $\delta y=10^{-5}$, $\delta |q/p|=10^{-3}$, $\delta \phi=.3^{\circ}$ (from $K_{\pi\pi}$); $\delta y_{CP} = \delta A_{\Gamma} = 4 \cdot 10^{-6}$ (from K+K-)

Parameter	95% allowed range	Lower limit on Λ (TeV)	Lower limit on Λ (TeV)
	(GeV^{-2})	for arbitrary NP	for NMFV
ReC_K^1	$[-6.8, 7.5] \cdot 10^{-13}$	$1.2 \cdot 10^{3}$	0.4
$\mathrm{Re}C_K^2$	$[-5.0, 4.6] \cdot 10^{-15}$	$14.2\cdot 10^3$	3.9
$\mathrm{Re}C_K^3$	$[-1.7, 1.8] \cdot 10^{-14}$	$7.4\cdot 10^3$	2.0
$\mathrm{Re}C_K^4$	$[-1.0, 1.1] \cdot 10^{-15}$	$30.3\cdot 10^3$	7.3
$\mathrm{Re}C_K^5$	$[-3.1, 3.3] \cdot 10^{-15}$	$17.4\cdot 10^3$	4.1
$\mathrm{Im} C^1_K$	$[-1.9, 2.6] \cdot 10^{-15}$	$19.5 \cdot 10^{3}$	6.4
$\mathrm{Im} C_K^2$	$[-1.8, 1.3] \cdot 10^{-17}$	$237.0 \cdot 10^3$	60.5
${ m Im} C_K^{\overline 3}$	$[-4.8, 6.6] \cdot 10^{-17}$	$123.5 \cdot 10^3$	31.7
$\mathrm{Im} C_K^4$	$[-2.9, 3.9] \cdot 10^{-18}$	$506.1 \cdot 10^3$	113.2
${ m Im} C_K^5$	$[-8.8, 11.8] \cdot 10^{-18}$	$291.2 \cdot 10^3$	64.5
$\mathrm{Im}C_D^1$	$[-8.7, 25.2] \cdot 10^{-15}$	$6.3 \cdot 10^{3}$	2.0
${ m Im} C_D^{\overline 2}$	$[28.2, 9.7] \cdot 10^{-16}$	$18.8 \cdot 10^{3}$	4.6
${ m Im} C_D^{\overline 3}$	$[-3.0, 8.6] \cdot 10^{-14}$	$3.4\cdot 10^3$	1.1
$\mathrm{Im}C_D^4$	$[-2.7, 8.0] \cdot 10^{-16}$	$35.4\cdot 10^3$	8.5
${ m Im} C_D^5$	$[-3.6, 10.6] \cdot 10^{-15}$	$9.7 \cdot 10^{3}$	2.7
$ \begin{array}{c c} & C_{B_d}^1 \\ & C_{B_d}^2 \\ & C_{B_d}^3 \end{array} $	$< 1.4 \cdot 10^{-12}$	833.3	7.1
$ C_{B_d}^{\overline{2}^a} $	$< 2.9 \cdot 10^{-13}$	$1.8 \cdot 10^{3}$	13.0
$ C_{B_d}^{\overline{3}a} $	$< 1.1 \cdot 10^{-12}$	954.8	6.7
$ C_{B_d}^{\overline{4}^{a}} $	$< 9.3 \cdot 10^{-14}$	$3.3\cdot 10^3$	20.9
$ C_{B_d}^{\overline{5}^a} $	$< 2.6 \cdot 10^{-13}$	$2.0 \cdot 10^{3}$	12.8
	$< 1.8 \cdot 10^{-11}$	235.8	9.5
$ C_{B_s}^2 $	$< 3.9 \cdot 10^{-12}$	506.4	17.1
$ C_{B_s}^3 $	$< 1.4 \cdot 10^{-11}$	262.6	8.9
$ C_{B_s}^4 $	$< 1.3 \cdot 10^{-12}$	877.1	27.0
$egin{array}{c} C^1_{B_s} \ C^2_{B_s} \ C^3_{B_s} \ C^4_{B_s} \ C^5_{B_s} \ \end{array}$	$< 3.6 \cdot 10^{-12}$	529.3	16.8

DIRECT EWKINO SEARCHES

- Dark Matter requires a weakly interacting **lightest** supersymmetric particle. Natural models have light higgsinos (related to Higgs mass at tree level).
- Hadron collider can look for neutralino to gravitino + X, with X=Z, h, or γ. If neutralino LSP, they can see heavier ewkinos decay, like N2C1 to WZN1N1 or hZN1N1. Luminosity significantly extends the reach
- For the natural spectrum with light Higgsinos (nearly degenerate N1,N2,C1) and out-of-reach heavier winos/zinos lepton colliders would be best. With high luminosity, theory papers suggest LHC should have sensitivity to higgsino production with ISR monojet or with VBF production for 100-200 GeV

