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Outline

Uses of Computers
Reconstruction: Online, and off-line
Simulation
Data analysis)

Size of challenge
the GRID solution and its other applications
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Reconstruction

A lightning introduction



The Reconstruction challenge

Starti ng from {#30 minimum bias events)
this event : -

Looking for
this “signature”

- Selectivity: 1in 10"
(Like looking for a needle in 20 million haystacks)

11 March 2014 J. Apostolakis 4



What is reconstruction

= S
Tracker hits form a puzzle 'il ﬁw ,i'ﬁ 1
Which tracks created them? ' d \ r1-:._' 4
Each energy depositionisa ™ L% b, ’
clue 3 .-'II1L.-"'=I__H'T{E_' .y
There are thousands of Voo e ) P
measurements in each snap-shot J LN {H,h_ !.-:“--uﬂ
The experiment's reconstruction ™= Zu, & =+
must obtain a solution! T !,-'
In well measured magnetic field \H . _:_,"-;i‘-rf;‘
Matches the traces to tracks b =.“Ia "
..: -rr";l.’.;..-'t".":.-.: :
2 J
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How it works — a
simple example
«Start with the locations of

the traces on first two
planes

Magnetic field

B
®
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» Start with the locations of
the traces on first two
planes

« Try different
combinations

*Project to subsequent
planes

*Calculate differences
between measured
positions and ‘predictions’
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«Start with the locations of
the traces on first two
planes

* Try different combinations

*Project to subsequent
planes

Calculate differences

between measured

positions and ‘predictions’
Finally the candidate
tracks are

° ] «OTA yPNYyopPa» QUTEG

ME MEYOAN OpuN- Ol

KUPIEC TPOXIEG

11 March 2014

Mayvntiko

P=11 GeV/c

P=22 GeV/c

P=7.5 GeV/c
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G Data Organisation

MC Data Comparison Real Data

A GenParticles Particles
. MCParticles

e N ProtoParticles
d
g \
g MCHits Tracks
b= >
s
9 .

2 MCDeposits Clusters

MCDigits Digits
(Raw data)
Processing
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Simulation and Detectors

What is simulation ?
Why it exists ?
How IS It done ?



Today's detectors

45 Many different parts

~IDifferent capabilities
<IMeasuring Location (trackers)
<IMeasuring energy (calorimeters)

45 Due to complexity
~IDifferent materials,

~IMost studies must use
computers to create samples of
tracker hits & energy deposition
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Today’s detector Technologies: =
ATLAS

Muon chambers
Electromagnetic Calorimeters

Solenoid End Cap Toroid
Forward Calorimelers
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Shielding

Pixel TRT& SCT
Hadronic Calorimelers



What I1s simulation ?

We build models Silicon
Detector's Geometry Tracket
Shape, Location, Material
Physics interactions I I

All known processes
Electromagnetic
Nuclear (strong)
Weak (decay

_ 2.5 MeV e-
cstotal =X Gper-interaction electron
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Towers in Sampling 3
A An = 0.0245x0.05

Example
detailed
geometry

T
R
P=0.09gy
.r ""‘w[i\:' Y/ Square [OWers in
ZM‘V Sampling 2
) A“—.'l-‘-3|I!== ]
\_‘ ‘---




Eva atrAo TTapadeiyua

In lead many secondary

particles are produced
Most are contained

A few escape into CO2
Energy deposition is
measured in gas

Charged tracks ionise gas

Fewer new tracks
produced

Pb Pb

AL

GEANT 3
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Atlas : Physics Sighatures and Event

Rates

Beam crossing rate 40 MHz

Oinelastic = 80 mb

In each beam crossing (rising each
year, in 2012 ~ 25 interactions)

Different physics 'targets’
Higgs Boson(s) (Discovery 2012)
Supersymmetric partner particles
Unexpected
Matter-antimatter differences (B
mesons)
Many examples of each channel
are simulated
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Why simulate ?

—~ (5

eV

To design detectors ..
Decise detalls &

45

To prepare the

reconstruction o

Before the detector is
built and operates

Evis (MeV)
I
o

11 March 2014 20 T

To understand events :
In the analysis o0

25 b

Pb-Fe-Si e-6810 12 GeV 100 evts

Fe{Z23mm)—Si(C.4mm)

- Pb{13mm)—Fe(10mm)—Si(0.4mm)




Data Analysis
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Data Analysis

Uses the results of Reconstruction

the products are reconstructed tracks, Energy deposits
(calorimeters)

Hierarchy of data from original (RAW), to summary (AOD)
An experiment’s physics teams use the (large) pool of

data

No longer in one central location, but in multiple locations
(cost, space of building, computers, disks, network) .... using
the GRID

Hypatia: a small part of analysis for a school setting
Introduction /Portal

http://hypatia.iasa.gr/en/index.html
http://indico.cern.ch/conferenceDisplay.py?confId=257353

#2013-07-08
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http://portal.discoverthecosmos.eu
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08
http://indico.cern.ch/conferenceDisplay.py?confId=257353#2013-07-08

Data Hierarchy

Raw data (DAQ) Detector digitisation
10° events/yr * 2 MB =2 PB/yr

~2 MB/event

First reconstruction Pattern recognition information:

~100 kB/event
data Clusters, track candidates

Physical information:
Summary data Transverse momentum,
for analysis Association of particles, jets,
(best) id of particles,

~10 kB/event

Classification Relevant information

~1 kB/event information for fast event selection
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More than 170
computing centres

Tier-1 Centres

SRR RN dedicated 10 Gbit/s links

Num awF GﬂdKa
Nordic é‘ounﬂ? i _vtvira Gamaay

12 large centres for
primary data
management: CERN
(Tier-0) and eleven Tier-

/- NORDUGRID

I —

Grie Sofution for Wide Area
Computing and Data Handhng

FINLAND cﬂ"\£3 :

}
h
o
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@‘\‘ WLCG Collaboration
7

The Collaboration
4 LHC experiments
~170 computing centres
12 large centres
(Tier-0, Tier-1)

38 federations of smaller
“Tier-2” centres

~35 countries e ee

Enabling Grids for
Open Science Grid E-science in Europe

Memorandum of Understanding
Agreed in October 2005

Resources
Focuses on the needs of the four LHC experiments
Commits resources — /_NiRDUSRZ

each October for the coming year
5-year forward look

Agrees on standards and procedures
Relies on EGEE and OSG (and other regional efforts)
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Running jobs at all sites
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Worldwide LHC Computing Grid
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GRID vs Cloud

* “Cloud computing” is gaining importance
— Web based solutions (http/https and RES)
— Virtualization, upload machine images to remote sites

* GRID has mainly a scientific user base

— Complex applications running across multiple sites, but works
like a cluster batch system for the end user

— Mainly suitable for parallel computing and massive data
processing

* Expect convergence in the future
— “Internal Cloud” at CERN
— CernVM - virtual machine running e.g. at Amazon
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'@ | CG depends on two major science
- grid infrastructures ...

EGEE - Enabling Grids for E-Science
OSG - US Open Science 6Grid

oa ...
S RN
:

o CGCC

Enabling Gnds
for.E-sciencE

A map of the worldwide LCG infrastructure operated by EGEE and OSG.
les robertson - cern-it-27
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Enabling Grids for E-sciencE
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Quoikn YynAwv Evepyeiwv (Pilot domain)
4 mreipapara LHC, DESY, Fermilab
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latpiki amreikévion (Medical imaging)
[[EWETTIOTNUES
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Epapuoyeg
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Backup

More on simulation



Geant4 geometry: what it ((GESES=

Describes a Detector
¢t Hierarchy of volumes

#£ Many volumes repeat
~IVolume & sub-tree

#2 Up to millions of _ |

volumes for LHC era Navigates in Detector

£ Import detectors from #t Locates a point

CAD systems #£ Computes a step
Linear intersection
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Propagating in a field %

Charged particles follow paths that
approximate their curved trajectories
in an electromagnetic field.

It is possible to tailor

the accuracy of the splitting of the curve into
linear segments,

the accuracy in intersecting each volume
boundaries.

These can be set now to different values
for a single volume or for a hierarchy.
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Electromagnetic physics

Gammas:
Gamma-conversion, Compton scattering, Photo-electric effect

Leptons(e, u), charged hadrons, ions

Energy loss (Ionisation, Bremstrahlung) or PAI model energy loss,
Multiple scattering, Transition radiation, Synchrotron radiation,

Photons:
Cerenkov, Rayleigh, Reflection, Refraction, Absorption, Scintillation

High energy muons and lepton-hadron interactions

Alternative implementation (“low energy”)
for applications that need to go below 1 KeV

11 March 2014 J. Apostolakis 32



Antiproton annihilation - CHIPS Model
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Simulation ‘packages’

Provides the means to simulate
the and
of an experiment.
As was realised by many in the past,

needed can be between
experiments (eg physics, geometry blocks) .

So it makes eminent sense to create and use a

That includes the common parts,

And enables an experiment to describe those parts
with are specific to it.
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and Moo

nsS

X-Ray Surveys of Asteroids

1000,005' b
-~ 100,00 E
E 10.00g E
e g Fe ITS3.0, EGS4 -
Courtesy SOHO EIT ; <><> ]
2 O Geant4
Induced X-ray line emission: BN 0 3
Indicator of target composition o C, N, O line emissions included
oot
(~100 um surface layer) o " 0 w
E08A. . e AP EMOTEN t4
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HEP Processing stages and datasets

event filter

(selection &
econstruction
-

3 Event Summary
|

Data (ESD)
\ \X batch
; physics Eﬁﬂﬁé@

detector

processed
data

analysis

ﬂ

Analysis Object Data (AOD)
ﬂ I (extracted by physics topic)
LR

event
econstructio

simulation

event J
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CERN CenTre CapaciTy Requirements Tor all

Estimated Mass Storage at CERN Estimated DISK Capacity at CERN
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Event Data

4 - \
RAW ESD AOD |/ aon )
version@g —
Event Event //Even’r
Event / /’//;::::/ v
/ ,/‘
%/Z o Phys
Raw Rec YST | L
> . vills My Trk
Velo || Calo |Coor'd TracksH |Cand| U Y r
~ —= v_ - - V\.\\— ! -
\_ Collaboration Data VAN Private //
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Complex data models
~500 structure types
References to describe

relationships between
event objects

unidirectional
Need to support
transparent navigation

Need ultimate
resolution on selected
events

need to run
specialised algorithms

work interactively

Not affordable if
uncontrolled
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HEP Metadata - Event Collections

‘‘‘‘‘‘‘‘‘‘‘ Run
Gun Catalogue \ -----------

PhySiCS Run____ I e o Data

21437 T Event 1

MC:B->1rTr 5 - B Event 2

MC: B -> J/W (u* u)

Collection
Catalogue

B -> 1111 Candidates (Phy) [*4-... . iy
B -> J/V (ut u) Event tag ‘
Candidates - collection Gl I
Tagl |5 | 0.3 . .

\”. / N Tag 2 2 1"' 0“"' "““

TagM' 8 ' 3.1
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Detector Conditions Data

A
Reflects changes in Version
state of the detector ‘
with time “ —1 Time
Event Data cannot be VDET ﬂgnmem 7 g
HCAL calibration >
reconstructed or ccar e | 7
analyzed without it " ts// 56 718 © 10l
Ver‘sioning ata Item Time=T
Tagging
Ability to extract slices : o
of data required to run version Tag1 definition
with job
Long life-time = ~
———@ | — @+
>
Time
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A Multi-Tier Computing Model

X R ,’ .t'eglonal g
Lab ‘

(Experiment Host lab)

Tier 1
(Main
Regional
Centres)
Desk‘rop m “\ O
V| .Lab b™
e \@ ",‘ "
gUniy, e UNi B

)
Tier2 Uni b -
Tier 3 (0} B - Y PP
G g T
Q O :
User View

Desktop

Manager View

J. Apostolakis
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Distributed Analysis - the real challenge

Analysis will be performed with a mix of "official” experiment
software and private user code

How can we make sure that the user code can execute and provide a
correct result wherever it "lands"?

Input datasets not necessarily known a-priori

Possibly very sparse data access pattern when only a very few
events match the query

Large number of people submitting jobs concurrently and in an
uncoordinated fashion resulting into a chaotic workload

Wide range of user expertise

Need for interactivity - requirements on system response time
rather than throughput

Ability to "suspend” an interactive session and resume it later, in
a different location

Need a continuous dialogue between developers and users
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Visualization

Much functionality is
implemented

Several drivers:

OpenGL, VRML, Open Inventorg
Opacs, DAWN renderer (G4)

Also choice of User Interfaces g
Terminal (text) or

GUI: Momo (G4), OPACS

Editors for geometry, EM physics
code generation
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i@
One area: Tracking @\!&fj

What a simulation code needs to do for
each step of particle:

Determine the
Corresponding to the applicable physics processes
Checking if it crosses a geometrical boundary

Model the of the track,

Advancing it, potentially in an EM field,
Applying the actions of the physics processes,
which can create particles.

energy in current position ( ‘hit").
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Actions during a Step

During each step

Each physics process is given the opportunity
to limit the step,
as is the geometry module (at a boundary), and
leading to the decision on this step’s length.

Physics processes are allowed to apply their
effect

If they occur along a step (‘continuous’)

If they caused the ‘hard’ event that limited the
step (‘discreet’).
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Actions during a Step (cont)

During a step (continued)

An (optional) user-written ‘action’ is called,
Which can be used eg to create histograms or

tallies.

If the current volume contains a sensitive

detector, t
to recorc

nat is addressed, allowing it eg
the energy deposited,

to recorc
in general

the exact position
to create a ‘hit’ that store all

information that is relevant for that detector .

11 March 2014
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Actions during a Step (cont)

During a step (continued)

A parametrisation can be triggered (Geant4)
Taking over from ‘detailed’ simulation
Generating directly several hits

This application-specific operates instead of ‘normal’
physics processes until it returns control and/or
resulting particles for further ‘detailed’ simulation.
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GEANT 4 Qs

Detector simulation tool-kit for HEP
offers alternatives, allows for tailoring

Software Engineering and OO technology
provide the method for building, maintaining it.

from:
LHC
heavy ions, CP violation, cosmic rays
medical and space science applications

World-wide collaboration

11 March 2014 J. Apostolakis
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PbWO4 e- 5 GeV

G4-G3 comparison
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Multiple scattering model

A new model for multiple scattering based on the
Lewis theory is implemented
since public B release in 1998.

It randomizes momentum direction and
displacement of a track.

Step length, time of flight, and energy loss along the
step are affected, and

It does not constrain the step length.
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