

"UCL" activities in MCnet

"UCL" activities in MCnet

- User activity and Rivet
- MC Development

Emily Nurse

• Emily Nurse... very productive (Zoe Peggy) and gradually returning to MCnet work too

now

- Gavin Hesketh: Starting to work with Andy Buckley on Simone Amoroso's shortie studentship (implementing correlated uncertainties in tuning, then some heavy flavour stuff)
- Nicola Orlando coming to UCL over the summer to work with Gavin, looking at more heavy flavour in MCs.

- Me/ Inês Ochoa/Tim Scanlon... H -> bb studies
 - WH, aMC@NLO/Herwig++, Rivet
 - Compare C/A subjets with anti-KT R=0.4

- Me/Ben Waugh/Evgeny Savin & Jayson Marmar (undergrad project students)
 - Sherpa 2, dijet flavours (JM)
 - MPI (ES)

MCnetaTLAS paper

Sherpa (2m events)

350 400 450

Leading jet p_{\perp} [GeV]

MCnet

Data 2010, √s= 7 TeV, Ldt=39 pb

300

Jet p_ [GeV]

50

100

200 300

Jet p_ [GeV]

ATLAS paper

Sherpa (2m events)

100

150

200

250

300

350 400 450

Leading jet p_{\perp} [GeV]

100

150

200

250

300

Rivet Routine for W(->Iv) + 2-jet events

- Lots of Rivet development & maintenance,
 Andy Buckley et al (Glasgow, Durham, liaisons within the experiments)
- HEPDATA: Durham discussion later.

UCL MC development
Keith Hamilton,
new Mcnet PhD student Stefan Richer

- UCL's work in MC development includes ...
- 1. Substantial contributions to the Herwig++ generator
- 2. Powheg-Box NLO+parton shower [NLOPS] code framework
- 3. New methods for inclusion of higher order corrections to take MCs and the related calculations to the next levels of precision

1. The Herwig++ generator

- UCL helped develop some of the 1st POWHEG [NLO+PS] simulations
- These are still the only truly 'full' POWHEG simulatⁿs

 [they have the angular ordered truncated shower mandated by QCD colour coherence]
- Past involvement in Herwig++ Underlying Event simulation via JIMMY,
 but now only involved in tyuning, not code development

2. The Powheg-Box NLOPS toolkit

MCnet

- UCL did major work on the 1st NLO+PS MC of jet production
- Also Powheg-Box W+jet
- Other contributⁿs include a reweighting facility for th.uncertainty determinatⁿ & more significant theoretical progress →

- UCL were co-authors in the original MENLOPS formulation
- MENLOPS combines NLO + parton shower matching techniques w. the complementary multi-jet matrix element + parton shower approach

New MC Methods: Multiscale improved NLO ■

- UCL contributed to formulating Multiscale improved NLO: MiNLO
- MiNLO is a physically motivated scale setting procedure based on parton shower resummation, improving inclusive NLO calc^s w.
 beyond-NLO corrections
- MiNLO H+jets codes are state-of-the-art & used by ATLAS [see above]

3. New MC Methods: NNLOPS

- UCL co-developed the world's first NNLOPS simulation This level of accuracy in MC is, for now, unmatched.
- Simulation is based on a refined version of a MiNLO calculation
- The code is public at http://powhegbox.mib.infn.it

- Others (not core MCnet but generally working on related things...)
- 1. ATLAS: Mario Campanelli, Ben Cooper, Becky Chislett, Kristian Gregersen, Christian Gutschow, Josh McFayden... others James Monk: ATLAS MC coordindator, now Copenhagen, still very involved.
- 2. Theory: PDFs, SUSY & BSM models... Robert Thorne, Patrick Motylinski, Julia Harz, Frank Deppisch...

- Future plans
- Continue (and hopefully increase) Rivet maintenance and development work, tuning & validation, liaison with experiments
- 2. Would be good to think more about HEPDATA and MCPlots
- 3. Continue contributions to Herwig++, Powheg-Box, NLOPS, higher order precision methods