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The Challenge

HEP software is traditionally designed to satisfy certain use-cases or requirements, either based on a-priori estimates of the experiments' needs or on the shortcomings of an existing solution which no
longer performs satisfactorily. However, designing against a requirements-document is only useful if the requirements are complete and stable.

Even if we could write down a complete set of requirements for data management systems for CMS and ATLAS, we cannot pretend that they will be stable over the course of several years.

Experiments' data-models change, types and distributions of resources change, and the patterns of data-use also change. New technologies can disrupt the way experiments use data, such as the move to
multi-core CPUs or cloud-based infrastructure. We should not be surprised if we discover that data management use-cases arise during Run-2 that we are not currently aware of, and that our systems may
struggle to cope with.

We propose a framework for designing data management systems that takes a step back from the normal requirements-driven process and looks instead at data and the ways it can be manipulated.

By identifying a set of 'dimensions of data management' we provide a way of breaking down the structure of data management systems into orthogonal components, whatever the use-cases they are built
to serve. This makes the final product more flexible, more adaptable. New requirements will, we expect, map to only one or two of our dimensions, which means that the changes needed to support them
will be well-contained, not spread throughout the code. New technologies, too, will be limited in their impact, because the technologies they replace are well isolated in the software.

This should lead to software designs which require less maintenance, do not become brittle over time, and which therefore last longer. Although it may appear to impose an overhead on the initial design
of a new system, it should enable easier unit-testing of components and re-use of either code or at least the design of those components. It also provides a natural factorization that can allow multiple
developers to work on the same system coherently.
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Dimensions of Data Management Reliability

What does reliability mean for a given use-case? Clearly for
Metadata management custodial raw data the reliability should be close to 100%, all the
data should be delivered if it is not lost beforehand. For data from
opportunistic resources, volunteer computing or from monte-carlo
production, a certain amount of loss may be acceptable.

Data-volume

the amount of data being handled by a system is a
fundamental property. An experiments' file-catalogue, for
example, knows about all the files the experiment has

No system is complete without some sort of bookkeeping. How
much metadata, where it comes from, how it is stored, are all
oroduced. A data-movement system, on the other hand important considerations. This also covers interaction with the

may know only about the files which are in transit, or which system by users or external components. How does a request

possible (e.g. suspending or resuming transfers). Latency

minimize latency! Different things in different situations. For archiving
UserS and Securit custodial raw data, a latency of a few hours is acceptable. For a batch-

y job waiting to read a file, latency of the order of a few seconds is more
This covers a few related items. How many users does the | | important. In situations where latency demands cannot be met (e.g. a
system have to handle? What kind of authentication,  server holding the data crashes and must be rebooted) the response
authorization and accounting are needed? Are all users | of the system can vary. Does it simply give up and report an error, or

considered equal or is there a hierarchy, with some users| | does it continue to try until it gets the data eventually?
more important than others?

Network structure

This has several components, such as:

 Number of nodes: today TO/T1/T2/T3 sites, tomorrow could be every personal desktop/laptop in
the collaboration, every worker-node that produces or accesses data.

* Node topology: fixed or dynamic. The set of TO/T1/T2 sites is essentially a static topology.
Opportunistic resources, volunteer computing, or personal laptops show far more dynamic
behavior, they may join and leave the network topology with little notice. In the case of laptops
they can also leave and re-join from different locations as they move from place to place. Not only
the number of nodes can be dynamic, their underlying connectivity may change too. Th roughput

 Types of data-flows: The type, or characteristics, of the data in a network may vary. The traffic
between any two nodes may be bursty (e.g. raw data from the detector, following the accelerator-
cycle) or more continuous (e.g. data from monte carlo production). The data-flows themselves What else??
may be statically defined (e.g. raw data from the detector to the T0), or the set of data-flows may
change continuously (e.g. a T2 that downloads analysis data from multiple sources).

Others? The throughput characteristics may vary considerably. For most data, 'as fast as possible' is
: the requirement. There may be specific deadlines involved, e.g. in evacuating data from an
opportunistic or shared resource which is scheduled to be returned to another user. There
may also be benefits from managing the traffic, for example in scheduling traffic from
thousands of worker nodes in order not to overwhelm the destination.

Conclusion

We have described the architecture of several data management systems used by the ATLAS and CMS experiments, their primary use-cases and the considerations behind their design. Even with this
plethora of systems, it is not clear that all the future use-cases of the experiments will be satisfied automatically.

We propose a set of principles, 'dimensions of data management’, which we believe are a more fundamental way of looking at these systems than use-cases and requirements documents. We suggest that
the future evolution of these systems, and the design of any new systems, should follow these principles as a key factor in defining their architecture.

We believe this will lead to more maintainable, more flexible systems, with components and code that can be re-used in ways that are not anticipated when they are created. Given the long lifetime of LHC,
we think this will be an important contribution to future productivity, with shorter development times and less overhead for maintenance and operations.




