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Introduction

The high energy of the LHC gives events with many coloured
partons in the perturbative regime.

It is a challenge to deal with the colour structure exactly for
many partons, due to the non-Abelian structure of QCD.
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Local symmetry of QCD

The symmetry of QCD is SU(3)
It enters the calculations from the vertices:

a

b c

∝ i f abc

a

i j

∝ (T a)ij
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Section 2

Colour space bases

Johan Thorén Decomposing colour structures into multiplet bases



Introduction
Colour space bases

Decomposition into multiplet bases
Conclusions and outlook

Backup slides

Trace bases
Multiplet bases

Trace bases

Simple algorithm:

4-gluon vertices are rewritten as sums over 3-gluon vertices.

The antisymmetric 3-gluon vertices are replaced by:

=
1

TR

 −


Internal gluons are removed by:

= TR

(
− 1

Nc

)
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Trace bases

= C1 +C2 +...

Straightforward to apply to reduce any colour structure.

Non-orthogonal and overcomplete!

Number of vectors grows factorially in the number of external
gluons, Ng , plus external qq̄-pairs, Nqq: ∼ (Ng + Nqq)!

Squaring the amplitude gives factorial square scaling due to
the non-orthogonality.
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Multiplet bases

Orthogonal and minimal basis!
Keppeler and Sjödahl, JHEP 1209.

Number of vectors grow exponentially, not factorially.
Orthogonality makes squaring easier!
Downside is that decomposing a colour structure is not as
straightforward as it is with the trace basis.

β1 β3 β2

Quarks can be handled by combining the external quarks and
antiquarks into pairs, which can then be in either a singlet or an
octet.
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Section 3

Decomposition into multiplet bases
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Decomposition

The decomposition is just an evaluation of the scalar product
between the basis vectors and the colour structure:

β2 β3 β1

This is just the evaluation of vacuum bubbles.
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Vacuum bubbles

Any vacuum bubble can rewritten as sums over factors of
simpler vacuum bubbles.

This is achieved by finding loops in the bubble:

and repeatedly applying completeness relations, resulting in a
reduction of the number of vertices in the bubble:

ν

µ =
∑
α

dα
µ
ν α α

ν

µ

ν

µ

.
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Example for 6 external gluons

One of the colour structures for 3g → 3g is:
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Example for 6 external gluons

Using straight lines instead of curly lines for gluons gives:
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Example for 6 external gluons

Decomposition into the basis vectors is equivalent to determining
the scalar product between the basis vector and the colour
structure:

β2 β3 β1
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Example for 6 external gluons

In a more compact form:

A(β1, β3, β2) =

β2β3β1
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Example for 6 external gluons

Highlighting the smallest loop:

A(β1, β3, β2) =

β2β3β1
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Reducing the loop

A vertex correction only gives a factor (given by small bubbles):

β3
β2

= β3

β1

β3

β3

and so do two-vertex loops:

α δ
γ

β

=

α

γ

β

dα α
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Example for 6 external gluons

Using the vertex correction result on:

A(β1, β3, β2) =

β2β3β1
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Example for 6 external gluons

Gives:

A(β1, β3, β2) = β3

β1

β3

β2β3
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Example for 6 external gluons

Now we must pick a 4-vertex loop:

A(β1, β3, β2) = β3

β1

β3

β2β3
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Reducing the second loop

A 4-vertex loop is less trivial than a vertex correction:

β3

β2 =
∑
α1

dα1

α1 β3

β2
α1

=

=
∑
α1,α2

dα1dα2

α1
α2

β3

β3

β2
α1

β3
α2
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Reducing the second loop

A 4-vertex loop is less trivial than a vertex correction:

β3

β2 =
∑
α1

C (α1, β2, β3)
α1

Johan Thorén Decomposing colour structures into multiplet bases



Introduction
Colour space bases

Decomposition into multiplet bases
Conclusions and outlook

Backup slides

Vacuum bubbles
Strategy
Summations over representations

Example for 6 external gluons

Now we are to remove the 4-vertex loop:

A(β1, β3, β2) = β3

β1

β3

β2β3
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Example for 6 external gluons

Giving us the final expression:

A(β1, β3, β2) =
∑
α1

C ′(α1, β1, β2, β3)

α1

=

= β3

β1

β3

∑
α1

dα1
α1

β3

−

−

−

−

α1

β2

β3

α1−

α1
α1

β3
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Strategy

Any vacuum bubble can be rewritten as a sum of factors of
smaller vacuum bubbles, called Wigner 3j and 6j coefficients.

∑
ψ1

∑
ψ2

...
∑
ψn

 ...

...


Rewriting into smaller bubbles can be done without specifying
for which basis vector it is.

These smaller bubbles can be calculated once with the trace
basis (which would take time) and then be stored.

Rewriting a colour structure into these coefficients scales as
N3
g .
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Wigner coefficients

Requiring the vertices to be non-zero and counting how many
different possibilities there are for the Wigner coefficients gives the
result:

Ng 4 6 8 10 12

Nc ≥ Ng 52 396 2 126 9 059 32 702

Nc = 3 38 130 277 479 736

It is known how to calculate these, and I have calculated them for
Ng = 6.
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Summations

There might still be a problem in that there are many terms in:

∑
ψ1

∑
ψ2

...
∑
ψn

 ...

...


This has to do with how small loops can be found in the
vacuum bubbles.
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Summations

The most difficult colour structures to handle cannot have a
number of summations scaling worse than N2

g

For a given Nc each sum can be over, at most, N2
c − 1 reps.

This then gives an exponential in N2
g as an upper limit for the

scaling for the hardest colour structures.

By rewriting all colour structures for 6, 8 and 10 external
gluons it seems that both the average number of summations
and the number of summations required for the worst cases
scale linearly, rather than quadratically.

It is also very likely that assuming that every summation is
over as many representations as possible is a bad overestimate.
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Conclusions and outlook
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Conclusions and outlook

Conclusions:

The multiplet bases are minimal and orthogonal.

Decomposing a colour structure into it is non-trivial.

Rewriting a vacuum bubble scales as N3
g .

A manageable number of vacuum bubbles has to be
calculated and stored (even for general Nc).

In the worst cases the number of terms that have to be added
grow exponentially with the number of gluons.

Outlook:

Currently working together with M. Sjödahl and Y. Du with
recursion relations for maximally helicity-violating (MHV)
amplitudes.
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Reduction of 4-vertex loop

A 4-vertex loop is less trivial than a vertex correction:

β3

β2 =
∑
α1

dα1

α1 β3

β2
α1

=

=
∑

α1,α2,α3

dα1dα2dα3

α1
α2

β3

α3

β3

β2
α1

β3
α2 α3
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Reduction of 4-vertex loop

Resulting in:

β3

β2 =
∑
α1

C (α1, β2, β3)
α1
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Reducing vertex corrections with a completeness relation

A vertex correction is simple to deal with:

β3
β2

=
∑
ψ

dψ

β3

β3
β2

ψ
=

= β3

β1

β3

β3
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