WH production and its Heavy Boson Background NLO Merging with SHERPA

Jennifer M. Thompson

jennifer.thompson@durham.ac.uk

1 April 2014

arXiv:1403.7516 [hep-ph]

S. Höche, F. Krauss, M. Schönherr J.M. Thompson, K. Zapp

Outline

- Triboson Processes
 - Trilepton Final States
 - Signal Processes
 - Background Processes
 - Background Considerations
- NLO Calculations
 - Setup
 - Matching with MC@NLO
 - NLO Merging
- - Z veto
 - Results
- 4 Conclusions

Trilepton Final States

- ATLAS and CMS both have analyses for the trilepton final state of WH production.
- Trilepton final states are a clean signal with a small background.
- The Higgs boson processes give a direct probe into the coupling of the Higgs boson to the vector bosons.
- Triboson processes are interesting for anomalous gauge couplings.
- The trilepton final states are also used in SUSY searches.

Signal Processes

Signal Process

These analyses target the signal process $W^{\pm}H(W^+W^-)$

Other trilepton final states with an on-shell Higgs boson are also considered as signal processes:

- $W^{\pm}H(\tau^{+}\tau^{-})$
- W[±]H(ZZ)
- ZH(W+W-)
- $ZH(\tau^+\tau^-)$
- ZH(ZZ)

All signal processes are calculated with MEPS@NLO with 1 jet contribution at NLO.

Background Processes

Vetoes

- b jets eliminate $t\bar{t}V$.
- Z veto reduces Z boson background contributions.

Backgrounds considered:

- W[±]Z
- $W^{\pm}W^{+}W^{-}$
- $W^{+}W^{-}Z$
- 2Z
- \bullet $W^{\pm}ZZ$
- ZZZ

- MEPS@NLO 1 jet NLO
 - WZ
 - WWW
- MENLOPS
 - WWZ
 - ZZ
 - WZZ
 - ZZZ

Background Considerations

Higgs contribution:

- We can consider either an on-shell Higgs boson or an off-shell Higgs boson.
- The off-shell Higgs boson can be considered as either signal or background.
- The process has large interferences with the on-shell WWW production.
- Here the off-shell contribution is included in the background.

1-jet merged WWW:

- WWWj contribution at NLO contains WWWbb configurations.
- This introduces a double counting with the $t\bar{t}V$ process.
- To eliminate this, the MC@NLO process does not include b quarks.

Setup

$$\sigma_{\mathsf{NLO}} = \int \mathrm{d}\Phi_B(B(\Phi_B) + I(\Phi_B) + \tilde{V}(\Phi_B)) + \int \mathrm{d}\Phi_R(R(\Phi_R) - D(\Phi_R))$$

- This study used the SHERPA event generator and the following ME generators:
 - AMEGIC for Born (B) and integrated parts (1).
 - COMIX for real-subtraction parts (RD).
- OpenLoops is used for the virtual loops (V).
- The COLLIER library is used by OpenLoops.

Matching with MC@NLO

The MC@NLO method is implemented in SHERPA as S-MC@NLO.

$$\mathrm{d}\sigma^{\text{S-MC@NLO}} \,=\, \mathrm{d}\Phi_B \, \bar{B}_n(\Phi_B) \, \bar{F}_n(\mu_Q^2) \,+\, \mathrm{d}\Phi_R \, H_n(\Phi_R) \, F_{n+1}(\tilde{\mu}_Q^2)$$

 \bar{B}_n is the Born-like part of the NLO calculation, and is H_n is rest:

$$\begin{split} \bar{B}_n(\Phi_B) &= B_n(\Phi_B) + \tilde{V}_n(\Phi_B) + I_n(\Phi_B, \, \mu_Q^2) \,, \\ H_n(\Phi_R) &= R_n(\Phi_R) - D_n(\Phi_R) \Theta \left(\mu_Q^2 - t \right) \end{split}$$

And I_n is the integrated subtraction term given by:

$$I_n(\Phi_B, \, \mu_Q^2) = \int \mathrm{d}\Phi_1 \, D_n(\Phi_B, \Phi_1) \, \Theta\left(\mu_Q^2 - t\right)$$

and \bar{F}_n and F_{n+1} are the generating functions for the parton shower, D_n are the subtraction terms, and t is the evolution variable.

NLO Merging

MENLOPS:

$$\begin{split} \mathrm{d}\sigma_{n}^{\mathrm{excl}} &= \mathrm{d}\Phi_{n} \; \bar{B}_{n}(\Phi_{n}) \, \bar{F}_{n}(\mu_{Q}^{2}; < Q_{\mathrm{cut}}) \\ &+ \mathrm{d}\Phi_{n+1} \, \Theta(Q_{\mathrm{cut}} - Q(\Phi_{n+1})) \, H_{n}(\Phi_{n+1}) \, F_{n+1}(\mu_{Q}^{2}; < Q_{\mathrm{cut}}) \end{split}$$

with LO higher order cross sections:

$$\mathrm{d}\sigma_{n+k} = \mathrm{d}\Phi_{n+k}\,\Theta(Q(\Phi_{n+k}) - Q_{\mathrm{cut}})\;k_n(\Phi_{n+1}(\Phi_{n+k})) \ B_{n+k}(\Phi_{n+k})\;F_{n+k}(\mu_Q^2\,;\,<\,Q_{\mathrm{cut}})$$

 k_n is the local K-factor. This method can be extended to higher order NLO matrix elements (MEPS@NLO):

$$\begin{split} \mathrm{d}\sigma_{n+k}^{\mathrm{excl}} &= \mathrm{d}\Phi_{n+k}\,\Theta(Q(\Phi_{n+k}) - Q_{\mathrm{cut}})\,\tilde{B}_{n+k}(\Phi_n + k)\,\bar{F}_{n+k}(\mu_Q^2\,; < Q_{\mathrm{cut}}) \\ &+ \mathrm{d}\Phi_{n+k+1}\,\Theta(Q(\Phi_{n+k}) - Q_{\mathrm{cut}})\,\Theta(Q_{\mathrm{cut}} - Q(\Phi_{n+k+1})) \\ &\tilde{H}_{n+k}(\Phi_{n+k+1})\,F_{n+k+1}(\mu_Q^2\,; < Q_{\mathrm{cut}})\;, \end{split}$$

ATLAS and CMS Analyses

ATLAS-CONF-2013-075, CMS-PAS-HIG-13-009

ATLAS

Veto all SFOS pairs

CMS

Veto SFOS pairs in a mass window $|m_{SFOS} - m_Z| < 25 \text{ GeV}$

Samples

- The results are at hadron level.
- Scale uncertainties are evaluated at the parton level.
- Hadronisation and underlying event affect the lepton isolation.

ΔR of Closer Opposite Sign Leptons with ATLAS Cuts

Trilepton Invariant Mass with CMS Cuts

$E_{\perp}^{ m miss}$ with ATLAS Cuts

Scale Uncertainties for Trilepton Invariant Mass

Conclusion and Outlook

- The trilepton final state is useful for many different studies:
 - 1 Triboson studies looking at anomalous gauge couplings.
 - Triboson studies for Higgs boson couplings.
 - SUSY searches.
- The signal and background for $W^{\pm}H(W^+W^-)$ production with trilepton decays can be calculated at NLO with SHERPA+OpenLoops.
- The signal and dominant backgrounds have been calculated with 1 jet merged at NLO, up to the *WWW* contribution.