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Outline 

Uses of Computers 

Reconstruction: Online, and off-line 

Simulation 

Data analysis) 

Size of challenge 

the GRID solution and its other applications 



Reconstruction 

A lightning introduction 



The Reconstruction challenge 
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What is reconstruction 

 Tracker hits form a puzzle 
Which tracks created them? 

 Each energy deposition is a 
clue 
There are thousands of 

measurements in each snap-shot 

 The experiment’s reconstruction 
must obtain a solution! 
In well measured magnetic field 

Matches the traces to tracks 



How it works – a 

simple example 

•Start with the locations of 

the traces on first two 

planes 
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Magnetic field 

Β 



Ανακατασκευη 

στην πραξη 

 

• Start with the locations of 

the traces on first two 

planes 

•  Try different 

combinations 

•Project to subsequent 

planes 

•Calculate differences 

between measured 

positions and ‘predictions’ 
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Μαγνητικο 

Πεδιο 

Β 

 

(Kalman 

filter) 



Ανακατασκευη: 
αποτελεσμα  
•Start with the locations of 

the traces on first two 

planes 

• Try different combinations 

•Project to subsequent 

planes 

•Calculate differences 

between measured 

positions and ‘predictions’ 

•Finally the candidate 

tracks are  

• ή «στα γρηγορα» αυτες 

με μεγαλη ορμη-  οι 

κυριες τροχιες  
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Μαγνητικο 

Πεδιο 

Β 

P= 7.5 GeV/c 

P= 11 GeV/c 

P= 22 GeV/c 



last update 11/03/2014 10:22 

LCG 

11 March 2014 

J. Apostolakis 
9 

Data Organisation 



Simulation and Detectors 

What is simulation ? 

Why it exists ? 

How is it done ? 
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Today’s detectors 

Many different parts 

Different capabilities 

Measuring Location (trackers) 

Measuring energy (calorimeters) 

Due to complexity 

Different materials,  

Most studies must use 

computers to create samples of 

tracker hits & energy deposition 
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Today’s detector Technologies: 

ATLAS 
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What is simulation ? 

We build models 

Detector’s Geometry 

Shape, Location, Material 

Physics interactions 

All known processes 

• Electromagnetic 

• Nuclear (strong)  

• Weak (decay  

 

Silicon 

Tracker 

σtotal = Σ σper-interaction 
2.5 MeV e- 

electron 

300 μ 
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Example 

detailed 

geometry 
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Ενα απλο παραδειγμα 

 In lead many secondary 
particles are produced  

Most are contained 

A few escape into CO2 

 Energy deposition is 
measured in gas 
Charged tracks ionise gas 

Fewer new tracks 
produced 

Pb      CO2    Pb     CO2  

 

GEANT 3 
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Atlas : Physics Signatures and Event 
Rates 

 Beam crossing rate 40 MHz 

 sinelastic = 80 mb 
 In each beam crossing (rising each 

year, in 2012 ~ 25 interactions) 

 Different physics ‘targets’ 
 Higgs Boson(s) (Discovery 2012) 
 Supersymmetric partner particles 
 Unexpected 
 Matter-antimatter differences (B 

mesons) 

 Many examples of each channel 
are simulated 
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Why simulate ? 

To design detectors 
Decise details 

 

To prepare the 
reconstruction 
Before the detector is 

built and operates 

 

To understand events 
in the analysis 



Data Analysis 
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Data Analysis  

 Uses the results of Reconstruction 
 the products are reconstructed tracks, Energy deposits 

(calorimeters)  

 Hierarchy of data from original (RAW), to summary (AOD) 

 An experiment’s physics teams use the (large) pool of 

data 

 No longer in one central location, but in multiple locations 
(cost, space of building, computers, disks, network) .... using 
the GRID 

 Hypatia: a small part of analysis for a school setting 
 Introduction /Portal 

 http://hypatia.iasa.gr/en/index.html 
 http://indico.cern.ch/conferenceDisplay.py?confId=257353

#2013-07-08 
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http://portal.discoverthecosmos.eu
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
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Data Hierarchy 

RAW Detector digitisation 

109 events/yr * 2 MB =2 PB/yr 

~2 MB/event 

ESD 
Pattern recognition information: 

Clusters, track candidates  
~100 kB/event 

AOD 

Physical information: 

Transverse momentum,  

Association of particles, jets,  

(best) id of particles, 

~10 kB/event 

TAG ~1 kB/event 
Relevant information  

for fast event selection 

Raw data (DAQ) 

First reconstruction 

data 

Summary data 

for analysis 

Classification  

information 
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GRID vs Cloud

• “Cloud computing” is gaining importance
– Web based solutions (http/https and RES)

– Virtualization, upload machine images to remote sites

• GRID has mainly a scientific user base
– Complex applications running across multiple sites, but works 

like a cluster batch system for the end user 

– Mainly suitable for parallel computing and massive data 
processing

• Expect convergence in the future
– “Internal Cloud” at CERN

– CernVM – virtual machine running e.g. at Amazon



last update 11/03/2014 10:22 

LCG LCG depends on two major science 
           grid infrastructures …. 

  
EGEE  - Enabling Grids for E-Science 

 OSG   - US Open Science Grid 

les robertson - cern-it-27 



Enabling Grids for E-sciencE 

EGEE-II INFSO-RI-031688   

Εφαρμογες 

• Δεκαδες εφαρμογες σε διαφορους τομεις 

– Φυσικη Υψηλων Ενεργειων (Pilot domain) 

 4 πειραματα LHC, DESY, Fermilab 

– Βιοϊατρική (Pilot domain) 

 Βιοπληροφορική (Bioinformatics)  

 Ιατρική απεικόνιση (Medical imaging) 

– Γεωεπιστημεs 

 Γεω-επισκόπηση 
 Φυσικη Στερεας Γης (Solid Earth Physics)  

 Υδρολογία, Κλίμα 

– Υπολογιστική Χημεία  

– Τηξη (Fusion) 

– Αστρονομία 
 Κοσμικό υπόβαθρο μικροκυμάτων 

 ακτίνων-γ  

– Γεωφυσικη 

– Βιομηχανικές εφαρμογές 

28 J. Apostolakis 



Backup 

More on simulation 



11 March 2014 J. Apostolakis 30 

  

Describes a Detector 

 Hierarchy of volumes 

 Many volumes repeat 

Volume & sub-tree 

 Up to millions of 
volumes for LHC era 

 Import detectors from 
CAD systems 

 

Navigates in Detector 

 Locates a point 

 Computes a step 

Linear intersection 

 

Geant4 geometry: what it does 
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Propagating in a field 

 Charged particles follow paths that 
approximate their curved trajectories 
in an electromagnetic field. 

It is possible to tailor 
the accuracy of the splitting of the curve into 

linear segments, 

the accuracy in intersecting each volume 
boundaries. 

These can be set now to different values 
for a single volume or for a hierarchy. 
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Electromagnetic physics 

Gammas:  
Gamma-conversion, Compton scattering, Photo-electric effect 

Leptons(e, m), charged hadrons, ions 
Energy loss (Ionisation, Bremstrahlung) or PAI model energy loss, 

Multiple scattering, Transition radiation, Synchrotron radiation,  

Photons:  
Cerenkov, Rayleigh, Reflection, Refraction, Absorption, Scintillation 

High energy muons and lepton-hadron interactions 

Alternative implementation (“low energy”) 

for applications that need to go below 1 KeV 
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Antiproton annihilation - CHIPS Model 

π 

proton 

neutron 

deuteron 

He-4 He-3 

K 

triton 

M. Kossov 
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Simulation ‘packages’ 

Provides the means to simulate  
the physical processes and  

detector response of an experiment. 

As was realised by many in the past,  
most of the parts needed can be common between 

experiments (eg physics, geometry blocks) . 

So it makes eminent sense to create and use a 
general purpose package 
That includes the common parts,  

And enables an experiment to describe those parts 
with are specific to it.  
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ESA Space Environment &  

Effects Analysis Section 

X-Ray Surveys of Asteroids 

and Moons 

Induced X-ray line emission: 

indicator of target composition 

(~100 mm surface layer) 

Cosmic rays, 

jovian electrons 

Geant3.21 

 

ITS3.0, EGS4 

 Geant4 

 
C, N, O line emissions included 

 

Solar X-rays, e, p 

Courtesy SOHO EIT  
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individual 

physics 

analysis 

 

batch 

physics 

analysis 

detector 

Event Summary  

Data (ESD) 

raw 

data 

event 

reconstruction 

event 

simulation 

event filter 

(selection & 

reconstruction) 

processed 

data 

           HEP Processing stages and datasets 

Analysis Object Data (AOD) 

(extracted by physics topic) 
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resource units 2006 2007 2008 2009 2010

processing K SI2000 3,700 8,200 19,100 25,000 34,000

disk PB 1.0 2.0 3.8 5.0 6.7

tape media PB 6 14 25 36 48

tape I/O GB/sec 1.1 2.3 3.9 3.9 3.9

Maintenance
Installation and 

Commissioning

CERN Centre Capacity Requirements for all 
expts. 

(made July 2003) 

Estimated DISK Capacity at CERN
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Event Data 

 Complex data models 
 ~500 structure types 

 References to describe 
relationships between 
event objects 
 unidirectional 

 Need to support 
transparent navigation 

 Need ultimate 
resolution on selected 
events 
 need to run  

specialised algorithms 
 work interactively 

 Not affordable if 
uncontrolled 

Event 

Raw Rec Phys 

Velo Calo Coord Tracks 

Event 

Cand 

RAW ESD AOD 
versions 

Event 

MyTrk 

Phys 

Private 

Event 

AOD 

Collaboration Data 
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HEP Metadata - Event Collections 

 

 

 

 

 

 

 

 

 

Bookkeeping 

Run 

Data 
Event 1 

Event 2 

… 

Event 3 

Run 

Data 
Event 1 

Event 2 

… 

Event 3 

Run 

Data 
Event 1 

Event 2 

… 

Event N 

Run Catalogue 
Physics : Run 

21437 

MC: B -> π π 

MC: B -> J/Ψ (μ+ μ-) 

… 

Dataset 
Event 1 

Event 2 

… 

Event 3 

Dataset 
Event 1 

Event 2 

… 

Event 3 

Event tag 

collection 

Tag 1 5      0.3 

Tag 2 2      1.2 

… 

Tag M 8      3.1 

Collection 

Catalogue 
B -> ππ Candidates (Phy) 

B -> J/Ψ (μ+ μ-) 

Candidates 

… 
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Detector Conditions Data 

 Reflects changes in 
state of the detector 
with time  

 Event Data cannot be 
reconstructed or 
analyzed  without it  

 Versioning 

 Tagging 

 Ability to extract slices 
of data required to run 
with job 

 Long life-time 

Tag1 definition 

Time 

Version 

Data Item 

Version 

Time 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 

VDET alignment 
HCAL calibration   

RICH pressure      
ECAL temperature        

Time = T 
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A Multi-Tier Computing Model  

Tier 1 
(Main  

Regional  
Centres) 

Tier 3 

Desktop 

Tier2 

Tier 0 
(Experiment Host lab) 

CERN 

FNAL RAL IN2P3 

Lab a Uni b Lab c Uni n 

   

physics group 

regional group 

Tier2 

Lab a 
Uni a 

Lab c 

Uni n 

Lab m 

Lab b 

Uni b Uni y 

Uni x 

Tier3 

 
 

 
Desktop Germany 

Tier 1 

USA 
UK 

France 

Italy 

………. 

CERN Tier 1 

………. 

Manager View User View 
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Distributed Analysis – the real challenge 

 Analysis will be performed with a mix of “official” experiment 
software and private user code 
 How can we make sure that the user code can execute and provide a 

correct result wherever it “lands”? 

 Input datasets not necessarily known a-priori 

 Possibly very sparse data access pattern when only a very few 
events match the query 

 Large number of people submitting jobs concurrently and in an 
uncoordinated fashion resulting into a chaotic workload 

 Wide range of user expertise 

 Need for interactivity - requirements on system response time 
rather than throughput 

 Ability to “suspend” an interactive session and resume it later, in 
a different location 

 Need a continuous dialogue between developers and users 
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Visualization 

Much functionality is 
implemented 

Several drivers: 

OpenGL, VRML, Open Inventor, 
Opacs, DAWN renderer (G4)  

 Also choice of User Interfaces: 

Terminal (text) or 

GUI: Momo (G4), OPACS 

Editors for geometry, EM physics 
code generation 
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One area: Tracking 

What a simulation code needs to do for 
each step of particle: 
Determine the step length 
Corresponding to the applicable physics processes 

Checking if it crosses a geometrical boundary 

Model the final state of the track, 
Advancing it, potentially in an EM field, 

Applying the actions of the physics processes, 
• which can create secondary particles. 

Deposit energy in current position (‘hit’). 
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Actions during a Step 

During each step 
Each physics process is given the opportunity 

to limit the step, 
as is the geometry module (at a boundary), and 

leading to the decision on this step’s length. 

Physics processes are allowed to apply their 
effect 
If they occur along a step (‘continuous’) 

If they caused the ‘hard’ event that limited the 
step (‘discreet’).  
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Actions during a Step (cont) 

During a step (continued) 
An (optional) user-written ‘action’ is called, 
Which can be used eg to create histograms or 

tallies. 

If the current volume contains a sensitive 
detector, that is addressed, allowing it eg  
to record the energy deposited, 

to record the exact position  

   in general to create a ‘hit’ that store all 
information that is relevant for that detector .   
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Actions during a Step (cont) 

During a step (continued) 

A parametrisation can be triggered (Geant4) 

Taking over from ‘detailed’ simulation 

Generating directly several hits 

This application-specific operates instead of ‘normal’ 
physics processes until it returns control and/or 
resulting particles for further ‘detailed’ simulation. 

Begin of step point 

End of step point 
Step 

Boundary 
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GEANT 4                 

Detector simulation tool-kit for HEP 

offers alternatives, allows for tailoring 

Software Engineering and OO technology 

provide the method for building, maintaining it.  

Requirements from: 

LHC  

heavy ions, CP violation, cosmic rays 

medical and space science applications 

World-wide collaboration 
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Multiple scattering model 

A new model for multiple scattering based on the 

Lewis theory is implemented  

since public  release in 1998.    

It randomizes momentum direction and 

displacement of a track. 

Step length, time of flight, and energy loss along the 

step are affected, and 

It does not constrain the step length.  


