CHEP 2015

Analysis of CERN Computing Infrastructure and Monitoring Data

Christian Nieke, CERN IT / Technische Universität Braunschweig

On behalf of the CERN IT Analytics Working Group

IT Analytics Working Group

- Goals:
 - Coordinate analysis and trending of application/service usage data
 - E.g. batch computing, data storage, network...
 - At different stages of maturity
 - Getting a quantitative understanding of a service (exploratory)
 - Informing strategy or planning decisions (hypothesis check)
 - Developing & validating predictive models

Data Sources - Before

Getting the Big Picture

- Combined Activity
 - Enable integrated studies crossing single data source / service boundaries
 - Using a common base repository of prepared input data
 - Provide an exchange forum for discussion on analysis methods, tools and result validation

Common Repository

- Data Warehouse
 - Write once, read many
- Hadoop cluster

- Raw files in any format
- Using Hadoop jobs for cleaning and preprocessing
- Export in CSV, Avro, Parquet, ... for Analysis

Data Source Documentation

• Example: EOS file system operations

Processed Parameters

Name	Туре	Link	Description	Purpose	Remarks
td	String	-	client trace identifier (<username>.<pid>@<client- host>)</client- </pid></username>	This identifier can be used to aggregate sessions (of the same user, with the same job on the same machine)	
path	String	-	Full namespace path to the file	The folder structure in the path could be usefull to match the file to a project/user/programm etc.	
ruid	Int	-	mapped unix user id	Allows aggregation by user	ruid==1 means root process, which is usually an internal process like rebalancing, draining etc.
rgid	Int		mapped unix group id	Allows aggregation by group	
host	String	LanDB : name	Name of the disk server serving the file	Allows aggregation by user host and links to LanDB	
fid	Int	-	EOS file id	Allows aggregation by file	unique per EOS instance (e.g. eosatlas, eoscms,)
fsid		-	EOS file system id, e.g. disk	Allows aggregation of files by file system (disk)	
ots	Date	-	File open time as unix timestamp (in seconds since January 1st, 1970 at UTC)	Aggregation by time	

Data Sources - Federation

Example Analysis Workflow

- Job Performance: Geneva vs. Budapest
 - Different computing centers
 - Different hardware
 - CPU, Memory, Network,
 - Do we get the same performance?
 - Compare CPU time used per job

CPU Time and Location

• Based on batch computing logs and network configuration

13/04/2015

Based on experiment job dashboard

CMS Jobs - Subset January + February 2015: 255,169 items

Selecting a single task •

CMS Jobs - Subset January + February 2015: 255,169 items

• It seems like there are still more underlying effects

HepSpec Benchmark

HepSpec Factor based on batch benchmarks

CERN

Scaling by CPU Factor

Removes "expected" deviation

CMS Jobs - Subset January + February 2015, restricted to one task: 29,965 items

Conclusion

- Combined Effort
 - CERN IT and Experiments
 - Federated data repository for uniform access
 - Understanding the system as a whole
- Examples for Actions Taken
 - Rebalancing batch slots per machine to avoid swapping
 - User notification in case of inefficient jobs
 - Activated TTreeCache for ROOT in ATLAS

Resources

Twiki

- <u>https://twiki.cern.ch/twiki/bin/view/ITAnalyticsWorkingGroup/WebHome</u>
- Contact:
 - Dirk Duellmann, CERN IT (Working Group Chair)
 - or myself

