

Computing in High Energy Physics John Apostolakis SoFTware for Physics Group, PH Dep, CERN

v0.98.3 2014.03.10

John.Apostolakis@cern.ch

#Uses of Computers

- Reconstruction: Online, and off-line
- Simulation
- ☑Data analysis)
- Size of challenge

It the GRID solution and its other applications

Reconstruction

A lightning introduction

The Reconstruction challenge

Starting from this event

Looking for this "signature"

\rightarrow Selectivity: 1 in 10¹³ (Like looking for a needle in 20 million haystacks)

11 March 2014

J. Apostolakis

What is reconstruction

- Contract a price of the second se
- Each energy deposition is a clue
 - There are thousands of measurements in each snap-shot
- - In well measured magnetic field
 - Matches the traces to tracks

How it works – a simple example

 Start with the locations of the traces on first two planes

Data Organisation

And March 2013 kie

Simulation and Detectors

What is simulation ?Why it exists ?How is it done ?

Today's detectors

Many different parts
 Different capabilities
 Measuring Location (trackers)
 Measuring energy (calorimeters)
 Due to complexity
 Different materials,

Most studies must use computers to create samples of tracker hits & energy deposition

Today's detector Technologies:

What is simulation ?

#We build models Silicon Tracker Detector's Geometry Shape, Location, Material Physics interactions ⊠All known processes Electromagnetic Nuclear (strong) Weak (decay) 2.5 MeV e⁻ $\sigma_{\text{total}} = \Sigma \sigma_{\text{per-interaction}}$ electron 300 µ 11 March 2014 J. Apostolakis 13

Ενα απλο παραδειγμα

GEANT 3

H In lead many secondary

Atlas: Physics Signatures and Event Rates

- Beam crossing rate 40 MHz
- $\Box \sigma_{\text{inelastic}} = 80 \text{ mb}$
 - In each beam crossing (rising each year, in 2012 ~ 25 interactions)
- Different physics 'targets'
 - > Higgs Boson(s) (Discovery 2012)
 - Supersymmetric partner particles
 - Unexpected
 - Matter-antimatter differences (B mesons)
- Many examples of each channel are simulated

ATLAS Barrel Inner Detector H→bb

Data Analysis

Uses the results of Reconstruction

- > the products are reconstructed tracks, Energy deposits (calorimeters)
- > Hierarchy of data from original (RAW), to summary (AOD)
- An experiment's physics teams use the (large) pool of data
 - No longer in one central location, but in multiple locations (cost, space of building, computers, disks, network) using the GRID

Hypatia: a small part of analysis for a school setting

Introduction /<u>Portal</u>

http://hypatia.iasa.gr/en/index.html

<u>http://indico.cern.ch/conferenceDisplay.py?confId=257353</u> <u>#2013-07-08</u>

Data Hierarchy

LHC Computing Grid project (LCG)

 More than 170 computing centres

LCG

 12 large centres for primary data management: CERN (Tier-0) and eleven Tier-1s

WLCG Collaboration

The Collaboration

- 4 LHC experiments
- ~170 computing centres
- 12 large centres (Tier-0, Tier-1)
- 38 federations of smaller
 "Tier-2" centres
- ~35 countries
- Memorandum of Understanding
 - Agreed in October 2005
- Resources
 - Focuses on the needs of the four LHC experiments
 - Commits resources
 - each October for the coming year
 - 5-year forward look
 - Agrees on standards and procedures
- Relies on EGEE and OSG (and other regional efforts)

Running jobs on LCG

LCG

2010 Tier-0 Data Taking

Tier-0 Bandwidth Average in: 2 GB/s with peaks at 11.5 GB/s Average out: 6 GB/s with peaks at 25 GB/s

LCG

- "Cloud computing" is gaining importance
 - Web based solutions (http/https and RES)
 - Virtualization, upload machine images to remote sites
- GRID has mainly a scientific user base
 - Complex applications running across multiple sites, but works like a cluster batch system for the end user
 - Mainly suitable for parallel computing and massive data processing
- Expect convergence in the future
 - "Internal Cloud" at CERN
 - CernVM virtual machine running e.g. at Amazon

LCG depends on two major science grid infrastructures

EGEE - Enabling Grids for E-ScienceOSG - US Open Science Grid

A map of the worldwide LCG infrastructure operated by EGEE and OSG. les robertson - cern-it-27 egee

Enabling Grids for E-sciencE

- Δεκαδες εφαρμογες σε διαφορους τομεις
 - Φυσικη Υψηλων Ενεργειων (Pilot domain)
 - 4 πειραματα LHC, DESY, Fermilab
 - Βιοϊατρική (Pilot domain)
 - Βιοπληροφορική (Bioinformatics)
 - Ιατρική απεικόνιση (Medical imaging)
 - Γεωεπιστημεs
 - Γεω-επισκόπηση
 - Φυσικη Στερεας Γης (Solid Earth Physics)
 - Υδρολογία, Κλίμα
 - Υπολογιστική Χημεία
 - Τηξη (Fusion)
 - Αστρονομία
 - Κοσμικό υπόβαθρο μικροκυμάτων
 - ακτίνων-γ
 - Γεωφυσικη
 - Βιομηχανικές εφαρμογές

More on simulation

Geant4 geometry: what it does

Describes a Detector
Hierarchy of volumes
Many volumes repeat
Volume & sub-tree
Up to millions of

- volumes for LHC era
- Import detectors from CAD systems

Navigates in Detector # Locates a point # Computes a step

Linear intersection

Propagating in a field

Charged particles follow paths that approximate their curved trajectories in an electromagnetic field.

#It is possible to tailor

Intersection of the splitting of the curve into linear segments,

In the accuracy in intersecting each volume boundaries.

Here the set now to different values for a single volume or for a hierarchy.

Electromagnetic physics

#Gammas:

☐ Gamma-conversion, Compton scattering, Photo-electric effect

HLeptons(e, μ), charged hadrons, ions

Energy loss (Ionisation, Bremstrahlung) or PAI model energy loss, Multiple scattering, Transition radiation, Synchrotron radiation,

#Photons:

Cerenkov, Rayleigh, Reflection, Refraction, Absorption, Scintillation

High energy muons and lepton-hadron interactions

#Alternative implementation ("low energy")

☐ for applications that need to go below 1 KeV

11 March 2014

J. Apostolakis

Antiproton annihilation - CHIPS Model

Simulation 'packages'

#Provides the means to simulate

△ detector response of an experiment.

☐ most of the parts needed can be common between experiments (eg physics, geometry blocks).

So it makes eminent sense to create and use a general purpose package

△That includes the common parts,

And enables an experiment to describe those parts with are specific to it.

Induced X-ray line emission: indicator of target composition (~100 µm surface layer)

X-Ray Surveys of Asteroids and Moons

ESA Space Environment & Effects Analysis Section J. Apostolakis

CERN Centre Capacity Requirements for all

Event Data

Complex data models

> ~500 structure types

References to describe relationships between event objects

> unidirectional

Need to support transparent navigation

Need ultimate resolution on selected events

> need to run specialised algorithms

work interactively

Not affordable if uncontrolled

HEP Metadata - Event Collections

Detector Conditions Data

- Reflects changes in state of the detector with time
- Event Data cannot be reconstructed or analyzed without it
- Versioning
- Tagging
- Ability to extract slices of data required to run with job
- 🗅 Long life-time

A Multi-Tier Computing Model

Manager View

User View

Distributed Analysis - the real challenge

- Analysis will be performed with a mix of "official" experiment software and private user code
 - How can we make sure that the user code can execute and provide a correct result wherever it "lands"?
- Input datasets not necessarily known a-priori
- Possibly very sparse data access pattern when only a very few events match the query
- Large number of people submitting jobs concurrently and in an uncoordinated fashion resulting into a chaotic workload
- □ Wide range of user expertise
- Need for interactivity requirements on system response time rather than throughput
- Ability to "suspend" an interactive session and resume it later, in a different location
- Need a continuous dialogue between developers and users

Visualization

#Much functionality is implemented **Several drivers:** OpenGL, VRML, Open Inventor Opacs, DAWN renderer (G4) H Also choice of User Interfaces △Terminal (text) or GUI: Momo (G4), OPACS Editors for geometry, EM physics code generation

One area: Tracking

#What a simulation code needs to do for each step of particle:

- ☑ Determine the step length
 - ☑Corresponding to the applicable physics processes☑Checking if it crosses a geometrical boundary
- Model the final state of the track,
 - \boxtimes Advancing it, potentially in an EM field,
 - \square Applying the actions of the physics processes,
 - which can create secondary particles.
- Deposit energy in current position ('hit').

Actions during a Step

- Each physics process is given the opportunity to limit the step,
 - \boxtimes as is the geometry module (at a boundary), and \boxtimes leading to the decision on this step's length.
- Physics processes are allowed to apply their effect
 - \boxtimes If they occur along a step ('continuous')
 - ☑ If they caused the `hard' event that limited the step (`discreet').

Actions during a Step (cont)

#During a step (continued)

- An (optional) user-written `action' is called,
 Which can be used eg to create histograms or tallies.
- If the current volume contains a sensitive detector, that is addressed, allowing it eg

 \boxtimes to record the energy deposited,

 \boxtimes to record the exact position

in general to create a 'hit' that store all information that is relevant for that detector .

Actions during a Step (cont)

#During a step (continued)

- A parametrisation can be triggered (Geant4)
 - ⊠Taking over from `detailed' simulation
 - Generating directly several hits
 - This application-specific operates instead of 'normal' physics processes until it returns control and/or resulting particles for further 'detailed' simulation.

Detector simulation tool-kit for HEP
Image: Im

△heavy ions, CP violation, cosmic rays

Medical and space science applications

%World-wide collaboration

PbWO4 e- 5 GeV G4-G3 comparison

11 March 2014

ີ 1

Multiple scattering model

#A new model for multiple scattering based on the Lewis theory is implemented

 \square since public β release in 1998.

Step length, time of flight, and energy loss along the step are affected, and

 \square It does not constrain the step length.