Dimensions of Data Management:

a taxonomy of data-transfer solutions
| In ATLAS & CMS

Tony Wildish [1], Campana Simone [2], Garonne Vincent [2], Lassnig Mario [2], Di Girolamo Alessandro [2], Serfon Cedric [2]
[1] Princeton University, USA [2] CERN, Switzerland

Compact Muon Solenoid

The Challenge

HEP software is traditionally designed to satisfy certain use-cases or requirements, either based on a-priori estimates of the experiments' needs or on the shortcomings of an existing solution which no
longer performs satisfactorily. However, designing against a requirements-document is only useful if the requirements are complete and stable.

Even if we could write down a complete set of requirements for data management systems for CMS and ATLAS, we cannot pretend that they will be stable over the course of several years.

Experiments' data-models change, types and distributions of resources change, and the patterns of data-use also change. New technologies can disrupt the way experiments use data, such as the move to
multi-core CPUs or cloud-based infrastructure. We should not be surprised if we discover that data management use-cases arise during Run-2 that we are not currently aware of, and that our systems may
struggle to cope with.

We propose a framework for designing data management systems that takes a step back from the normal requirements-driven process and looks instead at data and the ways it can be manipulated.

By identifying a set of 'dimensions of data management' we provide a way of breaking down the structure of data management systems into orthogonal components, whatever the use-cases they are built
to serve. This makes the final product more flexible, more adaptable. New requirements will, we expect, map to only one or two of our dimensions, which means that the changes needed to support them
will be well-contained, not spread throughout the code. New technologies, too, will be limited in their impact, because the technologies they replace are well isolated in the software.

This should lead to software designs which require less maintenance, do not become brittle over time, and which therefore last longer. Although it may appear to impose an overhead on the initial design
of a new system, it should enable easier unit-testing of components and re-use of either code or at least the design of those components. It also provides a natural factorization that can allow multiple
developers to work on the same system coherently.

CMS Data Management ATLAS Data Management

[/Rucio Clients: Production/analysis/Physics meta-data system, End-Users .
ucio Rucio
Web Page | Central Agents | PhEDEX PhEDEX e Sttt |Rucio is the new distributed data
N\ PhEDEx is the data-placement management _[Aihenicaton & Authorzaion Laver] _ \ Rucio storage Element (RSE) [Networking management system for ATLAS. It is charged
g : system for CMS. It handles all our scheduled —— — — - °.".’.°f’."f.sff“.'°.e.-\: st s swe 2:?522’}?:'?2); with managing all ATLAS data like detector,
5| |8 data-movement, moving raw and reconstructed [o oot D"t‘t{'i';'”, [oo bsoription] wadewws .| monte-carlo and end-user data on the grid.
- A B4 experiment data to archival storage, analysis S } All tor the purpose of helping the
- Transfer data to T2's, and monte-carlo data from 5 [aotmame,)| ivende "]| Ggeoun ol tater N collaboration store, manage and process
y MSZ?SSQZ t % production sites to places where it is stored and [Avallability ‘[AccounVRSE]’ Replicalocks | R LHC data in a heterogeneous distributed
. e analysed. | N S e VQ: environment. The requirements are:
{ Stager | e —— FileDownload }\ PhEDEXx transfers in units of 'blocks' or datasets } ! } * Discover data
c ~ — & of files, where a dataset is composed of several e — Em— * Transfer data to/from sites
o | [SRM)‘3{ glite FTS J"'“[SRM J "' S]) N Aucio Probes Aucio Analytics . -
4 E 7 E: blocks. A block is (ideally) ~1 TB, so several ﬁ il — Delete data from sites
@\ v ' . -, hundred files. Active Directory (Account, DI, RSE) * Ensure data consistency at sites
“Jtorage Systell R > Storage System’ i | (| s | [e * Enforce ATLAS computing model
etc.) etc.)
Space collector
) Site A i . Site B . ASO application — Files, Datasets & Containers Concepts
o I — Files are grouped into datasets. Datasets/
[Xrootd Global] | e s o Containers are grouped into containers.
redirector A A A P e e e ouchDE | T ® EaEn Others concepts: Account, meta-data,
— I R, “pul” status — ®] R > replica management & policies, accounting
Usger H g ASO databaseASynCStageOUt B 5000 22200200t SR T and quota.
-Applicatxon s S—
5 A Rediect 1o Ste C A Successl R 00TD_BNL_reverse_prory ’ Architecture & Scale
ﬁ(rootd Regiona! L \ J Xrootd Regional AS O Rucio has client, server and daemons
/,Red'ec"f\ 3. Query Istorelfoo Re;"ecw" ‘J ASO is the Asynchronous StageOut component e architecture. The daemons are active
2. Query /storeffoo \ 4. Query fstorefioo of CRAB. It's primary purpose is to transfer user- components that are orchestrating the
BiaA el e St D % files from the site where they are created by a collaborative work of all the system like file
batch job to the final destination specified by, | ~ °% transfers.
AAA l the user. FAX Rucio has been able to demonstrate large
scale data management capabilities with
AAA stands for 'Anydata, Anytime, Anywhere'. It's the CMS |ASO is designed to deal with up to 200K files per FAX stands for ‘Federated ATLAS XRootD'. It's the ATLAS more than 600M files, 160 petabytes spread
implementation of an xrootd federation. day, where files are expected to be ~1 GB or implementation of an xrootd federation. worldwide across 130 sites, and accesses
AAA does unscheduled transfers, in that there is no central| |less. In fact, files are often _much_ less than 1 It spans 67 largest sites and is integrated in the ATLAS workload from 1,000 active users. Rucio is designed
planning that decides when they take place(*). Instead, the | GB, so we can estimate about 20-50 TB per day management system(PanDA). It is capable of remotely for ATLAS Run-2 nominal throughput at 2+
main use-case is for allowing jobs to run where CPU is available | | On average, or about the same level as AAA (c.f. delivering data to all of the ATLAS analysis job where CPU is million file transfers per day and to support
evenlifthe datalis not. ~290 TB/day for PhEDEXx transfers). available. up to 150 Hz of file deletion rate.

Dimensions of Data Management Reliability

What does reliability mean for a given use-case? Clearly for
Metadata management custodial raw data the reliability should be close to 100%, all the
data should be delivered if it is not lost beforehand. For data from
opportunistic resources, volunteer computing or from monte-carlo
production, a certain amount of loss may be acceptable.

Data-volume

the amount of data being handled by a system is a
fundamental property. An experiments' file-catalogue, for
example, knows about all the files the experiment has

No system is complete without some sort of bookkeeping. How
much metadata, where it comes from, how it is stored, are all
oroduced. A data-movement system, on the other hand important considerations. This also covers interaction with the

may know only about the files which are in transit, or which system by users or external components. How does a request

possible (e.g. suspending or resuming transfers). Latency

minimize latency! Different things in different situations. For archiving
UserS and Securit custodial raw data, a latency of a few hours is acceptable. For a batch-

y job waiting to read a file, latency of the order of a few seconds is more
This covers a few related items. How many users does the | | important. In situations where latency demands cannot be met (e.g. a
system have to handle? What kind of authentication, server holding the data crashes and must be rebooted) the response
authorization and accounting are needed? Are all users | of the system can vary. Does it simply give up and report an error, or

considered equal or is there a hierarchy, with some users| | does it continue to try until it gets the data eventually?
more important than others?

Network structure

This has several components, such as:

 Number of nodes: today TO/T1/T2/T3 sites, tomorrow could be every personal desktop/laptop in
the collaboration, every worker-node that produces or accesses data.

* Node topology: fixed or dynamic. The set of TO/T1/T2 sites is essentially a static topology.
Opportunistic resources, volunteer computing, or personal laptops show far more dynamic
behavior, they may join and leave the network topology with little notice. In the case of laptops
they can also leave and re-join from different locations as they move from place to place. Not only
the number of nodes can be dynamic, their underlying connectivity may change too. Th roughput

 Types of data-flows: The type, or characteristics, of the data in a network may vary. The traffic
between any two nodes may be bursty (e.g. raw data from the detector, following the accelerator-
cycle) or more continuous (e.g. data from monte carlo production). The data-flows themselves What else??
may be statically defined (e.g. raw data from the detector to the T0), or the set of data-flows may
change continuously (e.g. a T2 that downloads analysis data from multiple sources).

Others? The throughput characteristics may vary considerably. For most data, 'as fast as possible' is
: the requirement. There may be specific deadlines involved, e.g. in evacuating data from an
opportunistic or shared resource which is scheduled to be returned to another user. There
may also be benefits from managing the traffic, for example in scheduling traffic from
thousands of worker nodes in order not to overwhelm the destination.

Conclusion

We have described the architecture of several data management systems used by the ATLAS and CMS experiments, their primary use-cases and the considerations behind their design. Even with this
plethora of systems, it is not clear that all the future use-cases of the experiments will be satisfied automatically.

We propose a set of principles, 'dimensions of data management’, which we believe are a more fundamental way of looking at these systems than use-cases and requirements documents. We suggest that
the future evolution of these systems, and the design of any new systems, should follow these principles as a key factor in defining their architecture.

We believe this will lead to more maintainable, more flexible systems, with components and code that can be re-used in ways that are not anticipated when they are created. Given the long lifetime of LHC,
we think this will be an important contribution to future productivity, with shorter development times and less overhead for maintenance and operations.

