resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

Spin-1 resonance production through t \bar{t} fusion

Da Liu

EPFL and ITP, CAS

With R. Contino, R. Mahbubani, R. Rattazzi, M. Son.

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

1 Motivation and background

2 An example: Spin-1 resonance production

3 Conclusion

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○○ ●

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

resonance production through t \overline{t} fusion

Why top?

- Outline
- Motivation and background
- An example Spin-1 resonance production

Conclusion

- The phenomenological constraints on the t_R is practically absent.
- If EWSB dynamics belongs to a strong sector, Higgs can be naturally light if it is a psedu-goldstone boson.

resonance production through t \overline{t} fusion

Why top?

Motivation

and background

An example: Spin-1 resonance production

Conclusion

- Assuming partial compositeness, the top Yukawa $y_t \sim \frac{\lambda_L \lambda_R}{g_{\rho}} \Rightarrow \min(\lambda_L, \lambda_R) \gtrsim y_t.$
- Higgs potential will get contributions from top loops proportional to $(\lambda_L^2, \lambda_R^2, \lambda_L \lambda_R)$

resonance production through t \overline{t} fusion

Why top?

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

• If t_R is fully composite, $\lambda_R = g_o, \lambda_L \sim y_t$.

• *t_R* respects the global symmetry of the strong sector and doesn't contribute to the Higgs potential. It will be easier to get a light Higgs.

Jutline	\sim			
	-	÷ I	n	
	\sim	UI.		

resonance production through t t fusion

Da Liu

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Motivation and background

Da Liu

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

To get a top from proton, we pay a factor of $\alpha_s \log(\frac{E}{m_t})$, while to obtain a W, we pay a factor of $\alpha_w \log(\frac{E}{m_w})$.

(日)、

resonance production through t \overline{t} fusion F

Da Liu

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

actorization
$$\delta_m = \frac{m}{E} \ll 1$$
, $\delta_\perp = \frac{\rho_\perp}{E} \ll 1$

$$\sigma(pp \to Xt\bar{t}) = \int_0^1 f_g(x_1, Q) dx_1 \frac{\alpha_s}{\pi} \int_0^1 dx \frac{p_\perp^3 dp_\perp}{(p_\perp^2 + m_t^2)^2} P_{qg}(x)$$
$$\int_0^1 f_g(y_1, Q) dy_1 \frac{\alpha_s}{\pi} \int_0^1 dy \frac{q_\perp^3 dq_\perp}{(q_\perp^2 + m_t^2)^2} P_{qg}(y)$$
$$\sigma(t\bar{t} \to X)(xx_1P_1, yy_1P_2).$$

The splitting function:

$$P_{qg}(x) = \frac{1}{2}(x^2 + (1-x)^2)$$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ.

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

Top pdf

$$\frac{d}{dlogQ}f_t(x,Q) = \frac{\alpha_s(Q)}{\pi} \int_x^1 \frac{dz}{z} \{P_{qq}(z)f_t(\frac{x}{z},Q) + P_{qg}(z)f_g(\frac{x}{z},Q)\}$$

The splitting function:

$$P_{qq}(x) = \frac{4}{3} \left(\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \delta(1-x) \right)$$

$$P_{qg}(x) = \frac{1}{2} (x^2 + (1-x)^2).$$

・ロト ・ 一 ト ・ モト ・ モト

æ.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

resonance production through t \overline{t} fusion Top pdf

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

LO in $\alpha_s(Q)$

$$\frac{d}{dlogQ}f_t(x,Q) = \frac{\alpha_s(Q)}{\pi} \int_x^1 \frac{dz}{z} P_{qg}(z) f_g(\frac{x}{z},m_t)$$

with initial condition $f_t(x, m_t) = 0$.

Jutline	\sim				
	•		- 1		
	~	ч.			

<ロト <回ト < 注ト < 注ト

æ

resonance production through t \overline{t} fusion

usion

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

An example: Spin-1 resonance production

<ロト <回ト < 注ト < 注ト

æ

Conclusion

resonance production through t \overline{t} fusion

parton luminosity

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

Fixing parton C.O.M energy $\hat{s} = \tau s$

$$(\frac{\alpha_s \log \frac{E}{m_t}}{\pi})^2 \int_0^1 f_g(x_1, Q) f_g(y_1, Q) dx_1 dy_1 \times \\\int_0^1 P_{qg}(x) P_{qg}(y) dx dy \delta(x x_1 y y_1 - \tau) \delta(x_1(1-x) - z)$$

 \boldsymbol{z} is the fraction of the proton energy carried away by the outgoing top.

Fixing parton C.O.M energy $\tau = 0.01$ resonance production through t \overline{t} fusion $\tau = 0.01$ Motivation and background 0.10 0.08 P(Z) 0.06 0.04 0.02 0.00 10^{-4} Ζ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

resonance production through t t fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

 ρ_X resonance

- In composite Higgs models, we need an $U(1)_X$ symmetry in the strongly interacting sector to correctly reproduce the hyper-charge quantum number of the SM fermions: $Y = T^{3R} + X$.
- The corresponding conserved current will excite the spin-1 resonance from the vaccum: ρ_X.

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

ρ_X resonance

- The relevant phenomenology ρ_X is described by one coupling g_{ρ_X} and one mass scale m_{ρ_X} .
 - Assuming that the right-handed top is a massless bound state of the strong sector, its interaction with ρ_X is controlled by g_{ρ_X} .

ヘロン 人間 とくほと くほとう

æ

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

A very simplified model:

$$\mathcal{L}=-rac{1}{4}
ho_X^{\mu
u}
ho_{X\mu
u}+rac{1}{2}m_{
ho_X}^2(
ho_X^\mu)^2+g_{
ho_X}
ho_X^\muar{t}_R\gamma_\mu t_R$$

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

Preliminary results

XS with unit coupling: $pp \rightarrow \rho_X t\bar{t}$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

- Benchmark point: 5 TeV ρ_X .
- XS:~ 3.7 fb with $g_{
 ho_X}=1$.

(Require $p_T(t) > 300$ GeV, factorization scale setted to be the lowest p_T).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

Simulation

• All are simulated with parton-level event generator MadGraph5.

• Basic preselection criteria: $|\eta| < 5$, $p_T > 300 GeV$.

resonance production through t t fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

kinematics of the signal (Preliminary)

The tops are ordered by p_T

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

resonance production through t \overline{t} fusion

kinematics of the signal (Preliminary)

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

Remarks

- t_1, t_2 are mainly (80%) from ρ_X decay.
- The tops from gluon splitting t_3 , t_4 are not very forward because of the mass of the top:

 $\langle p_T \rangle \sim E/\log(E/m_t) \quad \Rightarrow \quad \langle |\eta| \rangle \sim 1.64.$

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

Remarks

- As a first step, we consider four highly boosted tops $(p_T > 1 \text{ TeV})$ in the central region $(|\eta| < 2.5)$ which decay hadronically.
- Highly boosted tops ($p_T > 1$ TeV): looks like a single jet $\Delta R \sim \frac{2m_t}{p_T} \sim 0.4$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

Remarks

• Assuming top tagging efficiency 20%, QCD jet mistagging rate 2%.

S. Schaetzel and M. Spannowsky, 1308.0540.

resonance production through t t fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

Backgrounds

- Considering the hadronically decaying of the tops, the main backgrounds are: ttjj , tttt, jjjj(including b)
- LO XS (calculated using MadGraph5): ttjj ~ 1.22 ×10⁴ pb, tttt ~ 2.64 pb, jjjj ~ 254 pb $(H_T > 5 \text{ TeV}).$

(Require $p_T(j) > 50$ GeV, $\Delta R > 0.4$)

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

p_T distribution for the LO top

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

resonance production through t \overline{t} fusion Basic cuts

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

• $p_T(t_1) > 2 TeV, p_T(t_2) > 1 TeV.$

• $|\eta(t_{3,4})| < 2.5, p_T(t_3) > 1 \, TeV, p_T(t_4) > 1 \, TeV.$

_

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

Cut flow for the signal VS. background

Process	XS[fb]	Basic cuts	multiplied by $\epsilon_{t,j}$
Signal	3.7	0.056	0.00009
ttjj	$1.22 imes 10^7$	31.6	0.0005
tttt	$2.64 imes10^3$	0.059	0.000095
jijji	$2.54 imes10^5$	1993	0.00032

ヘロト ヘ週ト ヘヨト ヘヨト

Ξ.

m_{**p**_X} [GeV]

resonance production through t \overline{t} fusion

Spin-1

5 σ discovery region (Preliminary)

(日)、 э

10 000

resonance production through t \overline{t} fusion

Future directions

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

The results are not encouraging, but we expect to gain more sensitivity by:

• Consider the moderately boosted region $300 \text{GeV} < p_T(t) < 1 \text{TeV}.$

The signal will be 10 times larger.

resonance production through t \overline{t} fusion

Future directions

Outline

Motivation and background

An example: Spin-1 resonance production

Conclusion

• Consider the semi-leptonically decaying of the top.

 $\mathsf{BR}(\mathsf{t} o \sum_{l=e,\mu} bl v) \sim 20\%$

 $\mathsf{BR}(\mathsf{t} \rightarrow \mathsf{hadrons}) \times \epsilon_t \sim 14\%$

resonance production through t \overline{t} fusion

Future directions

- Motivatio
- and background
- An example: Spin-1 resonance production

Conclusion

- $\Gamma_{
 ho_X}/m_{
 ho_X} \sim (1/8\pi)g_{
 ho_X}^2 \sim 0.04g_{
 ho_X}^2$
- As a complementray study, we will also consider the 4-top contact interactions.

resonance production through t \overline{t} fusion

Da Liu

Outline

Motivation and background

An example Spin-1 resonance production

Conclusion

Conclusion and Outlook

- At 100 TeV pp collider, if top (t_R) is belonging to the strong sector, top top scattering may become relevant for probing the strong EWSB dynamics.
- We have given an example for spin-1 resonance production through $t\bar{t}$ fusion.
- Other processes like *tb* fusion is also interesting.